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Abstract. A new viewpoint for understanding the urban expansion using impervious surface
information, which is obtained using remote sensing imagery is presented. The purpose of
this study is to understand and describe the urban expansion pattern with the view of impervious
surfaces instead of the conventional view of land use/land cover. Six years’ worth of impervious
surface data (1990–2009) of Guangzhou are extracted via linear spectral unmixing analysis
methods and spatial and temporal characteristics are discussed in detail. The area, density,
and gravity centers changes of the impervious surfaces are analyzed to explain internal/external
urban expansion. Meanwhile, five landscape indexes, such as patch density, edge density, mean
patch size, area-weighted, and fragmentation index, are utilized to describe landscape changes of
Guangzhou in past 20 years, which are influenced deeply by the impervious surface expansion.
In order to detail landscape changes, two transects corresponding to the two urban expansion
directions are designed and five landscape metrics in these two transects are reported.
Conclusions can be drawn and shown as following: (1) temporally, the area of impervious sur-
faces increases from 12,998 to 59,911 ha from 1990 to 2009. The amount of impervious surface
varies in different periods. The annual growth rates of impervious surface area during 1990–
1995, 1995–1998, and 1998–2000 are 10.16%, 11.61%, and 10.78%, respectively; (2) annual
growth rates decrease from 10.78% (1998–2000) to 5.67% (2000–2003). Nevertheless, from
2003–2009, the annual growth rate has a slight increase compared to a former period. The
rate is 5.91%; (3) spatially, gravity centers of medium and high percentage impervious surfaces
migrate slightly; and (4) according to the gradient analysis in the two transects, it can be observed
that the high percentage of impervious surface increases gradually in new city districts (from
west to east and from south to north). © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.8.083609]
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1 Introduction

Cities represent one of Earth’s fastest growing land-use types on a per-area basis, and over half of
the planet’s 7 billion humans now reside in cities.1 It is very important to give a quantitative
analysis in order to describe and forecast some problems that have occurred in the process of
urbanization. Generally, remote sensing provided the most convenient means to monitor and
quantify urban expansion by taking advantage of its wide area coverage and regular orbiting
period and it had proven useful for mapping urban areas and obtaining data for the analysis
of urban land cover change.2–3 In China, urbanization (urban expansion) has been experienced
during different periods during the last two decades and many projects or researches on urban
expansion have been launched.4–7 These researchers mostly placed their attention on land use/
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land cover classification at the pixel level by using supervised or unsupervised classifications.
These methods were limited by their precision of classification and image quality, such as spatial
resolution, and they could not properly discriminate land cover classes in a heterogeneous
context.8

One of the recent major advances in urban expansion analysis was the vegetation-impervious
surface-soil (V-I-S) model proposed by Ridd in 1995. In this model, impervious surfaces, which
was defined as any surface which water could not infiltrate and which was primarily associated
with transportation (streets, highways, parking lots, and sidewalks) and building rooftops, was
the key indicator of city land cover/land use characteristics through the urbanization progress.9,10

The V-I-S model was demonstrated to be an effective approach to cope with the mixed pixel
problem and provided a guideline for decomposing low-resolution images of an urban surface
and a link for these components to spectral signatures.

Meanwhile, many methods for extracting impervious surfaces were explored in recent years,
such as decision tree method, supervised and unsupervised methods, maximum likelihood
method, neural network,11–15 regression tree model,16,17 and spectral unmixing method.18

Spectral unmixing analysis (SMA) had been widely utilized to derive the fractional contribution
of representative urban land covers for its convenience and ability to derive physically interpret-
able information at a subpixel level.19 The linear spectral mixture model was widely used for
unmixing the mixed pixels. The spectral signatures in one pixel assumed a linear combination
with their proportion as a weighting factor in the linear spectral mixture model. The linear spec-
tral mixture model was an excellent approximation technique which was suitable for dealing
with the spectral mixture problem, because it produced a set of maps that represented the
abundance of each component.

The extraction of impervious fragmentation information was always conducted with the
combination of high-albedo and low-albedo fraction images.20 Although many researchers
used SMA to extract impervious surface information, multitemporal studies for monitoring
urban land cover changes were lacking.21–24 Furthermore, there was no well-documented
approach for analyzing the different internal and external urban expansion patterns through
the urbanization progress.

Quantitative spatial analysis methods were needed in this research to explore the impervious
surface sprawl development along the urban expansion directions. Gradient analysis, originally
developed in the context of vegetation analysis,25 had been used to investigate the effects
of urbanization on plant distribution and ecosystem properties.26 Luck and Wu27and Zhang
et al.28 used gradient analysis to study urban landscape patterns and the ecological consequences
of the urbanization process by using a “split window” along their chosen transect. Kong and
Nakagoshi29 used gradient analysis combined with landscape metrics to characterize urban
green space patterns quantitatively from 1989 to 2004 in Jinan (China) and gradient analysis
was used to quantitatively understand the urban expansion of Guangzhou during the past 24
years based on the urban area extracted by the maximum likelihood method.7

The primary objectives of this paper included: (1) examining and understanding the
Guangzhou expansion progress and patterns using long time series impervious surface data
(1990–2009); (2) analyzing detailed change information of landscape and gravity centers of
impervious surface; and (3) explaining the internal and external urban expansion and sprawl
patterns with the view of impervious surface under the subpixel level.

2 Study Area and Data Preprocessing

Guangzhou town is the core zone of Guangzhou municipality, which is chosen as the study area
of this paper. Guangzhou municipality is the political, economic, educational, cultural, as well as
scientific and technological center of the Guangdong province, South China. Guangzhou town
covers approximately 3834.8 km2 and is comprised of eight districts (Yuexiu, Dongshan,
Haizhu, Liwan, Tianhe, Baiyun, Huangpu and Fangchun). Among these entirely city districts,
Yuexiu, Dongshan, Haizhu, and Liwan are the traditional old districts, and the others are the new
districts. It is bounded by the Pearl River to the east and south, Zhongshan city and Foshan city to
the west, Dongguan city and Huizhou city to the east, and Qinyuan city to the north. There are
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three important highways, which are the Guang-Cong highway (from Guangzhou to Conghua),
the Guang-Hui highway (from Guangzhou to Huizhou), and the Guang-Shen highway (from
Guangzhou to Shenzhen).

A single transverse Mercator (TM) or ETMþ scene (WRS: path 122, row 44) can cover
the whole area (Fig. 1). In this paper, six sets of Landsat TM data (10-13-1990,
12-30-1995, 12-20-1998, 10-10-2000, 10-01-2003, and 11-12-2009) are used to interpret imper-
vious surface area changes. Atmospheric corrections are performed and rectified to the TM

Fig. 1 Study area of this paper (Guangzhou town of Guangdong Province in China).
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projection system. The TM images of 1990, 1995, 1998, 2000, and 2003 are registered and
rectified to the TM image of 2009 by the “image to image” method. After the geometric
correction, the root-mean-square error (RMSE) is less than 0.5 pixels. At last, the vector
data of Guangzhou administrative boundaries are applied to choose the study area subset
from the whole image.

3 Methodology

3.1 Masking Water Using Spectral Angle Mapper Method

Water's spectral characteristics were similar to the low-albedo urban surface; therefore, it was
difficult to separate water from the low-albedo endmember, which would affect the unmixing
results. A spectral angle mapper (SAM) was used to extract bodies of water and a mask was
made to exclude pure water pixels from the Landsat images. SAM was a physically based spec-
tral classification that used an n-D angle to match pixels to reference spectra. The algorithm
determined the spectral similarity between two spectra by calculating the angle between the
spectra and treating them as vectors in a space with dimensionality equal to the number of
bands. Smaller angles represented closer matches to the reference spectrum. According to abun-
dant experiments, which were design to explore the best value of the water spectral angle, the
threshold identified was 0.1–0.08 rad. Only the pixels whose spectral angles fall into this range
of radians were classified as water.

Water masking involved three steps: (1) selecting water endmembers; (2) utilizing SAM to
extract the water and building a mask (spectral angle range is 0.1–0.08) via ENVI software; and
(3) masking the water area.

3.2 Linear Spectral Mixture Analysis and Accuracy Assessment

Linear spectral mixture analysis (LSMA) was a linear unmixing method that calculated the abun-
dance of the endmembers in a mixed pixel. To estimate impervious surfaces, the following four
steps were generally involved: (1) reducing image noise via the minimum noise fraction (MNF)
method, which produced a small number of components that contained most of the information;
(2) calculating the pixel purity index (PPI) from the MNF component image. The PPI was the
most representative interactive endmember extraction algorithm and was widely used due to its
publicity and availability in the ITTVIS environment for visualizing images (ENVI) software
originally developed by analytical imaging and geophysics; (3) selecting endmembers; and (4)
unmixing the image based on the linear spectral mixing model.

The MNF rotation required two steps: (1) decorrelation and rescaling of the noise in the data
based on an estimated noise covariance matrix, producing transformed data in which the noise
had a unit variance and no band-to-band correlations, and (2) implementation of a standard prin-
cipal component analysis of the noise-whitened data. The MNF rotation produced a two-part
data set: one set was associated with large eigenvalues and coherent images, and another set was
associated with near-unity eigenvalues and noise-dominated images. In MNF rotation, noise was
separated from the data and spectral processing results were improved.19 Using the majority of
the information from the original image, the first three components were used to select endmem-
bers. The selection of endmembers was complemented with the use of the PPI function by pro-
jecting three-dimensional (3-D) scatter plots of MNF fraction components 1, 2, and 3 onto a 2-D
space and marking the extreme pixels in each projection. Pixels with a high digital numbers (DN)
value indicated the spatial location of spectral endmembers.30

The mathematical model of LSMA could be expressed as

Ri ¼
Xn
K¼1

fkRik þ ERi; (1)

where i ¼ 1; : : : ; m (number of spectral bands); k ¼ 1; : : : ; n (number of endmembers); Ri was
the spectral reflectance of band i which contained one or more endmembers; fk was the
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proportion of endmember k within the pixel; Rik was the known spectral reflectance of endmem-
ber k within the pixel on band i; and ERi was the error for band i. A constrained least-squares
solution was used in this research, assuming that the following two conditions were simulta-
neously satisfied: X

k ¼ 1nfk ¼ 1; (2)

1 ≤ fk ≤ 1: (3)

Endmember selection was a key step in the LSMA approach. Endmembers could be collected
through laboratory or field measurements, or from images.31 According to the V-I-S model, three
basic endmembers were chosen: vegetation, impervious surface, and soil; the vegetation was the
sum of forest, farmland, and grassland fractions. In addition, the impervious surface's extraction
had always been conducted by the low-albedo and high-albedo fractions. Because the low-
albedo fraction image was more complex than other fraction images, the direct extraction of
impervious surface image from the high albedo and low albedo fractions was obviously unsuit-
able. Wu and Murray (2003) built a model to extract the impervious surface and this idea was
accepted widely.20 The model is shown as follows:

Rimp;b ¼ flowRlow;b þ fhighRhigh;b þ eb; (4)

where Rimp;b,Rlow;b, and Rhigh;b were the reflectivities of impervious surface, low albedo, and
high albedo of Band b. flow and fhigh were the densities of low albedo and high albedo. eb
was the value of the remaining data. Equation (4) must meet the needs of the following equation:

flow þ fhigh ¼ 1 and flow; fhigh > 0: (5)

Assessment of impervious surface images was important for the validation of classification
results. Some researchers had discussed the accuracy assessment approaches,32 including overall
accuracy (OA), producer's and user's accuracy (PA and UA) and kappa coefficient, and so on.
Much research used RMSE to assess the results in the accuracy assessment procedure.15,33–35

RMSE and systematic error (SE) were utilized in this research to evaluate the accuracy of imper-
vious surface estimation. RMSE and SE could be expressed as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
i¼1ðX

͡
i − XiÞ

N

s
(6)

SE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
i¼1ðX

͡
i − XiÞ

N

s
; (7)

where X
͡
i was sample i’s density of the impervious surface estimated from TM and ETMþ data,

Xi was sample i’s corresponding value of ground reference images, and N was the number of the
sample.

3.3 Gradient Analysis

In this research, two transects (Fig. 1) were designed to measure the impervious surface sprawl.
The principle of design was listed in following steps: (1) for the whole study area, the impervious
surface was extracted first using the LSMA method, (2) the impervious surface value of 2009
were analyzed using Statistics tools of ENVI software, and the pixels, which had highest value,
were selected. (3) if the number of pixels with the highest value was one, then this pixel was
considered as the origin point. If the number of pixels with highest value was greater than 1, the 8
neighborhood pixels were computed and the mean value of these 9 pixels was obtained. The
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pixel with the highest mean value (9 pixels) was selected as the origin point; (4) by such an
analogy, the selection process would stop until only one pixel was selected; (5) after the origin
point was selected, 12 directions every 30 deg were checked based on this origin point. These
two directions had the longest distance with the largest sum of impervious surface (Fig. 1); and
(6) along with these two directions, two transects were designed. These two transects were
included with a square that was called “Cell.” It turned out that these two transects extend
from Guangzhou New Baiyun International Airport in Baiyun to southern Fangcun, and
west from Liwan to eastern Huangpu, and cut across the entire study area. In this paper,
each transect was divided into 36 cells (each cell covered 1 × 1 km approximately, i.e., each
cell was made up of 33 × 33 pixels). From 1990 to 2009, the expansion distances were
21 km (south to north) and 25 km (west to east), respectively, and the annual expansion distance
was about 1 km (i.e., Guangzhou expands 1 km outward every year). Therefore, the scale of 1 km
conformed to the real expansion state of Guangzhou. Therefore, the 1 km scale was made as a
cell to discuss the spatial-temporal change of landscape metrics.

3.4 Landscape Indexes

To quantify the spatial pattern of exterior urbanization along the two transects, five landscape
indexes in each cell of these two transects were calculated using patch analysis tools of GIS
software. These five landscape indices were patch density (PD), edge density (ED), mean
patch size (MPS), area-weighted (AWMSI), and fragmentation index (FI). In this paper, the
landscape meant “cell,” which was designed in Part 3.3 above, and the “patch” was the set
of “pixels” in each cell. These pixels were selected according to given value of impervious
surface area.

PD was a limited but fundamental aspect of landscape structure. PD had the same basic utility
as the number of patches as an index, except that it expressed the number of patches on a per unit
area basis that facilitated comparisons among landscapes of varying sizes

PD ¼ ni
A
; (8)

where ni meant the total area of impervious surface and A meant the total area of each cell.
ED at the class level had the utility, limitation, and standardized edge to a per unit area basis

that facilitated comparisons among landscapes of varying sizes and equaled the sum of the
lengths of all edge segments involving the corresponding patch type

ED ¼ E
A
; (9)

where E meant the total length of the edge in pixels and A meant the total area of each cell.
MPS was another class and landscape index based on the number of patches. A landscape

type with a smaller MPS than another patch type might be considered more fragmented. Thus,
MPS could serve as a habitat fragmentation index

MPS ¼
P

n
j¼1 aij
ni

; (10)

where aij meant the area of impervious surface and ni meant the number of pixels in one cell.
AWMSI was a useful form of the shape metric. With AWMSI, the shape of each patch was

weighted by its area relative to the area of the corresponding size. Specifically, larger patches
were weighted more heavily than smaller patches in calculating the average patch shape for the
landscape.

AWMSI ¼
Xn
j¼1

��
Pij

2
ffiffiffiffiffiffiffiffi
πaij

p
��

aijP
n
j¼1 aij

��
; (11)

where Pij meant the perimeter of the pixels and aij meant the area of the pixels.
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FI characterized the degree of fragmentation of the landscape that reflects the complexity of
the spatial structure of the landscape

Ci ¼ ni∕Ai; (12)

where ni meant the number of pixels in a cell and Ai meant the total area of a cell.

4 Results and Discussions

4.1 Area and Rate of Impervious Surface

According to the V-I-S model, four endmembers are selected, which are high albedo, low albedo,
vegetable, and soil. Using the LSMA method, four feature maps of high albedo, low albedo,
vegetable, and soil are generated. Impervious surface maps are yielded by the method that
is discussed above (low-albedo imageþ high-albedo image). The impervious surface area of
each year is extracted (Fig. 2). The RSMEs of the extraction results are 0.16, 0.20, 0.21,
0.31, and 0.19, respectively. Areas, increased area, and growth rate (1990–2009) of impervious
surfaces are listed in Tables 1 and 2.

As shown in Tables 1 and 2, the impervious surface area increases from 12,998 ha in 1990 to
59911 ha in 2009. This implies that the impervious surface has undergone a dramatic develop-
ment in the past two decades. Although the annual growth rate of impervious surfaces became
lower than in the past after 1998 (10.78%), the impervious surface density of Guangzhou still
kept growing. The most important factor to explain this phenomenon is that in 1990, Guangzhou
was in the initial stage of urbanization. In this stage, there were few impervious surfaces (built-up
areas), and a lot of vegetation, farmland, soil, and bare land were the main land cover compo-
nents. With the development of the economy, Guangzhou went into the advanced stage of
urbanization. A large amount of vegetation, farmland, soil, and bare land changed to impervious
surface area quickly and inefficiently. With the passing of time, there were no more spaces to
support the extensive urban expansion. In order to satisfy the demand of urban development, the
density of impervious surface kept growing in the inner city, and the utilization efficiency of land
was higher than before.

4.2 Spatial Migration of Gravity Center (Medium and High Percentage
Impervious Surface)

The impervious surface is classified into three categories based on its percentage: (1) low per-
centage impervious surface, the value of impervious surface is 0%-30%; (2) medium percentage
impervious surface, the value of impervious surface is 30%-70%; (3) high percentage imper-
vious surface, the value of impervious surface is higher than 70%.

According to Fig. 3, it is obvious that in 1990, 1995, and 1998, the medium percentage
impervious surface increased year after year. In 1995, the medium percentage impervious
surface increased sharply by almost 15,000 ha, which is mainly due to spatial sprawling of
the impervious surface area in the first stage of urbanization. Meanwhile, high percentage imper-
vious surface area appeared and increased gradually in this period. The reason is the rapid devel-
opment of the central district of Guangzhou after the reform and opening-up policy. In this
period, the strong demand for land and environment/transport facilities arose dramatically,
thus the city expanded outward quickly. A great decrease in medium percentage impervious
surface area (almost 9000 ha are lost) came out in the period from 1998 to 2000 and a steady
growth occurred in the period from 2000 to 2009. The high percentage impervious surface
increased sharply from 1998 to 2000, that is to say, parts of medium percentage impervious
surface were developing into high percentage impervious surface area step by step.
Afterward, the high percentage impervious surface area experienced a high growth rate and
finally surpassed the medium percentage impervious surface area in 2009. This implies that,
in the past two decades, the external expansion of impervious surface area dominated the
early urbanization. When the impervious surface area expanded to a certain degree, there
was no more space to support its expansion; therefore, impervious surface area changed into
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an internal expansion pattern; in this stage, the percentage of impervious surface area became
higher than that in the first stage.

Furthermore, the spatial-temporal evolution pattern can be understood very clearly on the
spatial aspect through gravity center migration. The gravity center in spatial analysis is borrowed
from Newton’s famous law of gravitation. The gravity center is identified as the point where the
equilibrium of the body can be reached. In spatial analysis, a gravity center of a region is the

Fig. 2 The impervious surface fractal images of 6 years (1990, 1995, 1998, 2000, 2003, and
2009).

Table 1 Areas of impervious surface in each year.

Year 1990 1995 1998 2000 2003 2009

Area (ha) 12,998 21,090 29,324 35,985 42,459 59,911

Fan and Fan: Understanding spatial-temporal urban expansion pattern (1990–2009). . .

Journal of Applied Remote Sensing 083609-8 Vol. 8, 2014



location where the maximum accessibility can be reached. The maximum accessibility means
that the gravity center has the total minimal distance to all other locations. Finding the gravity
center can optimize the process of site selection, which can help one to find the relatively best site
for urban development. In this paper, the gravity center is used for finding the best site, which can
represent the impervious surface of the whole study area. In ArcGIS, there is a “Spatial
Statistics” geo-processing toolbox with a tool called “Mean Center,” which can identify the geo-
graphic center or the center of concentration for a set of features. The gravity centers of medium
and high percentage impervious surface in each year are calculated (Fig. 4).

The gravity center of medium percentage impervious surface area moves from the west of
Baiyun Mountain toward northeastern of Guangzhou (a-b-c-d-e-f). The movement distance of
the gravity center is almost 10.67 km. The annual movement rates in different periods are cal-
culated to reflect the different paces of medium and high percentage impervious surface along
the urban expansion process, respectively. The mean rates of medium percentage impervious
surface gravity center in different periods are 0.23 km∕year (1990–1995), 0.36 km∕year
(1995–1998), 0.59 km∕year (1998–2000), 1.06 km∕year (2000–2003), and 0.68 km∕year
(2003–2009). The mean rate reaches the highest value in the period from 2000–2003. At
the same time, the movement rate of medium percentage impervious surface area decreases
to 0.68 km∕year after 2003. This phenomenon indicates that the medium percentage impervious
surface area (such as sparse residential areas and factory constructions) expands to the external
districts of Guangzhou (such as Baiyun and Luogang) at a high rate during the initial urbani-
zation stage (1990–2003) and the development speed decreases year by year because of the
boundary restriction.

Meanwhile, the gravity center of high percentage impervious surface area experiences a leap-
frogged movement pattern (a-b-c-d-e-f) with an 18.9-km distance. The mean rate is
0.96 km∕year in 1990–1995 and increases to 1.26 km∕year in 1995–1998. Afterward, the
rate reaches its peak value (2.38 km∕year) in 1998–2000 and increases sharply from 1998.
The rate decreases 0.97 km∕year until 2003 and decreases to 0.44 km∕year in 2003–2009.

Table 2 Increased area and growth rate of impervious surface in different periods.

Periods Increased area (ha) Annual growth rate (%)

1990–1995 8092 10.16

1995–1998 8234 11.61

1998–2000 6661 10.78

2000–2003 6474 5.67

2003–2009 17,452 5.91

Fig. 3 Medium and high impervious surface changes in 1990–2009.
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The rates’ curve reveals that there are three stages in urban expansion: (1) initial stage (1990–
1995), (2) rapidly increasing stage (1995–2003), and (3) steadily decreasing stage (2003–2009).
The density of impervious surface in the internal city has increased since 1995 and has gradually
become saturated.

Spatially, the gravity center of high impervious surface appears in Tianhe district in 1990.
After that, it moves to northwestern (Baiyun district) in 1995, back to the Tianhe district in 1998
and back to the Yuexiu district in 2000 because of the commercial/industrial developing of
Tianhe and Yuexiu. It moves back to Baiyun district once again in 2003 because of the con-
struction of New Baiyun International Airport and the facilities along the airport roads. In 2009,
the gravity center moves to northeast of Guangzhou, which means much more high percentage
impervious surface is appearing in the junction of the Tianthe and Baiyun districts.

4.3 Gradient Analysis with Landscape Indexes

It is found that the important characterization of urbanization is the dramatic increase of medium
and high percentage impervious surface. In this section, impervious surface area percentage
higher than 30% is chosen to calculate the landscape indices in each cell (1 × 1 km size) to
investigate the urban expansion pattern. In this paper, five landscape indices are calculated
using patch analysis of GIS software. Results are shown in Fig. 5.

As shown in Fig. 5 chart (a), PD values increase gradually, with the distance from the original
point becoming further year by year. The PD reaches the first peak values in cells 7–9, which are
located in the Tianhe district, and the second peak value in cells 23–29, which are located in the
Huangpu district in 2009. In 1990, the highest value of PD appeared in cells 5–6, which are
located in the core of the city (inner city). However, in 2009, the highest value of PD appears

Fig. 4 The gravity centers of medium and high impervious surface (1990–2009).
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in cells 25–26 (external city). The value of PD in 2009 is almost double that in 1990. In the other
transect, chart (b), the same situation also occurs as well. In 1990, PD reaches its first peak value
in cells 5–6 (inner city) and second peak in cells 18–19 (external city). Based on the PD changing
in these two transects, it is clear that Guangzhou has had an external expansion process in past
20 years.

Charts (c) and (d) show that the MPS increased year after year. The same situations can be
found from these two transects in the 6 years that the peak of MPS is located in cells 0–9 (inner
city) and the lower values of MPS are located in cells 17–30 (external city). The phenomenon
declares that, in the old city, vast stretches of impervious surface have been forming with urban

Fig. 5 Gradient changes in each cell in 6 years [(a) and (b) are patch density; (c) and (d) are mean
patch size; (e) and (f) are edge density; (g) and (h) are area-weighted mean shape index; (i) and (j)
are fragmentation index].
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development. According to charts (e) and (f), in two directions the ED, which reflected the
degree of fragmentation of the impervious surface, has a maximum value in 1990. However,
ED has a minimum value in 2009 compared to other years. Therefore, the conclusion is
drawn as follows: impervious surfaces are most fragmental in 1990 and most continuous in
2009 in these two directions.

It is obvious that in charts (g) and (h), AWMSI increases gradually while the distance from
center and ranks decline in both directions in 1990. At the same time, AWMSI value varies
irregularly year after year. In charts (i) and (j), FI ranks extremely high in 1990 and increases
with the distance from the city in every year. In 1990, FI keeps a steady value around cells 5–15
in the core city. In chart (i), FI reaches the peak value at cells 25–26 until 1998, which is located
in New Baiyun International Airport and FI decreases gradually from 2003 because of the estab-
lishment of New Baiyun International Airport (the establishing time is from 1998 to 2003). In
chart (j), FI reaches its peak value for each year at cells 14–18, which are located in the new city.
Since 1995, the FI increases year by year which indicates the medium-high density impervious
surface begins in two districts. After 2003, the FI decreases because the urban development is
stable.

Near the center of city, along the northwest-southeast direction from 3 km (left) to 3 km
(right) and the southwest-northeast direction [3 km (left) to 3 km (right)], values for PD
show a visible decrease between 1990 and 2009. Meanwhile, values for MPS show a different
temporal pattern. It has a progressive increase in the period from 1990–2009. It can be inferred
that the impervious surface around the city center developed from several small sized impervious
surface areas into fewer larger sized impervious surface areas. Values of ED and FI, near the city
center, along the northwest-southeast direction from 2 km (left) to 2 km (right) and the south-
west-northeast direction [3km (left) to 3km (right)], have an apparent decrease during the period
from 1990–2009. This indicates that the impervious surface area distributed around the city
center evolved from very fragmental to more continuous. Considering the values of PD,
MPS, ED, and FI together, these patterns suggest that around the city center, impervious surface
area developed from sparse little sized patches to a dense distribution with a larger area. This is
due to the dispersed urban sprawl that characterized these areas starting in 1990, and the “filling-
in” process that subsequently occurred, resulting in a higher residential density distribution.

Near the fringe of the study area, in the northwest from 4 km (left) to 3 km (right) and south-
east from 3–31 km (right), the peak values of PD and MPS in each of the 6 years reflect that
impervious surface area was gradually sprawling from the internal city center to external city
districts after 1990. Subsequently, some new centers appear with a higher density distribution of
residential and industrial buildings. It is inferred from this that impervious surface area appeared
irregularly and sparsely near the edge of the city along the northwest-southeast direction and
indicates that the incipient urban external sprawl is fast and unplanned. In addition, in the south-
west, from 9 km (left) to 3 km (left) and northeast [between 3 and 27 km (right)], the same
pattern with a northwest-southeast direction has been found, which exactly reflects the noncenter
urban spatial sprawl pattern.

5 Conclusions

In this study, the spatial-temporal patterns of urbanization in Guangzhou have been investigated
by using a subpixel linear spectral unmixing method in the periods from 1990–2009. Gradient
analysis is finished based on two mutually perpendicular transects along the urban expansion
directions, including 72 cells combined with landscape metrics. Impervious surface area is
obtained and analyzed for 6 years. Landscape indexes are calculated based on the distance
from the original point for medium and high percentage impervious surface to analyze the
urbanization spatial-temporal pattern along the urban sprawl directions.

The results indicate that Guangzhou has experienced a rapid expansion in the past two
decades (1990–2009). The impervious surface area increased from 12,998 ha in 1990 to
59,911 ha in 2009 spatially. In the whole study area, the gravity center of medium percentage
surface gradually migrated from west of Baiyun Mountain toward the northeastern direction.
The reason is that other types of land cover located in northeastern Guangzhou has been
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converted into impervious surface area. The gravity center of high-density impervious surface
migration leapfrogged, for the reason that human activities and policies more severely affect the
high-density impervious surface development. Along the urban expansion axes, medium and
high percentage impervious surface appears gradually in the new city districts (noncenter
area), from a sparse and irregular pattern to a less fragmental and dense distribution, which
indicates that dispersed urban sprawl characterizes these areas in 1990 and the “filling-in” proc-
ess occurs subsequently, resulting in a higher residential density distribution.

The expansion pattern of impervious surface is an important basic ingredient for analyzing
urbanization. Linking the quantified and spatially explicit impervious surface sprawl pattern can
help to clarify the relationship between the urbanization process and impervious surface expan-
sion. Finally, developing an understanding of the dynamic spatial patterns of impervious surface
area can improve our ability to assess and create future planning scenarios by combining appro-
priate methods, such as gradient analysis. The ability to relate pattern to process is essential
for understanding urbanization, and this cannot be done effectively without gravity center
and landscape metrics analysis.
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