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Abstract. The emerald ash borer (EAB) poses a significant economic and environmental threat to
ash trees in southern Ontario, Canada, and the northern states of the USA. It is critical that effective
technologies are urgently developed to detect, monitor, and control the spread of EAB. This paper
presents a methodology using multisourced data to predict potential infestations of EAB in the
town of Oakville, Ontario, Canada. The information combined in this study includes remotely
sensed data, such as high spatial resolution aerial imagery, commercial ground and airborne hyper-
spectral data, and Google Earth imagery, in addition to nonremotely sensed data, such as archived
paper maps and documents. This wide range of data provides extensive information that can be
used for early detection of EAB, yet their effective employment and use remain a significant chal-
lenge. A prediction function was developed to estimate the EAB infestation states of individual ash
trees using three major attributes: leaf chlorophyll content, tree crown spatial pattern, and prior
knowledge. Comparison between these predicted values and a ground-based survey demonstrated
an overall accuracy of 62.5%, with 22.5% omission and 18.5% commission errors. © The Authors.
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1 Introduction

The emerald ash borer (Agrilus planipennis, EAB) is one of the most destructive insects to affect
ash species of the genus Fraxinus.1,2 Ash is one of the most popular landscape trees in North
America, replacing elm trees in new residential and commercial developments due to its high
tolerance to environmental stresses and its resistance to pests.3 The invasion of EAB was first
reported in 2002, in Michigan, USA. Despite substantial research and control efforts, the beetle
has continued to spread to new areas, and today it is found in 14 states and has crossed the border
to southern Ontario, Canada.4

The beetle has caused the death of millions of ash trees and billions of dollars in economic
losses.5 The ash trees attacked by EABs often show serious decline within 2 years of initial
infestation, and typically die within 3 to 5 years.6 As such, early detection is especially valued
due to the aggressive nature of the EAB infestation.

Infestations are normally identified by tree owners and are confirmed by onsite tree branch
sampling.7 Recent EAB studies have focused on biochemical and biological symptoms and treat-
ments, such as tree leaf decline, woodpecker presence, chemical injection treatments, and tree
removal.3 However, each of these techniques is inherently concerned with late stage occurrences
of the infestation. In order to improve this, multiple government agencies and environmental
groups are exploring the use of remote sensing techniques for infestation detection over
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large areas, including city and provincial scales. Analysis of such data could offer workable
results with improved cost and detectability efficiencies.

During EAB infestation, the larvae destroy the cambium layer under the bark responsible for
transporting nutrients and water throughout the tree, therefore resulting in general stress.7 Trees
under general stress often experience changes in leaf pigment composition, particularly in leaf
chlorophyll content. Thus, from a detection point of view, trees exhibiting general stress symp-
toms are much more likely to be infested.8 As a result, spectral features that are sensitive to leaf
chlorophyll content can be potentially used for detecting EAB infestations with remote sensing
technologies.9 Current remote sensing approaches are focusing on such spectral features, but
their success has been limited, as described below.

In Pontius et al.,9 a six-parameter function was proposed, and a 97% correlation was reported
between selected vegetation indices and tree decline caused by EAB infestations. However, this
correlation can only be confirmed in the dieback stages, and the spectral-based variation is not
sufficiently significant during the early infestation stage to allow unique identification.

Souci et al.10 presented an EAB detection project based in Milwaukee, Wisconsin, using high
spatial resolution hyperspectral images and a pixel-based vegetation index (VI) approach to map
out the invasive species. They also used light detection and ranging (LiDAR) to create a digital
elevation model and applied geographic information system (GIS) buffer zone tools to highlight
potential infested areas. However, no significant validation result was obtained, and this study is
considered as a pioneer work in multisource data combination.

Hanou11 used a VI to represent the correlation between infestation and tree crown pixels to
map out ash infestation in Oakville, Ontario. It can be expressed as

ðRSWIR þ RGreenÞ2
RSWIR − RGreen

; (1)

where RSWIR is the short wavelength infrared band and RGreen is the green band. However, this
pixel-based VI approach can result in the misclassification of different tree species as ash, and
struggles to identify tree canopy over different backgrounds, as well as being prone to spectral
variations within individual trees.11 As a result, it was not able to successfully map infested ash
trees using this method.

Our goal in this study is to make this difficult task of early stage EAB infestation identi-
fication possible, providing a methodology that can deliver a reasonable detectability for
EAB infestation over large spatial scales. After background searches and the literature reviews,
we have determined that the “clues” associated with EAB infestation are widely varied and may
be deeply buried in different data sources, and not just spectral data from hyperspectral imagery.
As such, spectral and pixel-based analysis alone is not sufficient for early detection of EAB, as it
is susceptible to considerable in-class spectral variation. It is necessary for us to broaden our
range of information sources, which requires the precise identification of information correlated
with EAB infestation and their effective retrieval from different data sources. This additional
information from varied sources can reduce the ambiguity and uncertainties caused by in-
class spectral variation and ultimately improve the accuracy of information retrieval.

First, we investigated spatial features as a potential information source. As suggested by
Smiteley et al.,12 there are a number of visual symptoms that can help to detect early stage infes-
tation, such as the dieback of twigs, thinning of the crown, and growth of new branches on the
lower trunk. These symptoms can often be reflected in structural changes of the tree crowns.13,14

For a mature and healthy ash tree, an oval-shaped crown can be assumed. In the presence of
EABs, an ash tree loses its leaves, starting from the top central branches, which leads to “holes”
or “gaps” in the crown. In a high spatial resolution image, a healthy mature ash tree exhibits a
smooth texture with “salt and pepper” patterning, which represents the gaps between leaves and
branches. In contrast, certain patterns that derive from the presence of larger “holes” in the crown
are expected in an EAB infested tree. Since spectral features do not typically consider the spatial
patterning changes before and after infestation, this predictive information on tree morphology
may help to determine the EAB infestation level.

We also recognize the natural spreading capacity of EAB. The mature beetle can migrate
from one tree to its neighbors within a 25 km radius.15,16 Therefore, the known infested
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trees that have been previously documented are important contributors to the potential continu-
ation of the infestation, which is a consideration that has been long neglected.

Further, following a comprehensive literature search and preliminary studies and testing of
various data sources, we identify the leaf chlorophyll content as a potential indicator of infes-
tation. Specifically, a significant drop compared to the surroundings, in addition to the tree crown
degradation and distance from known infested trees may be considered key factors that can
potentially lead to accurate estimation of the extent of infestation.

Despite recognition of these key factors, it remains a challenge to effectively assemble the
diverse information derived from multisourced data in order to reach a meaningful, consistent,
and accurate conclusion. As a solution to this, we propose an object-oriented approach rooted in
these key factors, and devise a weighted linear prediction score function. With proper calibration,
this new infestation scoring approach can be applied to the detection of early to medium stage
EAB infestations.

Therefore, the overall outline of this study is as follows, also shown in detail in Table 1.

1. Comprehensive background search and the literature review.
2. Extensive data collection and processing.
3. Prior processing studies and testing.
4. Identification of the key factors for EAB infestation, which must be strongly correlated

with infestation and must be extractable from our data.
5. Establish an operational workflow, which can effectively and robustly retrieve informa-

tion from different sources and intelligently combine them to deliver a precise prediction.
6. Map out the health of individual ash trees within test areas using the proposed

methodology.

2 Data Specification and Preprocessing

2.1 Study Area

The study area was in the town of Oakville, Ontario (Fig. 1). All ash trees within the township
boundary were part of the study. However, due to data limitations, particularly related to ground

Table 1 Overall structure of this study.

Spectral features Spatial features Prior knowledge

Background and the
literature review

Pontius et al., (2008) 9 Smiteley et al., (2008) 12 BenDor et al., (2006) 15

Souci et al., (2009) 10 Zhang and Hu (2012) 17 Herms et al., (2009) 16

Hanou (2010) 11, etc.

Data sources Hyperspectral data: High spatial resolution
data:

Community maps and
paper documents

1) Ground ASD measurements; 1) YUL Oakville imagery;

2) Airborne imagery 2) Google Earth imagery

Prior processing
studies and testing

1) Ground ASD spectral
signature separability study

Spatial pattern visual
interpretation

EAB natural spread
capability

2) Contribution analysis for
vegetation indices band
selection

Key factors identified Leaf chlorophyll content Tree crown
degradation

Distance from nearby
known infested trees

Operational workflow 1) Three vegetation indices Longitudinal profiles Distance constant
2) Leaf chlorophyll content
retrieved from model inversion

Map out the health of individual ash trees
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data acquisition, we focused mainly on six sites within Oakville, which are indicated in the final
infestation map. Oakville is the first town in Canada to use aerial-based imagery to compile and
inventory public and private ash tree damage.11 Oakville is located in the EAB infestation zone,
and has multiple confirmed cases of EAB infestation. Therefore, this region has great interest in
research into early detection of EAB for both environmental and economical reasons.

2.2 Airborne and Ground Hyperspectral Data

Two sets of commercial hyperspectral remote sensing data were used:

1. Airborne hyperspectral imagery with a spatial resolution of 1 m was collected using a
ProSpectTIR-VS2 in July 2010. In total, 360 spectral bands were recorded, ranging from
390 to 2400 nm with a band spacing of 5 nm. The raw imagery was converted into
radiance by removing dark current, and was then corrected for atmospheric disturbances
using ATCOR4 software. Precise georeferencing and geometric correction was carried
out using information provided by the onboard internal navigation system and global
positioning system.11

Fig. 1 Location of the town of Oakville, Ontario, Canada, and the ground survey results of indi-
vidual tree distribution. Numbers in the inset are the IDs of trees with confirmed infestations.
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2. Ground-level hyperspectral data were also collected. The leaves from ash trees at differ-
ent stages of infestation were measured using an analytical spectral device (ASD) (ASD
Inc., Boulder, Colorado, USA). Leaves were recorded as healthy, low, medium, and
highly infested. This is a fundamental prior processing study, used for separability
assessment, which must be conducted before any further meaningful research can be
begun. If no significant differences are observed between ground level spectra of
trees at different stages of infestation, then the likelihood of canopy-level spectra exhib-
iting sufficient differences for classification is very low.

2.3 High Spatial Resolution Aerial Imagery

High spatial resolution aerial imagery was provided by the York University library. The data
were collected during the winter of 2008, having 1 m resolution, and are orthorectified with
blue, red, and green in three spectral bands. However, the absence of leaves at the time of
image acquisition limited the use of these data in this study. We, therefore, only use the images
to validate the locations of trees and to confirm tree species identification.

2.4 Google Earth Aerial Imagery

The employment of Google Earth (GE) aerial imagery in scientific studies poses a dilemma. GE
imagery is not quality assured with any known or documented geometric or radiometric cor-
rections. However, the data are free and easy to access, and are potentially very powerful, con-
taining, for example, multiple years of data from the same location. In the Oakville area, GE
imagery has an average spatial resolution of 13–15 cm over our test sites. Before making use of
the GE imagery, we made precise calculations of scale using known objects, such as rooftops.
We also validated the geometric locations of trees, and the differences in the locations of our
sampled trees. From this, we found that the GE imagery and the orthorectified images were
within 0.5 m of the tree centers. We did not validate or calibrate the radiometric values of
the GE imagery, as we were only concerned with the relative changes in the pixels.

2.5 Ground Truthing

We used two sources of ground-based information to determine the likelihood of infestation from
nearby infested or healthy trees, and to support ground validation. First, most infestations were
confirmed using a previously documented branch sampling approach.7 Two branches, approx-
imately 50 cm long and no less than 6 cm in diameter, of each targeted ash tree were obtained,
their bark was peeled off, and the underlying cambium inspected for evidence of EAB infes-
tation, such as serpentine galleries, larvae, and young beetles (Fig. 2).

Second, nine community maps showing street and park tree layouts were supplied by the
town of Oakville. In these maps, the infestation states of individual trees were recorded as
“healthy,” “low,” “medium,” and “high” infestation states, as indicated by ground-based survey.
We manually transferred these locations and condition information into our imagery data.

3 Operational Workflow and Detail Procedures

We have identified three key factors that can potentially guide an estimation of the health of ash
trees, supported by previous work and preliminary studies. These are the leaf chlorophyll con-
tent, tree crown degradation, and distance from nearby trees of known health state. An opera-
tional workflow must be established, with the objectives of: (1) effectively retrieving the targeted
information from its associated data source; and (2) intelligently assembling all information to
provide a final estimation.

Despite the convenience of pixel-based methods,9–11 we proposed an object-oriented
approach, which ultimately forms a score-based prediction function. In this study, individual
tree crowns were considered as the basic objects, instead of isolated pixels, and their spectral
and spatial properties were analyzed. Using an object-oriented approach in this way is essential
for the retrieval of distance and crown degradation information, while also improving the com-
puting efficiency in the model inversion.
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Our approach is comprised of four major steps: segmentation and identification of individual
ash trees; information retrieval; information conversion; and final evaluation through score cal-
culation. This operational workflow is graphically depicted in Fig. 3. As shown in this figure, the
airborne hyperspectral and the GE aerial imagery data underwent segmentation to outline tree
boundaries. Then, the vegetation indices, leaf chlorophyll content derived from model inversion,
and distance constants, originally from maps but transferred to imagery tree locations, were
derived from the hyperspectral data, whereas the spatial patterns of crown degradation were
obtained from the GE imagery. All “information” from this step was converted into normalized
numerical values between 0 and 5, and assembled into a score function, which provides a pre-
diction score that can be used to determine the health state of individual trees.

3.1 Segmentation and Identification of Individual Ash Trees

To ensure the accuracy of the locations and boundaries of individual ash tree crowns, multiscale
automatic segmentation18 results from both the hyperspectral and high spatial resolution images
were manually checked and corrected. In the hyperspectral image, the pixels within each tree
crown were identified and classified into the same crown. Using ground surveys and the com-
munity maps provided by Oakville, all ash trees used in the following training and validation
studies were checked and confirmed.

Fig. 2 The branch sampling approach for EAB detection. A larva is found in this sample.
Copyrighted at AMEC Inc., used with permission.

Fig. 3 Graphical depiction of the operational workflow for this study, showing four major steps
retrieving four types of information and six different parameters from three different data sources
to derive the final health estimation.
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3.2 Information Retrieval

3.2.1 Overview

As shown in Fig. 3, four types of information, making up six indices or parameters, need to be
retrieved from the varied data sources, such as three vegetation indices: the leaf chlorophyll
content; the distance constant; and the longitudinal profile. The following sections will detail
the individual methods used to extract each of these parameters.

3.2.2 Calculation of the selected vegetation indices related to the health
state of tree crowns from spectral features

Attempts have been previously made by many researchers to identify the health state of tree
crowns from airborne and satellite images, through the design of a VI sensitive to biochemical
properties of leaves (e.g., Refs. 9, 19, and 20). In these studies, four major categories of bio-
chemical parameters have been considered: leaf chlorophyll content,9,19,21 carotenoids,20,22 water
content,23 and anthocyanins.22 After a comprehensive review of these properties and their asso-
ciated vegetation indices, a suite of indices was selected (Table 2) as candidates for detailed
comparison and future selection. The existing indices were typically designed for specific
sites and sensors,9,19,22,24 and it was found that using the same formula with a small change
in the wavelength used in the index could result in a noticeable difference in the correlations
between a VI and its respective vegetation parameter.19

We applied a model-based site-independent band selection analysis called contribution
analysis, theoretically equivalent to a sensitive study, to optimize the selection of vegetation
indices. The contribution analysis calculates the contribution index (CI), which provides
detailed, quantitative measurements of the correlations between each observation band and
the target parameters, solely based on the model that we use.31 For this study, we calculated
the CI for each spectral band based on the PROSPECT leaf model32 due to the prevailing decidu-
ous leaf type. PROSPECT is well validated and is known for successfully simulating deciduous
trees situations. The model simulates leaf reflectance and transmittance at 400–2500 nm and
takes four key input parameters, such as the leaf chlorophyll content, the water content, dry
matter, and a parameter describing the internal structure of the leaf, denoted as N. We calculated
CI using PROSPECT, which covers all the spectral bands for VIs listed in Table 2. CI is the most
important criterion for VI band selection, and the bands that have higher CIs are preferred over
the lower scoring ones. In addition to this, we also conducted an actual performance evaluation.
We used half of the known infested trees as a training data set, described in detail in the training
section below, and the remainders were used as validators to evaluate the performance of the
various VIs. From these analyses, the three top performing indices were chosen for the final
infestation evaluation based on the following criteria: (1) higher CI in those bands involved
in the VI; (2) higher separability in different health states; and (3) lower in-class variation,
which is quantified by the coefficient of variation (CV). CV measures the dispersion of the meas-
urement, which is the extent of variability in relation to the mean of a population. For VI selec-
tion, this means that VI should have minimum class variation (e.g., low standard deviation) in
each state. Essentially, the greater the separation shown between different stages, particularly the
early and median stage, the better the candidate.

After determining the final three optimum VIs (PRI, CSc, and NPQI; the selection criteria
are described in detail in later sections), we used them to calculate VI values from the hyperspectral
spectra extracted from the airborne hyperspectral imagery.We used the average spectra of the sunlit
portion of the tree crown only, but included any dark spots within that area.

3.2.3 Retrieving leaf chlorophyll content based on physical model inversion
from spectral features

Physical model inversion is a sophisticated approach that can obtain accurate biophysical param-
eter estimations.31 The observed and model-simulated spectra are compared using a predefined
merit function to determine the best-estimated model parameters.
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In this study, the coupled PROSPECT32 and SAIL33 models, known as the PROSAIL model,
were used. Three variables were tested, while the remaining parameters were fixed at typical
values adapted from our earlier study.31 Since we used a Look Up Table (LUT) approach,
the first variable, leaf chlorophyll content, was fixed within a range of 25 − 105 μgcm−2,
the parameter N, which is the leaf structural parameter from PROSPECT, was set at 0.5–4 (unit-
less), and LAI, the ratio of half total leaf size projected onto the shadow was set at 5–100 (unit-
less). The merit function was calculated based on a least-squares function implementing CI as a
weighting. CI was used for band selection, in which we attempted to select those bands sharing a
higher sensitivity to the targeted parameters. For a similar reason, we used CI here again as a
weighting in the inversion to focus on the more highly sensitive bands.

After obtaining the leaf chlorophyll content values, they are classified into three potential risk
levels of infestation, using threshold values derived from the model training. Those highly likely
to be infested have a threshold of 2, a medium likelihood assigned a value of 1, and the remainder
has a value of 0, including uncertain or unknown cases.

3.2.4 Spatial pattern feature: longitudinal profile for tree crown delineation

Spatial information within a tree crown is useful in evaluating early leaf loss and shape change of
the crown. The textural or structural anomalies in an infested crown during the early infestation
stage are difficult to detect using traditional statistical textural analysis.8 Instead, in this study, a
longitudinal profile along the solar principal plane, end to end on the tree crown passing through
the tree center, as developed by Zhang and Hu, was adopted.17 A sample longitudinal profile is
given in Fig. 4. In this figure, the tree crown boundary has already been segmented out, and the
longitudinal profile is the line made up of digital values (e.g., reflectance) along the sun’s illu-
mination direction. To further reduce potential spectral variation and to minimize uncertainties in
the GE image, the normalized relative differential values were used, wherein the differences in
neighboring pixel values were divided by the average of all spectra within the crown. The

Table 2 Vegetation indices selected for investigation in this study.

Vegetation index formula Parameter sensitive to References

Chlorophyll and stress

Csc R605∕R760 Chlorophyll a 24

GI R554∕R677 LAI and total chlorophyll
content

25

Vogb FD715∕FD705 Total chlorophyll content 26

NPQI ðR415 − R435Þ∕ðR415þ R435Þ Chlorophyll degradation 23

GMb R750∕R700 Total chlorophyll content 27

SR680 R800∕R680 Total chlorophyll content 22

TCARI/OSAVI 3ðR700 − R670Þf−½0.2ðR700 − R550ÞR700�∕
R670g∕f½1.16ðR800 − R670Þ�∕ðR800þ
R670þ 0.16Þg

Total chlorophyll content 28

AMEC index ðRswir − RgreenÞ2∕Rswir þ Rgreen Infestation detection 11

Cartenoids

PRI ðR531 − R570Þ∕ðR531þ R570Þ Cartenoids 29

Water content

WBI R970∕R900 Canopy water content 30

Anthoyanins

Red/green
P699

i¼600 Ri∕
P599

i¼500 Ri Anthoyanins 22
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numbers of significant drops in these longitudinal profiles were used to determine the possible
infestation stage.

In this study, we used the following criteria to determine the infestation stage: crossing from
the center of the tree, if there was at least one major drop in values on both sides, it was con-
sidered a low infestation state, with a score of 0.5; if there were at least four drops on both sides
combined, it was classified as medium infestation, with a score of 1.5; and any case with more
than six such drops was considered highly infested with a score of 2.5. The necessary size and
significance of these drops were determined by a threshold value derived from training.

3.2.5 Distance from nearby known state trees from prior knowledge

As stated in BenDor et al.15 and Herms et al.,16 the potential radius of infestation spread is 10–15
miles, or 16–24 km. Hence, in this study, the infestation likelihood was evaluated by considering
the distance of the target tree from the known infested trees within a radius of 24 km. For cal-
culating the distance constants, two different cases were considered in this study, street and
natural park trees. Street trees were normally planted at linear and fixed intervals. Therefore,
linear functions were formed and each street may be considered as a linear line, which starts
and ends with known infested or uninfested trees. All trees of unknown status in between could
be assigned scores of infestation likelihood. If a tree is covered by multiple functions and
receives conflicting information from different linear functions, then an average is calculated

Fig. 4 A sample longitudinal profile. The tree crown is segmented out and the profile is a line made
up of digital values (e.g., reflectance) along the sun’s illumination direction, end to end through
the tree center.
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and used. For naturally occurring and park trees, a normal distribution function was formed at the
location of the trees of known status, and the standard deviation was set to 20 m. This value was
considered as a constant in the final evaluation function.

3.3 Information Conversion and Final Evaluation

3.3.1 Training and conversion of indices and parameters

We randomly selected half of the infested trees to obtain average values for thresholds and to
generate regression functions. We used third-order polynomial functions for the VIs, and a
threshold values approach for the other parameters. The procedure was repeated multiple
times to ensure consistency. Each parameter was then assigned a numerical score between 0
and 5, where 0 is healthy and uninfested and 5 represents a highly infested state.

3.3.2 Final evaluation

After conversion, all information was assembled into the prediction function for calculating the
final score, which, as above, also ranged from 0 to 5, with 0 being healthy and 5 being highly
infested. The infestation score was calculated as a weighted sum of all the parameter scores
related to EAB infestation. The weight for each parameter was determined based on its asso-
ciated uncertainties. The final score can thus be expressed as follows:

score ¼
P

ωiPi

N
P

ωi
þ C; (2)

where ωi is the weight of i’th parameter, Pi is the score of the i’th parameter, N is the dimension
of the information layers, or the number of parameters used, and C represents the prior knowl-
edge constants, which is mainly dedicated to distance information derived from prior knowledge,
such as the distance from trees with known infestation states.

4 Results and Discussions

The results of this study are diverse and wide ranging, and are reported in the following sections
with their associated discussions. Section 4.1 presents the prior processing studies in ground
level hyperspectral signature separability assessment and contribution sensitivity analysis.
Section 4.2 details the performance evaluation for the selection of the final three vegetation
indices, the final vegetation indices, and their score conversion functions. Section 4.3 outlines
the leaf chlorophyll content retrieval results from the PROSAIL model inversion and its score
settings. Section 4.4 presents the longitudinal profile tree crown degradation study and its score
settings. Section 4.5 illustrates a sample tree calculation throughout the procedural workflow.
Finally, Sec. 4.6 presents the final ground validation result and the color-coded map of the esti-
mated ash tree health.

4.1 Prior-Processing Studies

4.1.1 Ground level hyperspectral signature separability assessment

The ground level hyperspectral signature separability assessment is critical in spectral-based
studies. As mentioned earlier, if no significant differences are observed between high detail
(e.g., ground level) spectra of trees at different stages of infestation, then the likelihood of
low detail (e.g., canopy level) spectra exhibiting sufficient differences for classification is
very low. A set of sample reflectances for ash leaves from trees at different stages of infestation
are shown in Fig. 5. The figure shows that there are clear differences in leaf-level hyperspectral
measurements throughout the spectral range. Therefore, it may be expected that information
retrieved from spectral data, particularly entire spectra, will be informative.
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4.1.2 Contribution sensitivity analysis and performance evaluation for selection
of vegetation indices

To determine bands that are potentially more successful in the VI study, the leaf-level contri-
bution sensitivity analysis was calculated based on the PROSPECT model, which was used to
evaluate the performance of various vegetation indices. The contribution analysis calculates a CI
that provides quantitative measurements of the “contribution” of each observation to the final
retrieval of the targeted parameter. Therefore, a higher CI represents a higher correlation. As a
result, those bands with high CI should be preferred during VI band selection. We calculated a
series of CI values for different leaf chlorophyll contents from the simulation studies of
PROSPECT, which are shown in Fig. 6. The outcomes of these CIs show strong agreement
with the findings in Sims et al.22 and Pontius et al.9 Figure 6 illustrates the following:
(1) there are two regions, 500–600 and 700–750 nm, showing significant increase with the
increase in chlorophyll content; (2) at wavelengths of less than 500 nm, the CI only changes
for cases with low-chlorophyll content, typically less than 35 μgcm−2; and (3) the region from
600–700 nm has a moderate effect on the CI and decreases with increasing chlorophyll content.
From this, it may be expected that vegetation indices within the ranges of 500–600 and 700–
800 nm will perform better than indices spanning other ranges, such as PRI, SR680 (Table 2).

4.2 Vegetation Indices and Their Infestation Level Scores

Besides the CI preference, the final selection of vegetation indices considered the index perfor-
mance in each infestation state. We used information from trees of a known infestation state to
compare the performances of the various vegetation indices, as presented in Fig. 7. In this figure,
all VI values were normalized by their averages. Greater variation between different infestation
stages was considered as representative of a good indicator. As such, PRI and CSc were clearly
the two highest rankings, while NPQI, SR680, and TCARI/OSAVI all showed a similar level of
performance. TCARI/OSAVI incorporated prefixed coefficients, which may need to be cali-
brated for different data sets, which is a relatively complex process. NPQI was less preferred
by the CI measurements, but the bands of this index are in a different region of the spectra. The
use of NPQI would increase the stability of this study, and hence it was chosen, but is given half
the weight of CSc and PRI in the final function.

After examining each of the final selected vegetation indices, we found they are in good
agreement with previous reports in the literature:

Fig. 5 Average ASD measurements of leaves (each from 19–21 samples) from ash trees that are
healthy, and which have low, medium, and highly infested states. There are clear differences
between the different health states throughout the entire spectral range. However, we also
note that the differences in different bands are not equal and some signals may be caused by
noise.
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1) CSc, originally from Carter30 was derived from eight different stress agents across six
different plant species in laboratory studies. It was the best performing VI in our study,
which agreed with the results of Pontius et al.9

2) PRI, which was originally derived by Gamon et al.34 to estimate rapid changes in the
relative levels of xanthophyll cycle pigments, thus serving as an estimation of photo-
synthetic light use efficiency,21 which also performed well in this study, as expected.

3) The stress index NPQI,21 which showed a positive correlation between EAB infestation
and tree stress in Maire et al.,19 but was reported as less effective in Pontius et al.9 pre-
sented moderate performance in our analyses. However, it had relatively fewer data
uncertainties than other indices, excepting CSc and PRI. We used it in the final estima-
tion, but half weighted it compared to other indices.

All results from the vegetation indices were converted into normalized scores ranging
from 0 to 5. Their functions were derived from correlations with the data of known state
trees using third-order polynomial or step linear functions. The CSc, PRI, and NQPI conversion
functions can be respectively given as

Fig. 6 Calculated contribution index based on a PROSPECT simulation at different leaf chloro-
phyll contents. Leaf chlorophyll content varies from 15 to 75 μgcm−2. The other parameters used
by PROSPECT were fixed, with at leaf structure parameter ðN½�Þ ¼ 1 to 4, equivalent water
thickness ðCw½cm�Þ ¼ 0.025, and leaf dry matter per area ðμgcm−2Þ ¼ 0.005.

Fig. 7 Performance of selected vegetation indices. T/O indicates the TCARI/OSAVI index and
AMEC is the index proposed by AMEC. For the infestation stages, 1 is healthy, 2 represents
low infestation, 3 is medium infestation, and 4 represents high infestation.
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P ¼ −0.58Csc3 þ 3.503Csc2 − 5.923Cscþ 2.964

P ¼ −1.835PRI3 þ 12.543PRI2 − 25.590PRIþ 5.906

P ¼
�−6.739NPQIþ 3.448 ðNPQI ≥ 0.5Þ
−4.099NPQIþ 1.578 ðNPQI ≤ 0.5Þ : (3)

Vegetation indices have provided a convenient and robust methodology for EAB detection.
However, calibrations are still required for each data set. Some indices, such as NQPI, suffer
from relatively low-separation performance, and thus should be utilized with reduced weighting.
We also compared pixel-based spectra against the tree crown average and found the shadow
effect to cause major spectral variations in near infrared (NIR) band-related indices. This
also corroborates the fact that the spectral-based approach alone cannot sufficiently confirm
the degree of EAB infestation.

4.3 Retrieved Leaf Chlorophyll Content and its Infestation State Score

The absolute leaf chlorophyll content values were obtained by PROSAIL model inversion with a
CI implemented LUT approach. Hence, the hyperspectral spectra derived from the hyperspectral
imagery were compared to the PROSAIL simulated spectra with CI as a weighting in the LUT
inversion approach. In this study, we found that the leaf structure parameter N, ranging 1.7–2,
and LAI, returning values of 3 and above, were slightly higher than reported elsewhere in the
literature (e.g., Refs. 35, 36, and 37). However, they are still considered to be within a reasonable
range, as most of the ash trees in our study sites were mature. We found that leaf chlorophyll
content retrieved from physical models has a much higher variation than the vegetation indices.
However, relative decreases in leaf chlorophyll content compared with neighboring healthy trees
were found in both approaches. As a result, we did not use a regression function as in the case of
the vegetation indices, and instead employed a more general classification. We used two thresh-
old values to separate the results into three classes. The threshold values used in this study were
65 and 37 μgcm−2, meaning that if the leaf chlorophyll content is greater than 65 μgcm−2, then a
score of 0 is assigned, if the value is between 37 and 64 μgcm−2, it receives a score of 1, and if it
is less than 36 μgcm−2, then the score is 2.

Physical model inversion is a time-consuming process, and is prone to observation noise,
thus it has not been adopted in other ash EAB infestation studies.11 In this study, however,
since it is an object-oriented approach, average tree spectra were used instead of individual pix-
els, significantly reducing computation time and increasing the signal-to-noise ratio. More
importantly, the model inversion approach evaluates the overall spectra, taking into consider-
ation the quality of observations, including uncertainties, and providing the absolute values
of target parameters. Although the parameter we calculated in this way is leaf chlorophyll con-
tent, it still can be considered as a different approach and a fresh perspective compared to veg-
etation indices method, which focuses on only a few bands. We implemented CI as a weighting
in the merit function to improve the retrieval accuracy. Hence, retrieving leaf chlorophyll content
through physical model inversion can provide important information to be used in the final
evaluation. Ideally, we seek consistent results with regard to leaf chlorophyll changes from
both methods. We did confirm that the infested trees have lower leaf chlorophyll content
than nearby healthy ones; however, the model inversion approach suffers from high saturation
rates, which means it is fairly easy for results to converge on to the minimum or maximum values
of the preset range.

4.4 Spatial Patterns and their Infestation State Scores

We used a normalized differential value of 0.2 as the threshold value to determine major declines
in the tree crown. We found that the normalized differential longitudinal profiles show better
performance with regard to resistance to uncertainties, and partially to background and shadow
effects. This method simply involves counting the number of significant drops across the tree top
crown profile. In Fig. 8, all trees are resampled to 30 pixels in length to illustrate them together as
a normalized size. This conversion ensures low levels of infestation can be detected, while highly
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infested interpretations should require further supportive evidence. We confirmed that the spatial
patterning within the tree crown is a strong indicator of infestation, as previously reported.5,13

Figure 8 illustrates some typical examples for trees of different infestation stages. The
healthy, or likely healthy, trees have a much smoother crown curve due to the healthy growing
conditions, whereas the infested tree shows a clear alternating gap pattern. This pattern is due to
the leaf decline within the crown, which has been reported in Pontius et al.9 However, spatial
pattern can be normally detected when the infestation is in the dieback stage. It is necessary to
determine the optimal spectral band or VI from which this pattern is to be obtained, as it is also
prone to variations in solar illumination conditions.

4.5 Complete Sample Calculation Using the Operational Workflow

Let us perform a simple but complete calculation step by step to illustrate the operational work-
flow introduced in this study. After segmenting each individual tree, regardless of whether this is
done automatically or manually, then a spectral profile, like that shown in Fig. 9, can be obtained.
These spectra can be significantly altered if unnecessary pixels are included, and care must be
taken to include all pixels in the sunlit portion of the tree crown, even the dark pixels.

By calculating the selected VI from the spectrum in Fig. 9 and applying the expression func-
tions listed in Eq. 3, we find that Csc ¼ 0.129, giving a score of 2.25, PRI ¼ −0.241, which
gives a core of 0.48; and NPQI is −0.201, with a score of 2.398. If this spectrum is input into
the PROSAIL model, with three variables and the remaining parameters set to the values men-
tioned in the method section, then the inversion result, giving leaf chlorophyll content, is 65.
Therefore, according to our threshold values, the score from model inversion is 0.

From Fig. 10, it can be seen that there is only one major decline that crosses our threshold
value. Therefore, the assigned score from the spatial pattern longitudinal profile is 0.5.

With regard to the distance from trees of known infestation state, this tree has a known
medium infested tree nearby along the same street, and is spaced four trees away from it,
while the nearest known healthy tree is across the street. These relationships are illustrated
in Fig. 11, in which M, H, and X indicate the trees known to be medium infested, healthy,
and the target tree, respectively. The target tree X is the fifth tree from the infested tree, and
there is no tree between X and H; therefore, H is considered to be the sixth tree.

The final score for this individual tree is given as the solution from a linear function
y ¼ axþ b, with the two known points (1,2.5) and (6,0) at x ¼ 5, which equates to 0.5.

Finally, the final estimation score of this individual tree, considering the score values and
weightings, is given as

Fig. 8 Normalized differential longitudinal profiles for different representative trees. Any declines
that cross the two threshold lines are considered significant. The number of significant drops is
used to form the infestation estimation.
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score ¼ 1 � 2.250þ 1 � 0.480þ 0.5 � 2.398þ 1 � 0.500
3 � 3.5 þ 0.500 ¼ 0.969: (4)

Since the score is less than 1, this tree is graded as currently healthy. Considering the typical
green spectral signature attributes of a healthy living tree, the green peak, made by the green band
being higher than both the blue and the red bands, and the red edge, from the NIR band being
much higher than the red band, resulting in a high NDVI value, are both clearly presented. In
addition, the nearby neighboring tree is currently known to be healthy. Thus, from raw obser-
vations, this tree is most likely currently healthy, which supports our calculation result. However,
since there is an infested tree within the spread radius, this tree is potentially in high risk of future
infestation. This is not in conflict with our score findings, since all of southern Ontario has been
marked as a high risk zone. The score simply reflects the health state of the tree at the time of data
acquisition.

4.6 Map of Estimated Ash Tree Health

Using this workflow to calculate infestation scores for all trees within our study area, the final
results are collected and illustrated with ENVI (Exelis, Visual Information Solution, Boulder,
Colorado, USA). The map of final results is shown in Fig. 12, where different colors indicate
different estimated levels of infestation. A comparison of 40 infested trees and 40 healthy trees
for assessment of estimation accuracy is shown in Table 3. Columns show the predicted result
(Pd), and the rows list data from ground truthing. The overall accuracy, including healthy trees, is
70%, and 62.5% when healthy trees are excluded. The healthy tree omission error is 22.5%, and
commission error is 18.5%.

Fig. 9 A typical hyperspectral profile from the sunlit portion of the tree crown.

Fig. 10 Normalized differential longitudinal profile for the same tree crown as in Fig 9. The thresh-
old value in this study is 0.2, which means any declines that have an absolute value greater than
0.2, either positive or negative is considered major and significant.
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5 Conclusions and Future Work

This study proposed an object-oriented approach to detecting early infestation of EAB from
multisourced data, such as hyperspectral and high spatial resolution imagery. We derived differ-
ent types of information from these data, which can be used together to detect EAB infestation.
All information derived in this way is utilized in a weighted prediction function, in which all
data are normalized into scores of 0–5.

Fig. 11 A sample street scenario for distance constant calculation. M is a medium infested tree,
H is a known healthy tree, and X is the targeted tree. The numbers indicate the order of trees
involved in this calculation.

Fig. 12 Color-coded result map, where red indicates a score of 4 or higher, and highly infested trees;
yellow has a score of 2.5 to 4 and represents a medium infested tree; blue, with a score of 1 to 2.5,
shows low or early infested trees; and green indicates a score of less than 1 and a current healthy tree.
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The hypothesis of correlation between general stress and EAB infestation is confirmed. EAB
infested trees show variations in leaf chlorophyll content, predominantly a reduction to, for
example, less than 37 μgcm−2, as a symptom of stress. From an observational point of
view, stressed ash trees are more likely to be infested by EAB, and therefore stress-associated
variations in leaf chlorophyll content, normally to values lower than that found in nearby trees of
the same species, are considered as the primary indicator in detecting early infestations in ash
trees. However, despite drops in leaf chlorophyll content having over 85% correlation with EAB
infestation, the technique suffers from high omission errors. Thus, while the infested trees most
likely have reduced leaf chlorophyll content, low-leaf chlorophyll content does not always
confirm an infestation.

We found that vegetation indices, leaf chlorophyll content, longitudinal profiles, and paper
documentation all have the potential to detect EAB infestation. While vegetation indices are the
most convenient and robust methods, leaf chlorophyll content and longitudinal profiles may
provide more precise results, but at the cost of computation time and the risk of considerable
variation. Paper documents are considered as prior knowledge in this study, and represent the
most reliable information. The synergy of web GIS and remote sensing techniques would be
an interesting direction for future investigation.

Despite the weaknesses and limitations of GE’s imagery, it is easy to access, free of charge,
offers multiple years of availability, and in some cases provides better spatial resolution. These
benefits make it a viable option for resource management and planning by governments and
other agencies. Most importantly, GE imagery and the relative profile approach can be easily
adopted and effectively employed by nonspecialists.

In this study, all segmentations underwent manual corrections, which ensured that the initial
tree boundary and location information were accurate. However, manual segmentation and val-
idation are very labor intensive and time consuming, and for this scheme to be applied over a
larger area, automatic segmentation would be essential, which implicitly suggests that errors
from segmentation could propagate and directly affect the accuracy of the final evaluation.

The PROSAIL model was chosen due to its simplicity, reliability, robustness, and effective-
ness. In this study, PROSAIL served as a demonstration, which had been validated and reported
with successful collaboration with CI-based optimization in Zhang et al.31 This does not exclude
other models from being adopted in this approach, and a comparison of the effectiveness and
accuracy of different models would be an interesting future investigation.

The final accuracy validation is also limited by the data sources available, particularly in the
number of confirmed infested trees. This and future studies could therefore be improved with
further investigations and explorations.

This study presents a demonstration of a proof of concept and a prototype workflow. The
vegetation indices chosen and the models used in parameter retrieval processing are not fixed,
and may require future investigation for possible improvements. Other spatial information, such
as texture, may also be considered for potential integration and expansion of the calculation.
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