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Abstract. During the recent six decades, numerous check dams have been constructed for soil
erosion control and agricultural production, and have become the key measure for soil and water
conservation in the Loess Plateau. Obtaining check dam information is very important for soil
erosion control and river basin management. This study utilizes remote-sensing images in con-
junction with Google Earth images and field survey to derive the spatial distribution of the check
dams in the Huangfuchuan catchment. Multisource data including topographic maps, Landsat
images, and images from Google Earth are collected for check dam identification. The results are
verified based on a field survey. The water surface area of the check dams derives from in situ
measurement and images present good relationship with the high correlation coefficient of 0.96.
Furthermore, the area extent and number of check dams derived from the remote sensing images
are similar to those from Google Earth images. Historically, an increase in the check dam num-
ber, controlled area, and storage capacity indicate their substantial trapping effects on streamflow
and sediment load in the Huangfuchuan catchment. This study may be a good reference for
proposing an efficient approach to identify the check dams and provide decision supports
for soil and water conservation in the Loess Plateau. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.7.073697]
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1 Introduction

Check dams are the most widely applied engineering structures for soil and water conservation in
the erodible regions. In the gully-dominated regions, check dams have been widely constructed
for retaining floodwater, intercepting soil sediment, improving gully slope stabilities, and
increasing farmlands. At the beginning of construction, a water body similar to a small reservoir
usually existed behind the check dam. Gradually, fertile cropland formed for grain production in
the region, where a water body was filled by sediment deposition.1

Unlike reservoirs, check dams are not common around the world. It has only been reported
that check dams were implemented for soil erosion control in some countries and regions, such
as France, Italy, Spain, China, etc.2,3 The majority of research on check dams has been conducted
to investigate their impacts on geomorphology, channel morphology, river bed stability, and
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sediment yield through both field measurement and numerical simulation. It has been concluded
that the check dams captured sediments and led to a decrease in the longitudinal gradient
upstream, but accelerated downstream erosion because of the increased flow transport capacity
and scour processes.1,4,5 Bombino et al.6 addressed statistically significant differences in channel
form, sediment, and vegetation among the upper, the lower reaches, and the intermediate sec-
tions of check dams in Southern Italian catchment. A reducing rate of 77% sediment yield by
check dams has been reported by Boix-Fayos et al.2 in the Rogativa catchment of SE Spain. Ran
et al.7 analyzed the coarse sediment retention by check dams in five typical catchments in the
midstream of the Yellow River, and found that the average sediment reduction ratio could reach
60% when the check dams area accounted for more than 3% of the drainage area.

In Chinese Loess Plateau, check dams have attractive advantages because of unique envi-
ronmental settings and regional food supply needs.5,8,9 For >400 years, check dams have been
constructed for soil erosion control and agricultural production improvement. The check dams
have become one of the most effective strategies for soil erosion control in the Loess Plateau.
Especially during the recent six decades, thousands of check dams have been constructed in the
region. By 2005, >120;000 check dams have been built on the Loess Plateau over the past
50 years and approximately 21 billionm3 of sediments have been captured by these dams.10

Although considerable studies have been conducted as mentioned above, the locations, storage
capacities, and outflow methods have not been inventoried and documented. Thus, further under-
standing the mechanisms on the hydrological effects of check dams was impossible.

Traditionally, check dams and their storage capacity are estimated by using the topographic
maps according to the in situ hydrographic survey with an electronic planimeter.11 However, this
approach is usually laborious, costly, and time consuming. Advances in remote sensing, geo-
graphic information systems, and computer technology have made satellite images convenient
and less expensive for reservoir or dam measurement and monitoring.12,13 Remote-sensing
images provide invaluable and timely information on spatial distribution, spectral and temporal
attributes for reservoirs, and dam operation and management.14,15 However, research on check
dam identification and quantitative estimation of storage capacities by means of remote-sensing
images are very rare.16,17 The few studies available mainly focused on individual reservoirs or a
rather small watershed and as a result, only some tentative applications have been reported.18

Tobetterunderstand thepotential effectsof checkdamsonhydrological processes andsediment
yield at catchment scale, an accurate estimation of the check dam distribution and their storage
volume becomes very important and necessary. The objectives of this study, therefore, were:

1. to identify the check dams in a Loess Plateau catchment by making use of multi-
source data;

2. to quantify the actual storage capacity of the check dams through established empirical
relationships; and

3. to analyze the impacts of check dams on streamflow and sediment load in combination
with recently observed dataset.

2 Study Area and Data

2.1 Study Area

The study area, Huangfuchuan catchment, is one of the most severe soil erosion areas with the
average annual sediment modulus higher than 17; 000 ton∕km2 (1955 to 2000). The
Huangfuchuan River is a first-order tributary of the midstream Yellow River, located in the
wind-water erosion criss-cross region. The river originates from the eastern part of the
Ordos Plateau, flows through the transitional zone of the Loess Plateau and Inner Mongolia
grassland, and empties into the main stream of the Yellow River in Fugu County of Shaanxi
Province (Fig. 1). The Huangfuchuan catchment covers an area of 3246 km2 consisting of
two subtributaries: Nalin River and Changchuan River. The main stream of the
Huangfuchuan River is 137 km long with an average channel slope of 2.7%. The watershed
is located in the transitional belt of warm temperate and mesothermal zones with the average
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annual precipitation of about 380 mm, influenced by southeast monsoon in summer, and char-
acterized by semi-arid continental climate.19 Frequently occurring floods in July and August
often cause tremendous soil erosion in the catchment. Average annual discharge and sediment
load are 1.269 × 108 m3 and 0.408 × 108 ton, respectively, between 1955 and 2010, nearly 80%
of which is concentrated in the rainy season from June to September.

The catchment can be described as “hilly and gully” landscape, and the land surface material
is dominated by weathering sandstone, silty loess, and desert sand with coarser particles.
According to the soil erosion type, the basin can be divided into three subregions: (1) loess
hilly–gully region with an area of 918.3 km2, mainly located in the eastern and southwestern
parts of the watershed; (2) the sandy loess hilly–gully region with an area of 546.1 km2, located
between Nalin and Changchuan tributaries; and (3) the sandstone weathering hilly–gully region
with an area of 1781.6 km2, located in the northwestern part of the catchment. Due to the
extremely high gully density and soil erosion rates, check dams have become the dominant
soil and water conservation measures in the Huangfuchuan catchment. By 2010, approximately
70% of the area in the Huangfuchuan watershed was controlled by check dams.

2.2 Available Data

The data used in this study were collected from topographic maps (1978), Landsat images (1990,
2007), and images acquired in 2010 from Google Earth. Table 1 lists all the available datasets
and sources. In total, we collected 28 topographic maps with the resolution of 1:50,000 from
Bureau of Survey and Mapping Shaanxi Province. The images were downloaded from the
Landsat imagery database.20 The coverage of an individual Landsat TM image is
185 × 185 km2. The resolution for bands 1 to 5 and 7 is 30 m, while it is 120 m for band

Fig. 1 Location of the study area and hydro-meteorological stations.

Table 1 Summary of the processed maps and Landsat images.

Data Resolution Path/row Date Sources

Topography map 1∶50;000 1978
Bureau of Survey and Mapping

Shaanxi Province

Landsat 5 30 m 127 to 33 11/09/1989 http://earthexplorer.usgs.gov
Landsat 5 30 m 127 to 32 13/08/1990

Landsat 5 30 m 127 to 32 10/09/2006

Landsat 5 30 m 127 to 33 25/09/2007

Google Earth <15 m 23/06/2010 Google Earth images
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6. Cloud free (<1% cloud cover) images were selected. All the images were taken during the
flood season, extending from August to September, to avoid various undesirable errors caused by
adopting images taken in different seasons. Ran and Lu21 confirmed that the water surface area
does not change significantly during the flood seasons, thus, the downloaded satellite images
could capture the largest water surface area of the check dams.

3 Methodology

3.1 Check Dam Identification from Multisource Data

The topographic maps were geocoded to universal transverse mercator (UTM), zone 49N, using
the WGS84 ellipsoid, and were used to delineate the check dams in ArcMap manually. Landsat
images were subjected to atmospheric correction, radiometric calibration, and radiometric rec-
tification procedures to facilitate comparability between dates.22 The Landsat images were geo-
referenced to 1:50,000 scale topographic maps using second-order polynomial transformation
with the root mean square error of below 0.5 pixels (<15 m), and registration was verified vis-
ually by overlaying and swiping registered images. Due to the strong absorption and reflectance
region in the infrared, visible red, and near-infrared bands (bands 7, 4, and 3) provided in the
Landsat images, the combination of these bands was used to distinguish water bodies and land.
The check dams or reservoirs were extracted by using the maximum likelihood supervised clas-
sification method in Erdas Imagine software.14,15 During the interpretation process, each 30-m
pixel is classified as check dam (open water surface) or nondam area. Ponds and drainage net-
work were distinguished from check dams through field survey. A database of the check dams
(including volumes, built time, location, dyke height, remained/unfilled storage) were collected
from Hydrology Bureau of the Yellow River Water Resources Commission. The volumes, built
time, and dyke height were obtained through local census, and the remained storage for each
check dams was calculated by combining bathymetric survey and storage curve analysis.

Currently, Google Earth has provided images of resolution of <15 m covering the entire river
basin.21 In addition, GPS field survey has similar accuracy of 10 to 20 m for ground truthing.11,15

Thus, we derived the spatial distribution and area extent of the check dams to verify the inter-
pretation results of Landsat images. The images displayed by Google Earth were taken on June
23, 2010, coinciding with the capture time of the Landsat images. An update dataset for check
dams in the Huangfuchuan catchment was obtained through images interpretation from Google
Earth Pro.

Field survey was carried out in the beginning and end of the rainy season (May 2012 and
October 2012). The outlines of the check dams were obtained with a Garmin 76 GPS instrument.
The data stored on the GPS was converted into text formats which can be read by ArcCatalog.
The points were connected together to form polygons. The surface areas and perimeters were
then calculated.

To assess accuracy of the extracted check dam area from different data sources, both nor-
malized difference area index (NDAI) and deviation area index (DAI) were applied.14,23 NDAI
and DAI are defined as follows:

NDAI ¼ ðAreagps − AreaimgÞ∕ðAreagps − AreaimgÞ; (1)

DAI ¼ ðAreagps − AreaimgÞ∕Areagps: (2)

The NDAI value falls within the range between −1 and 1 with values close to 0 giving the
best fit between the surface areas obtained from GPS and other sources, respectively. Values
increasing to both extremes indicate increasing deviation between Areagps and Areaimg.
Similarly, the DAI values also lie between −1 and 1, with values close to 0 meaning the
best linear fit, whereas values increasing to both extremes indicate larger deviation between
Areagps and Areaimg.
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3.2 Storage Capacity Estimation

If reservoirs or check dams can be assumed to approximate the shape of a square pyramid diago-
nally cut in half,15,21,24 an empirical relationship between the storage capacity and its area can be
expressed as

V ¼ a × Areab; (3)

where V is the check dams’ storage capacity, Area is its water surface area, and a and b are the
constants to be determined. If reservoirs are indeed exactly half pyramids, then b ¼ 1.5. When
the slopes are more convex (rare), the constant b is >1.5. In most cases of concave slopes, the
value of b is <1.5. Particularly, the parameters a and b are surprisingly constant within geo-
morphologically similar regions.15 However, it should be noted that the parameters may differ
greatly in regions with geomorphologic heterogeneities.14,21,23 Thus, more attention should be
paid when using the empirical relationship.

4 Results

4.1 Correlation Between Field and Satellite Identified Check Dams

Figure 2 presents the identified water surface area of the check dams from different types of
dataset. In general, a good linear relationship was detected between the results from Landsat
images and Google Earth images. As shown in Fig. 2(a), most points distributed close to
1∶1 fit line with the relatively high correlation coefficient of 0.98. Similarly, the water surface
area from satellite images fitted well with field measurements [Fig. 2(b)]. However, it should be
noted that some check dams built in the late 1950s and 1960s had been destroyed by flash floods
or filled by deposited sediment. For example, the check dam in Fig. 3(a) was full of water in 1978
and dried up in 1990. A lifetime of about 10 years for small check dams to trap sediment effi-
ciently was reported by Xu et al.5 Thus, the damaged or filled check dams may lead to some
errors in the extraction of check dams from the images.

To further verify the water surface area derived from Landsat images, field surveys in 11 and
14 check dams were undertaken in May and October 2012, respectively. The NDAI and DAI
were applied to detect the interpretation results. Table 2 compared the water surface area in check
dams derived from images and field measurements. There is a very good linear fit between these
two datasets. In most cases, we found that the water surface area from the Landsat images has
overestimated the measurement values. Probably, the overestimation may result from the lower
resolution of the Landsat images by which the surrounding nonwater features would have been
misinterpreted as water. Furthermore, the results of supervised classification are largely depen-
dent on the accuracy of the training data and their representative. In addition, the differences in
water surface area may generate great discrepancies because of the uneven distributed

Fig. 2 Correlation of the estimated area from Landsat images, Google Earth, and field measure-
ment. (a) Comparison the check dam area obtained from Landsat images and Google Earth,
(b) comparison the check dam area derived from images and field survey.
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precipitation in different seasons. For example, a minority of the check dams were dried up in
May 2012, but there was a large area of water in October due to heavy storms in July.

4.2 Storage Capacity Estimation in the Catchment

In total, datasets of 74 check dams with spatial distribution, built date, storage capacities, and
dike height were provided by the Yellow River Basin Committee. By representing various check
dams with different storage capacities, these check dams were employed to develop the relation-
ship between the water surface area and the storage capacity. As shown in Fig. 4, we investigated
the relationship between the storage capacity and the water surface area as well as the dam-
controlled area. The results indicate relatively good power relationship between the water surface
area and the storage capacity, and logarithmic relationship between check dam controlled area
and storage capacity. In contrast, Fig. 4(a) confirmed that the power equation represents a better
relationship between check dam water surface area and storage capacity [Fig. 4(b)]. Thus, an
empirical equation for calculating the check dams’ storage is

V ¼ 39.306 × Area0.712: (4)

Equation (4) was applied to estimate the storage capacity of each check dam, and the
total storage capacity was estimated by summing all individual check dams’ storage together
(Table 3). The total storage capacities in the Huangfuchuan catchment have increased from
2.65 × 108 m3 (1978) to 4.11 × 108 m3 (2010), and the average storage capacity for the
check dams is nearly 7.25 × 105 m3. The estimated errors for storage capacities mainly result
from the spatial heterogeneities in geometric shape and extracted water surface area. Ran and
Lu21 addressed that each different geometric shape requires a unique parameterization to pre-
cisely calculate its storage capacity. In addition, the over- or underestimated water surface area
may lead to misestimation of storage capacity for the check dams. However, compared with
traditional field survey approach, the proposed method in this study was useful, efficient,
and less expensive, and the estimation accuracy is satisfactory.

4.3 Historical Dynamics of Check Dams

Figure 5 shows historical dynamics of check dams derived from topographic maps (1978),
Landsat images (1990 and 2007), and images of Google Earth in 2010. The results indicate
that a general increase for the number of check dams can be clearly seen in the
Huangfuchuan catchment. As well, the spatial distribution indicates that most of the check

Fig. 3 Examples of check dam identification through topography map and images: (a) 1978 and
(b) 2007.
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dams lie in the eastern part of the watershed. Taking the map of 2007, e.g., check dam density in
the Wulan stream, Hujitu stream, and Tela stream show evident increasing trends. In 1978, there
were only 16 check dams in the Wulan stream, while it had reached 118 in 2007
(Fig. 5).

Table 3 summarizes statistics of the check dams derived from multisource data in the
Huangfuchuan catchment. By 1978, there were 390 check dams built in the Huangfuchuan
catchment, with the water surface area of 10.76 km2. The dam-controlled area was
1226.56 km2, accounting for about one third of the whole catchment. By 2010, the number
of check dams had reached 567, and the dam-controlled area was 2216.47 km2. This is con-
sistent with the field survey data reported by the Hydrology Bureau of the Yellow River
Water Resources Commission. Minor discrepancies were detected between Jiao et al.25 and
our estimation. They addressed that 392 major check dams had been constructed until 1992

Table 2 Comparison of water body area in check dams derived from images and field
measurements.

ID Longitude Latitude AreaGPS (ha) AreaSat (ha) DAI (%) NDAI (%) Storage (104 m3) Built date

1 39.961 110.973 5.006 5.026 −0.40 −0.20 143.4 1993

2 39.904 110.966 5.552 5.578 −0.46 −0.23 68.4 1987

3 39.895 110.993 0.436 0.419 3.92 2.00 9.26 2004

4 39.887 110.996 0.135 0.140 −3.71 −1.82 9.26 2004

5 39.875 111.007 0.480 0.478 0.46 0.23 73.8 1987

6 39.876 111.026 1.191 1.215 −1.95 −0.96 20.34 2004

7 39.862 111.088 1.275 1.374 −7.76 −3.73 156.7 1989

8 39.900 111.072 8.644 8.491 1.78 0.90 130.6 1993

9 39.913 111.059 2.339 2.411 −3.09 −1.52 70 1988

10 39.731 110.931 11.851 12.181 −2.78 −1.37 204.9 1990

11 39.722 110.901 1.567 1.529 2.40 1.21 74 1997

12 39.622 111.183 4.699 4.801 −2.16 −1.07 194.5 1992

13 39.599 111.005 3.365 3.550 −5.49 −2.67 167.55 1977

14 39.945 110.638 13.003 12.425 4.45 2.27 92.77 2005

15 39.953 110.606 3.414 3.106 9.03 4.73 89.8 2005

16 39.713 110.884 8.644 8.261 4.43 2.27 285 2001

17 39.692 110.943 7.617 8.283 −8.73 −4.18 204.99 1989

18 39.683 110.963 1.821 1.911 −4.97 −2.42 266 1990

19 39.632 110.895 2.183 2.215 −1.45 −0.72 237.84 1993

20 39.728 110.969 7.124 6.599 7.38 3.83 105.7 1994

21 39.736 110.858 2.163 2.311 −6.81 −3.29 302.2 1990

22 39.736 110.974 2.219 2.434 −9.69 −4.62 60.57 1992

23 39.948 110.797 17.473 15.330 12.27 6.53 673.97 2001

24 39.871 111.057 3.947 3.871 1.93 0.97 134.18 2005

25 39.900 111.076 3.789 3.985 −5.17 −2.52 86.3 1987
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in the Huangfuchuan catchment, and approximately 1.07 × 108 m3 sediment had been trapped
behind the check dams.

5 Discussion

5.1 Potential Impacts of Check Dams on Streamflow and Sediment Load

Figure 6 shows temporal trends of discharge and sediment load at Huangfu station. The abrupt
changes were detected in 1979 for both streamflow and sediment load by the sequential Mann–
Kendall test.26,27 Simple linear trend analysis indicates that the time series presents a significant
downward trend within the confidence level of 95%. Average decreasing rates of 0.04 × 108 m3

and 0.01 × 108 ton are estimated in streamflow and sediment load, respectively. Average annual
streamflow at Huangfu station was 0.82 × 108 m3 (1980 to 2010), accounting for only 44.8% of
that during 1955 to 1979. Mean annual sediment load decreased from 0.6 × 108 ton (1955 to
1979) to 0.22 × 108 ton (1980 to 2010). Considerable evidence exists that check dams’ construc-
tion was responsible for the significant reduction in both streamflow and sediment load.8,10 Ran28

addressed that streamflow reduced by soil and water conservation measures ranged from 0.14 to
0.53 × 108 m3 from 1970 to 1996. Average annual reducing rates for sediment load lay in the
range of 5.4 to 23.6 Mt. Among these, check dams are the dominant factors retaining discharge
and sediment in the watershed.29 Furthermore, sediment trapped by the check dams accounted
for >60% of the total reduced sediment load in the Huangfuchuan catchment.

To better understand the impacts of check dams on streamflow and sediment load, the hydro-
logical time series at Huangfu station were divided into two periods (1955 to 1979 and 1980 to
2010) by the Mann–Kendall test method. A referenced period from 1955 to 1979 was assumed to
be the period without intensive human influences on the hydrological process and the changing
period was between 1980 and 2010, which was highly affected by human activities. Figures 6(c)
and 6(f) show the daily flow duration curves within two different periods. The magnitude of the
daily flow generally decreased during the changing period compared with the referenced period.

Fig. 4 Relationship between the estimated area and check dam storage. (a) power relation
between dams' volume and area, (b) logarithm relation between dams' volume and controlled
area.

Table 3 Statistics of check dams in the Huangfuchuan watershed from 1978 to 2010.

Period 1978 1990 2007 2010

Number of check dams 390 445 504 567

Water surface area (km2) 10.76 14.06 16.12 17.78

Dams controlled area (km2) 1226.56 1531.61 1925.84 2216.47

Total storage capacity (108 m3) 2.65 3.44 4.06 4.11
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Fig. 6 Changes of discharge and sediment load at Huangfu station from 1955 to 2010. (a, d) MK
test for annual sediment load and streamflow, (b, e) linear trends for annual sediment load and
streamflow, (c, f) flow duration curve for daily SDR and discharge.

Fig. 5 Historical dynamics of check dams in the Huangfuchuan watershed.
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It can also be clearly seen that zero discharge accounts for much more during the changing
period. The daily sediment delivery ratio with 0 values is nearly 60% within 1955 to 1979
but reduced to 32.6% during the changing period. There is no discharge measured at
Huangfu station during all of 2011. Even a storm in 14th of August with 58.4-mm rainfall
did not produce surface flow.30 Thus, it can be concluded that numerous soil and water con-
servation measures, especially, the check dams trapped considerable discharge and sediment
in the Huangfuchuan catchment.

5.2 Sediment Particle Sizes Associated with Check Dam Construction

In general, hyper-concentrated sediment flow can be trapped in the check dams. In most cases,
the check dams consisted of the embankment, spillway, and outlet. Before 1980, most check
dams had no spillway or outlet, and all the upstream incoming sediment would be trapped
by the dams. In the check dams with spillway, the sediment flow will be filtered. In principle,
the coarse grain sediment will deposit rapidly in the water surface area of the dam, and the
sediment with fine particle sizes will be flushed away through the spillway. In such cases,
most coarse-grain sediment is trapped before the dams.

In the Huangfuchuan catchment, frequently occurring storms mainly concentrated in July
and August. Sediment load during these months contributed approximately 70% of the total.
In recent years, zero flow and sediment lasted several months during the dry season. Thus, sedi-
ment particle sizes during July and August may represent the effects of check dams on them. As

Table 4 Sediment particle sizes during July and August at Huangfu station.

Periods
Mean sediment load

(104 ton)
<0.025 mm

(%)
0.025 to 0.05 mm

(%)
>0.05 mm

(%)
Median
(Ref. 29)

Mean
(Ref. 29)

1966 to 1969 2928.16 34.95 15.56 49.48 0.059 0.152

1970 to 1979 2822.06 39.50 15.05 45.45 0.059 0.132

1980 to 1989 1989.64 41.61 15.17 43.22 0.051 0.127

1990 to 1995 1027.19 52.67 12.48 34.85 0.030 0.104

2005 to 2010 598.3 57.63 16.85 25.52 0.022 0.048

Fig. 7 Potential driving forces for check dam construction. (a) dam construction for highway pro-
tection; (b) dam construction for arable land.
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shown in Table 4, observed data at Huangfu hydrological station indicated that mean and median
sediment particle diameter illustrated evident decreasing trends, presenting the trapping effects
of the check dams. The percentage of sediment particle diameter <0.025 mm increased evidently
from 1966 to 2010. Both the median and mean value of sediment particle diameter displayed
particularly low values during 2005 and 2010 (bold values in Table 4). This is similar to the
diameter changes in the middle reaches of the Yellow River.28,29

5.3 Driving Factors of Check Dam Construction

In most cases, the check dams were constructed for soil erosion control.31 However, other objec-
tives such as improving agricultural productivities and building railway or highway become
dominant factors. As shown in Fig. 7(a), nearly 10 check dams were constructed for protecting
the highway in a 5-km2 region of the Huangfuchuan catchment. Road construction has become
an important forcing variable for check dam building. Statistics indicate that nearly 20% of the
check dams are connected with the road or used as river bridges. On the other hand, the major
aim for building the check dams is to increase agricultural production [Fig. 7(b)]. In general,
food production in dam cropland can be 6 to 10 times higher than that in the slope cropland. The
average yield is 45; 000 kg ha−1 with some even up to 105; 000 kg ha−1.32 Accordingly, dam
cropland accounts for about 9% of the total cropland area in the Loess Plateau, whereas the
food production amounts to 20.5% of the total food production.8

6 Conclusion

This study identified the spatial distribution, water surface area, and controlled area of the check
dams by making use of topographic maps and remote-sensing images in combination with a field
survey. An empirical equation was applied to estimate the storage capacity of the check dams asso-
ciated with the water surface area. Potential effects of the check dams on streamflow and sediment
load were additionally addressed. The conclusion of the study can be summarized as follows:

A good correlation between the measured and derived water surface area of the check dams
from maps and images was detected. The check dams’ information extracted from the remote
sensing images is the same as those from Google Earth images, suggesting that the topographic
maps and Landsat images can be used for identifying the check dams. Historically, the number of
check dams has increased from 390 in 1978 to 567 in 2010, and the dam-controlled area has
reached up to 2216.47 km2, accounting for nearly two thirds of the whole catchment. The large
numbers of check dams indicate their substantial trapping effects on streamflow and sediment
load in the watershed. Filtering effects of check dams have been confirmed due to evident
decreasing sediment particle sizes. This study proved that the proposed approach can be applied
for extracting check dam information and may provide decision supports for soil and water con-
servation in the Loess Plateau.
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