26 August 2013 Performance impact of parameter tuning on the CCSDS-123 lossless multi- and hyperspectral image compression standard
Author Affiliations +
J. of Applied Remote Sensing, 7(1), 074594 (2013). doi:10.1117/1.JRS.7.074594
Multi-spectral and hyperspectral image data payloads have large size and may be challenging to download from remote sensors. To alleviate this problem, such images can be effectively compressed using specially designed algorithms. The new CCSDS-123 standard has been developed to address onboard lossless coding of multi-spectral and hyperspectral images. The standard is based on the fast lossless algorithm, which is composed of a causal context-based prediction stage and an entropy-coding stage that utilizes Golomb power-of-two codes. Several parts of each of these two stages have adjustable parameters. CCSDS-123 provides satisfactory performance for a wide set of imagery acquired by various sensors; but end-users of a CCSDS-123 implementation may require assistance to select a suitable combination of parameters for a specific application scenario. To assist end-users, this paper investigates the performance of CCSDS-123 under different parameter combinations and addresses the selection of an adequate combination given a specific sensor. Experimental results suggest that prediction parameters have a greater impact on the compression performance than entropy-coding parameters.
© 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Estanislau Augé, Jose Enrique Sánchez, Aaron B. Kiely, Ian Blanes, Joan Serra-Sagrista, "Performance impact of parameter tuning on the CCSDS-123 lossless multi- and hyperspectral image compression standard," Journal of Applied Remote Sensing 7(1), 074594 (26 August 2013). http://dx.doi.org/10.1117/1.JRS.7.074594

Image compression

Image segmentation


Computer programming

Image quality standards

Hyperspectral imaging

Image sensors

Back to Top