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Abstract. This study investigated the ability of Landsat Enhanced Thematic Mapper Plus data
acquired in leaf-on and leaf-off seasons to estimate stand age of Larix gmelinii and Betula pla-
typhylla in northeast China. The relationships of six band reflectances, nine vegetation indices,
and six texture measures with stand age were examined. Linear and multivariable regression
models and multilayer perceptron neural network (MLP NN) were employed to estimate forest
age based on these variables. The results indicate that reflectance in short-wave infrared bands
and wetness are more significantly correlated with stand age in the leaf-on image, while reflec-
tance in blue and green bands and greenness are more sensitive to stand age in leaf-off image.
The MLP NN model can be effectively used to retrieve the stand age; the highest coefficient of
determination and minimum root mean square error values of retrieved age are 0.47 and 21.3
years for Larix gmelinii, and 0.60 and 10.1 years for Betula platyphylla, respectively. The pre-
dicted age errors increased significantly when stand ages were >100 and >50 years for Larix
gmelinii and Betula platyphylla, respectively. Remote sensing data acquired in the leaf-on season
is more suitable for estimating forest age than that acquired in the leaf-off season over the study
area. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JRS.8.083670]
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1 Introduction

The carbon flux from the atmosphere to forests plays an important role in retarding the increase
in atmospheric CO2 concentration and climate change.1 Forest age, which is related to time since
disturbance or plantation, is a dominant determinant for the long-term trend of carbon exchange
between forests and the atmosphere due to the age-related change in forest growth rate.2

This phenomenon is caused by the changes in forest fundamental structure, which influences
the ways of forest space occupied and carbon allocated.3 Therefore, forest age is a crucial
variable for quantifying carbon fluxes between the atmosphere and forest ecosystems.4

It also plays an important role in estimating forest biomass with remote sensing data.5

Forest age maps with high quality are urgently required for reliably quantifying regional
and global forest carbon budget.

Forest age can be directly mapped according to the time of forest planted and disturbed using
forest management inventory data and dendrochronology data. However, acquiring inventory
data and tree core rings are often difficult, costly, and time-consuming, especially for natural
forests. In addition, the data of forest age from inventories with broad age classes and low spatial
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resolution might lack the precision required for estimating carbon stocks and fluxes. For exam-
ple, in many forest inventory datasets, forests are only grouped into different age ranges of 20 or
30 years and sometimes even just three succession stages (recent cut, secondary forest, primary
forest) or five age classes (young, mid-aged, premature, mature, and postmature).6 These broad
age ranges and classes cannot satisfy the requirements for accurate calculation of forest carbon
budget. Recently, remote sensing has been proved to be a useful tool for estimating forest stand
age at reasonable cost, acceptable accuracy, and affordable efforts. The canopy structure, leaf
area index, and background reflectance are main factors regulating the changes of remotely
sensed reflectance with forest age. Other factors, such as sun and view angles and phenology,
also have considerable effects on the reflectance and should be carefully addressed in the
retrieval of forest stand age.7

Forest age can be extracted using single or time-series remotely sensed data. Time-series
remote sensing data are very effective for detecting forest disturbance history and forest age.
However, the longest time-series of Landsat data can only be dated back to 1972. Forty-two
years of remote sensing data are certainly not long enough for studying carbon budget and
age-related growth decline of forest ecosystems.8 In addition, the long time-series data with
good quality is not available in many regions. Thus, we often should resort to the chronose-
quence method to retrieve forest age using a single remote sensing image. In this case, difficulties
such as lacking suitable data and differences in illumination conditions and phenology could be
avoided to some extent.

Remotely sensed spectral signals are not an explicit function of forest stand age. Rather, they
are linked with structural factors related to age, such as biomass, leaf area index, density, basal
area, and height.9 Thus, it is possible for us to track forest succession stages and stand age
according to changes in spectral signals. Several investigators have shown close relationships
between forest succession stages and the spectral signals of Landsat Thematic Mapper (TM)
data.6,10,11 Jakubauskas and Price9 successfully estimated the age (0 to 250 years) of lodgepole
pine in the Yellowstone National Park using the data from visible, near-infrared (NIR), and
middle-infrared bands of a TM image, with coefficient of determination (R2) in the range
from 0.62 to 0.90. Wulder et al.6 used tasseled cap wetness indices calculated from a
Landsat Enhanced Thematic Mapper Plus (ETMþ) imagery to estimate the stand age (4 to
20 years) of lodgepole pine in the Morice Forest District of British Columbia, Canada, with
the root mean square error (RMSE) and R2 of retrieved age 2.4 years and 0.68, respectively.

Texture measures are able to characterize vegetation structure and forest age.11,12

Jakubauskas and Price9 found that texture information from Landsat TM data was helpful to
separate early forest succession sites in Yellowstone National Park. Lu13 indicated that the
combination of spectral and textural features of Landsat image improved the aboveground
biomass estimation in Altamira, and texture was critical for mature forest biomass estimation.
Texture measures were also proved useful for retrieving forest growing stock volume of oak in
southern Liaoning, China,14 and for delineating logged forests in Amazonia.15

Most previous studies retrieved forest age using remote sensing data acquired in growing
(leaf-on) season. Few studies tried to estimate the age of deciduous species using remote sensing
data acquired in nongrowing (leaf-off) season. Forest basal area, which is related to the stand age,
can be more effectively estimated using remote sensing images acquired in winter with snow
ground cover than using those acquired in other seasons.16 Snow produces a uniformly bright
background that accentuates the signals of tree crowns and their shadows. Spatially integrated
forest reflectance received by an optical satellite sensor during winter months is a complex mix-
ture of sunlit/shaded tree canopies and forest floor, compounded by varying degrees of tree-to-
tree self-shading and changes with the ratios of the four components.16 In almost all wavelengths
and all view angles, the reflected radiance of young deciduous stands is higher than the radiance
of mature dense stands in winter because of more snow on the forest floor of young stands.17

The differences in forest floor shadow or illumination are, in part, related to sun elevation angle,
tree size, and stem density, and make it possible to estimate forest stand age using a single-date
remote sensing image.

The relationships between forest age and spectral signals vary depending on the character-
istics of the study area, forest types, and data acquisition time. No empirical models can be
universally applicable for retrieving forest age from remote sensing data. China’s forests account
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for a significant fraction of the global total and are playing an important role in global terrestrial
carbon sink.18 The carbon sink strength of forests in China significantly changes with forest
age.19 However, there is no national forest age map that can meet the need for reliably calculating
the carbon budget of forests in China due to complex age structure of forests caused by intensive
human and natural disturbances. Therefore, the development of algorithms to retrieve forest age
based on remote sensing is of great scientific importance.

Studies have shown that reasonable accuracy of forest age retrieved from remote sensing data
can be achieved using regression analysis,6 traditional image classifications,20 and machine
learning algorithms.21 New machine learning algorithms, such as artificial neural networks
(ANNs),22 support vector machines,23 and random forest,24 have emerged in the last years.
These machine learning methods, without having to rely on statistical procedures or assump-
tions, have proven to be successful in land-cover classification,25,26 but so far, few studies have
compared their performance and usability in forest stand parameters retrieval. The multilayer
perceptron neural network (MLP NN) is one of the most popular and successful ANNs archi-
tectures and has been successfully used for forest stand parameters estimation in recent
years.21,27,28 Thus, we chose MLP NN to test the ability of Landsat ETMþ images acquired
in different seasons in indicating forest stand age.

In this study, we tried to explore the applicability of ETMþ remote sensing data acquired in
leaf-on and leaf-off seasons in retrieving stand ages of two deciduous forest species (Larix
gmelinii and Betula platyphylla), which are dominantly distributed within Daxinganling
Area in northeast China. The main objectives of this study are (1) to test the ability of reflectance
and calculated various spectral and texture indices to estimate forest age and (2) to assess the
influence of acquisition time of remote sensing data on forest age estimation.

2 Materials and Methods

2.1 Study Area

The study area (123°19′ to 125°48′E and 52°09′ to 52°23′N) is a part of Daxinganling Forest
Region, Heilongjiang Province, China (Fig. 1). Daxinganling region is well-known in China for
extensively distributed forests. The elevation of study area ranges from 205 to 1399 m above the
sea level. It has a cold temperate zone continental monsoon climate with an average annual
rainfall of 350 to 500 mm and an annual mean temperature of −2.4°C. The winter here is
harsh and long. Snow cover on the ground surface can last five months from November to
March, with a depth of 30 to 50 cm (http://cdc.cma.gov.cn). The dominant tree species are

Fig. 1 (a) The location of the study area in the Daxinganling area, Heilongjiang Province, China.
(b) Spatial distribution of average forest ages in different subcompartment polygons for Larix
gmelinii and Betula platypylla subtracted from the inventory data.
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Larix gmelinii and Betula platyphylla. The age classes (young, mid-aged, premature, mature, and
postmature) are <40, 41 to 80, 81 to 100, 101 to 140, >141 years for Larix gmelinii and <30, 31
to 50, 51 to 60, 61 to 80, >80 years for Betula platyphylla, respectively. The understory plants
are mainly Ericaceae and Cyperaceae. Larix gmelinii is normally in leaf at the beginning of May
and defoliates at the end of September. Betula platyphylla begins to leaf out and defoliate in early
May and mid-September, respectively. The growth of Larix gmelinii and Betula platyphylla
normally ends during October and all leaves defoliate completely by the end of October.29

2.2 Forest Resource Inventory Data

The forest resource inventory dataset collected in 1997 by local Forest Management Department
was used in this study. This dataset includes detailed information of 29,722 subcompartment
polygons, including stand age, percentage of dominant tree species, average diameter at breast
height, average height, soil types, and elevation. They were recorded through field survey by
local forest experts referring to disturbance history.

The forest resource inventory polygons satisfying the following conditions were used in this
study: (1) forest stands are natural or conserving, (b) the ratios of dominant species (Larix gme-
linii or Betula platyphylla) are >60%, (c) there is no evidence of recent damages caused by fire,
insects, disease, or logging, (d) site class, a proxy for soil quality and forest productivity, is
constrained to 3 and 4 to keep the polygons similar in environment conditions (site class in
the range from 1 to 5 and mostly 3 and 4 in the study area), (e) the area of a polygon is
>1 ha, and (f) the total area of polygons in a specific age is >100 ha. In total, 3447 polygons
for Larix gmelinii and 4524 polygons for Betula platyphylla were selected. The respective eleva-
tion averages of all Larix gmelinii and Betula platyphylla polygons are 555 and 505 m. The
standard deviations of elevation within individual polygons range from 0.62 to 114 m for
Larix gmelinii and from 0.90 to 93 m for Betula platyphylla, respectively.

The ages of Larix gmelinii and Betula platyphylla range from 8 to170 years and 5 to 80 years
(Table 1). The ages of Larix gmelinii are almost normally distributed, peaking at ∼60 years. The
Larix gmelinii forest ages were normally recorded at intervals of 5 years for planted forests and
10 years for natural forests and old planted forests by local forest experts. The numbers of poly-
gons with the ages of 35, 45, 55, 65, 75, and 95 years are much smaller than those of polygons
with ages of 30, 40, 50, 60, 70, 80, 90, and 100 years as natural forests are dominantly distributed
in the study area (Fig. 2). The stands of Betula platyphylla are relatively young and the ages were
normally recorded at intervals of five years. Above 90% of Betula platyphylla stands are at ages
younger than 40 years (Fig. 2).

2.3 Image Preprocessing

Four cloud-free Landsat ETMþ images (path/row 121/23 and 121/24 acquired on September 5,
1999 and January 27, 2000, respectively) covering the study area were downloaded from the
USGS Earth Resources Observation and Science Center (http://glovis.usgs.gov/). The sun eleva-
tion angels were in the range from 41.77 to 42.92 deg, with a mean of 42.35 deg for the images
acquired on September 5, 1999, and from 16.00 to 17.19 deg, with a mean of 16.59 deg for the
images acquired on January 27, 2000. The leaves of two species of forests had defoliated com-
pletely at the acquisition time of the leaf-off image. The color of their leaves had changed to
some extent at the acquisition time of the leaf-on image.

Table 1 Statistics of forest inventory data used in this study.

Forest species Number of polygons Age range (years)

Polygon area (ha)

Average Maximum Minimum

Larix gmelinii 3447 8 to 170 27.0 (13.1) 130 1

Betula platyphylla 4524 5 to 80 32.2 (16.3) 131 1

Note: Values in the bracket are standard deviation of polygon area.
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The images were geometrically corrected using a local topographic map as the reference.
Topographic correction was conducted using a c-correction model.30 The digital numbers
were converted to surface reflectance in the following steps.

First, Landsat ETMþ digital numbers (DN) were transformed into radiance using published
postlaunch gains and offsets.

Lλ ¼ gain · DNþ offset: (1)

Second, the top-of-atmosphere (TOA) reflectance ρTOA was calculated as31

ρTOA ¼ π · Lλ · d2

ESUNλ · cos θs
; (2)

where Lλ is the spectral radiance, d is the Earth-sun distance in astronomical unit, ESUNλ is the
mean solar exoatmospheric irradiance, and θs is the solar zenith angle in degrees.

Third, the surface reflectance ρs was retrieved as follows:32

ρTOA ¼ TgðO3;O2;CO2;NO2;CH4Þ
�
ρRþA þ TRþATgðH2OÞ

ρs
1 − SRþA · ρS

�
; (3)

where Tg is the gaseous transmissivity due to the gases listed between parentheses, TRþA is the
Rayleigh and aerosol transmissivity, ρRþA is the Rayleigh and aerosols atmospheric intrinsic
reflectance, and SRþA is the Rayleigh and aerosols spherical albedo. They were simulated
using the 6 S radiative transfer code.33

The two images (path/row 121/23 and 121/24) acquired on the same day were merged and
then masked by the study area boundary. Snowpack with a depth of ∼13 cm existed in the image
acquired on January 27, 2000. The influence of spatial change of snow property was not cor-
rected here since it has minimal influences on spectral signals detected by the sensor compared to
variations of shadow/illumination fractions and above-ground biomass.16

Reflectance of bands 1 to 5 and band 7 and their different combinations were used here to
estimate forest age, including brightness (B), greenness (G), and wetness (W), from the tasseled
cap transform of ETMþ images, normalized difference vegetation index (NDVI), soil adjusted
vegetation index (SAVI), normalized burn ratio (NBR), disturbance index (DI), integrated forest
z-score index (IFZ), and moisture stress index (MSI) (Table 2). These indices have been proved
to be effective for mapping forest succession stage and forest age.34–36

The reflectance of band 4 was used to calculate texture measures for estimating forest stand
age because of its great variability with pixel brightness and high sensitivity to surface shadow-
ing.12 A 3 × 3 window was used for calculating all texture measures since this size has the ad-
vantage of capturing heterogeneity of pixel values over small extents.12 The texture measures
used here include three first-order texture measures [entropy (ENT), mean (MN), and variance
(VAR)] and three second-order texture measures [contrast (CON), dissimilarity (DIS), and
homogeneity (HOM)]. The second-order texture measures were calculated as
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Fig. 2 Numbers of polygons with stands at different ages.
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CON ¼
XN−1

n¼0

n2
�XN

i¼1

XN
j¼1

pði; jÞ
�
; (4)

DIS ¼
XN−1

n¼0

n

�XN
i¼1

XN
j¼1

pði; jÞ
�
; (5)

HOM ¼
X
i

X
j

1

1þ ði − jÞ2 pði; jÞ; (6)

where pði; jÞ is the spatial co-occurrence matrix, i and j are the positional values within the
matrix. The co-occurrence matrix was calculated in four directions (0, 45, 90, and 135 deg)
for a 3 × 3 window with the distance 1 pixel and then summed to calculate each texture
measure.12,44

Means of reflectance, spectral indices, and texture measures for each polygon were calcu-
lated at two steps for analyzing their linkages with stand age. First, the spectral indices and
texture measures were calculated for each pixel. Second, the means of reflectance, spectral
indices, and texture measures of all pixels within a polygon were calculated.

2.4 Data Analysis and Model Construction

The relationships of reflectance, spectral indices, and texture measures with stand age were
first analyzed by statistical approaches. The simple linear model (y ¼ a0 þ a1x), logarithmic

Table 2 Spectral indices used in this study.

Indices Formula Reference

TC transform

B 0.356ETM1+0.397ETM2+0.390ETM3+0.700ETM4+
0.229ETM5+0.160ETM7

37

G −0.334ETM1−0.354ETM2−0.456ETM3+0.700ETM4−
0.024ETM5−0.263ETM7

W 0.263ETM1+0.2141ETM2+0.093ETM3+0.066ETM4−
0.763ETM5−0.539ETM7

Vegetation indices

Normalized burn ratio (ETM4−ETM7)/(ETM4+ETM7) 38

Normalized difference
vegetation index

(ETM4−ETM3)/(ETM4+ETM3) 39

Soil adjusted
vegetation index

(1+L) (ETM4−ETM3)/(ETM4+ETM3+L), L=0.5 40

Structure indices

Disturbance index Br ¼ ðB − BμÞ∕Bσ ;Gr ¼ ðG −GμÞ∕Gσ ;Wr ¼ ðW −W μÞ∕W σ
DI ¼ Br − ðGr þWr Þ

41

Integrated forest
z-score index

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NB

PNB
i¼1 ½ðbpi − b̄i Þ∕SDi �2

q
42

Moisture stress index ETM5/ETM4 36 and 43

Note: ETM1, ETM2, ETM3, ETM4, ETM5, and ETM7 are the reflectance of bands 1, 2, 3, 4, 5, and 7, respec-
tively. B, G, and W are the brightness, greenness, and wetness indices, respectively. Br , Gr , and Wr are the
rescaled B, G, andW, respectively. Bμ, Gμ, andWμ are the means of B, G, andW, respectively. Bσ , Gσ , and Wσ
are the standard deviations of B, G, and W, respectively. bi and SDi are the mean and standard deviations of
training pixels within an image for band i. bpi is the spectral value of pixel p in band i. NB is the number of
spectral bands.
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function (y ¼ b0 lnðxÞ þ b1), and quadratic model (y ¼ c0x2 þ c1xþ c2) were used to fit the
relationships of stand age (x) with the variables calculated from remote sensing data (y).
Then, the MLP NN model was employed to estimate forest stand age based on remote sensing
variables. The usage of MLP NN includes two steps: training and prediction. During the first
step, MLP NN utilizes a supervised error-learning technique called backpropagation for
training the network. The learning process continues until the connection weights in the
network have been adjusted so that the difference between output value and target value
converges to an acceptable level. The second stage is to apply the trained network to new
data to make a prediction. The polygon means of stand age and remote sensing variables
were used as dependent and independent variables, respectively. To compare the performance
of MLP NN, linear regression (LR) and stepwise multivariate regression (SMR) models were
also used to estimate stand age. Over a large region, stand age is a continuous variable.
However, in the forest resource inventory data used here, it is recorded as discretely incre-
mental age classes, approximately at intervals of 5 or 10 years. Therefore, stand age retrieved
from the forest inventory data are not really continuously distributed (Fig. 2). As an approxi-
mation, stand age was assumed as a continuous variable in the construction of models pre-
dicting ages here.

Different combinations of reflectance, spectral indices, and texture measures were used as
inputs into MLP NN, including (1) the reflectance of different ETMþ bands, (2) different spec-
tral and structural vegetation indices, (3) different textural measures, and (4) all variables of
reflectance, vegetation indices, and texture measures. A three-layer perceptron network was
used here. The input was a vector of each combination of predictors and the output is the cor-
responding forest stand age. To evaluate more efficiently and accurately the performance of each
model, we used a fivefold cross-validation technique, where the data were randomly partitioned
into five subsamples: a single subsample was retained as the validation data for testing the model,
and the remaining four subsamples were used as training data. The cross-validation process was
then repeated five times, with each of the five subsamples used exactly once as the validation
data. When testing was complete, we based our evaluation of each model on the predictions from
all five testing samples.

In order to identify the importance of each variable for predicting forest stand age,
sensitivity analysis (also known as independent variable importance analysis) was performed
for all variables, which computes the importance and normalized importance value (NIV) of
each predictor in determining the neural network based on the combined training and
validation samples using the SPSS software.45 The importance of an independent variable
was calculated on the basis of how much model-predicted value changes if the value of
this independent variable changes by �10%, and the average of importance in the MLP
NN model using the five subsamples was calculated. NIV was calculated as the ratio of
the importance value of a specific independent variable to the largest importance value of
all independent variables and expressed as percentage. The R2 and RMSE of predicted forest
stand age in comparison with those retrieved from the inventory data were computed to
evaluate the overall accuracy of constructed models. The statistical analysis and model con-
struction were performed with the SPSS statistics 17.046 and MATLAB®7.1 (The Math
Works, Natick, Massachusetts) platforms.

3 Results

We tested the linear, quadratic, and logarithmic functions on forest stand age with each variable
from leaf-on and leaf-off images, and the R2 values and significance levels are shown in
Table 3. The boxplots between forest age and remote sensing variables are shown in Figs. 3
to 5 (only the best and worst variables for each forest species and season are shown). For
Larix gmelinii, the quadratic function is significantly superior to linear and logarithmic functions
both in leaf-on and leaf-off images. For Betula platyphylla, the logarithmic function performed
almost equally to quadratic function and better than the linear function in leaf-on and leaf-off
images. Therefore, we selected quadratic function and logarithmic function for Larix gmelinii
and Betula platyphylla, respectively.
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Table 3 R2 and significance level (p) of the fitted models describing the relations of variables from
ETMþ images with forest stand age.

Forest
species Variables

Image on September 5, 1999 Image on January 27, 2000

Linear Quadratic Logarithmic Linear Quadratic Logarithmic

R2 p R2 p R2 p R2 p R2 p R2 p

Larix
gmelinii

ETM1 0.001 0.102 0.014 0.000 0.002 0.017 0.029 0.000 0.095 0.000 0.056 0.000

ETM2 0.000 0.362 0.001 0.402 0.000 0.785 0.021 0.000 0.090 0.000 0.046 0.000

ETM3 0.001 0.096 0.018 0.000 0.006 0.000 0.021 0.000 0.087 0.000 0.044 0.000

ETM4 0.086 0.000 0.102 0.000 0.062 0.000 0.024 0.000 0.071 0.000 0.043 0.000

ETM5 0.095 0.000 0.138 0.000 0.127 0.000 0.022 0.000 0.029 0.000 0.027 0.000

ETM7 0.016 0.000 0.075 0.000 0.037 0.000 0.015 0.000 0.024 0.000 0.020 0.000

B 0.095 0.000 0.097 0.000 0.083 0.000 0.024 0.000 0.082 0.000 0.047 0.000

G 0.062 0.000 0.086 0.000 0.037 0.000 0.016 0.000 0.094 0.000 0.041 0.000

W 0.069 0.000 0.138 0.000 0.106 0.000 0.011 0.000 0.081 0.000 0.031 0.000

NBR 0.003 0.004 0.073 0.000 0.001 0.143 0.016 0.000 0.060 0.000 0.030 0.000

NDVI 0.002 0.006 0.024 0.000 0.000 0.840 0.025 0.000 0.082 0.000 0.046 0.000

SAVI 0.066 0.000 0.093 0.000 0.040 0.000 0.003 0.003 0.057 0.000 0.000 0.411

DI 0.019 0.000 0.070 0.000 0.041 0.000 0.023 0.000 0.073 0.000 0.044 0.000

IFZ 0.128 0.000 0.155 0.000 0.083 0.000 0.141 0.000 0.145 0.000 0.115 0.000

MSI 0.001 0.081 0.085 0.000 0.013 0.000 0.000 0.798 0.001 0.323 0.000 0.960

MN 0.087 0.000 0.103 0.000 0.062 0.000 0.024 0.000 0.071 0.000 0.043 0.000

VAR 0.030 0.000 0.036 0.000 0.023 0.000 0.010 0.000 0.062 0.000 0.001 0.051

ENT 0.010 0.000 0.011 0.000 0.010 0.000 0.024 0.000 0.054 0.000 0.037 0.000

HOM 0.010 0.000 0.010 0.000 0.010 0.000 0.017 0.000 0.048 0.000 0.029 0.000

CON 0.023 0.000 0.027 0.000 0.018 0.000 0.007 0.000 0.046 0.000 0.001 0.206

DIS 0.018 0.000 0.020 0.000 0.016 0.000 0.000 0.917 0.047 0.000 0.003 0.001

Betula
platyphylla

ETM1 0.278 0.000 0.327 0.000 0.324 0.000 0.417 0.000 0.448 0.000 0.447 0.000

ETM2 0.429 0.000 0.466 0.000 0.463 0.000 0.394 0.000 0.418 0.000 0.416 0.000

ETM3 0.431 0.000 0.458 0.000 0.456 0.000 0.377 0.000 0.397 0.000 0.394 0.000

ETM4 0.042 0.000 0.043 0.000 0.042 0.000 0.347 0.000 0.360 0.000 0.356 0.000

ETM5 0.558 0.000 0.585 0.000 0.579 0.000 0.072 0.000 0.075 0.000 0.058 0.000

ETM7 0.535 0.000 0.563 0.000 0.558 0.000 0.062 0.000 0.065 0.000 0.049 0.000

B 0.272 0.000 0.288 0.000 0.284 0.000 0.375 0.000 0.393 0.000 0.391 0.000

G 0.013 0.000 0.015 0.000 0.015 0.000 0.394 0.000 0.432 0.000 0.432 0.000

W 0.548 0.000 0.572 0.000 0.566 0.000 0.399 0.000 0.445 0.000 0.443 0.000

NBR 0.319 0.000 0.332 0.000 0.330 0.000 0.346 0.000 0.369 0.000 0.368 0.000

NDVI 0.316 0.000 0.333 0.000 0.333 0.000 0.327 0.000 0.341 0.000 0.341 0.000
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3.1 Changes of Reflectance with Forest Stand Age

As for Larix gmelinii, in the image acquired on September 5, 1999, the reflectance of band 5 has
the highest correlation with forest age (R2 ¼ 0.138, p < 0.001), while the reflectance of band 2 is
not significantly correlated with the forest age (p ¼ 0.402). The reflectance of bands 3, 5, and 7
shows similar trends changing with the age. It declines to minimums at stand age of ∼100 years
and then increases. The reflectance of band 4 shows an opposite trend changing with stand age,
peaking when stands are ∼34 years old. In the image acquired on January 27, 2000, the reflec-
tance of all bands is significantly correlated with forest age, with R2 in the range from 0.024
(band 7, p < 0.001) to 0.095 (band 1, p < 0.001). The spectral response of all bands to stand age
is similar, with reflectance minimizing when stands were ∼90 to 100 years old. For Betula
platyphylla, in the leaf-on image acquired on September 5, 1999, the reflectance of all bands
decreases quickly with the age when forest is young and then changes marginally. The reflec-
tance of bands 1, 2, 3, and 4 has stronger correlations with the forest age than that of bands 5 and
7 in the leaf-off image acquired on January 27, 2000. The highest R2 values are 0.579 (band 5,
p < 0.001) and 0.447 (band1, p < 0.001) for the leaf-on and leaf-off images, respectively.

3.2 Relationships of Vegetation Indices with Forest Stand Age

All spectral and structural indices are significantly correlated with the stand age except MSI in
leaf-off image for Larix gmelinii (Table 3). In the leaf-on image, IFZ has the highest R2 value
(0.155) correlated with the stand age of Larix gmelinii, followed by W and B. Indices W, G,
NBR, NDVI, and SAVI first increase and then decrease with the stand age of Larix gmelinii. The
transition occurs at stand ages of ∼98 to 103 years. B, DI, IFZ, and MSI show opposite trends
changing with stand age, decreasing first and then increasing. All indices with the exception of
G, NDVI, and DI are more significantly correlated with stand age in the leaf-on image than in the
leaf-off image. IFZ has the highest R2 (0.145) correlated with stand age, followed by G, B, and
NDVI in the leaf-off image. G and NDVI increase with stand age until stand age approaches 98
to 112 years and then decrease. In contrast, B, W, NBR, SAVI, DI, and IFZ decrease first and
then increase with stand age.

Table 3 (Continued).

Forest
species Variables

Image on September 5, 1999 Image on January 27, 2000

Linear Quadratic Logarithmic Linear Quadratic Logarithmic

R2 p R2 p R2 p R2 p R2 p R2 p

SAVI 0.010 0.000 0.011 0.000 0.011 0.000 0.172 0.000 0.211 0.000 0.205 0.000

DI 0.522 0.000 0.550 0.000 0.547 0.000 0.311 0.000 0.321 0.000 0.317 0.000

IFZ 0.091 0.000 0.186 0.000 0.136 0.000 0.008 0.000 0.031 0.000 0.014 0.000

MSI 0.318 0.000 0.331 0.000 0.329 0.000 0.068 0.000 0.079 0.000 0.077 0.000

MN 0.041 0.000 0.043 0.000 0.042 0.000 0.193 0.000 0.232 0.000 0.230 0.000

VAR 0.026 0.000 0.028 0.000 0.029 0.000 0.195 0.000 0.222 0.000 0.221 0.000

ENT 0.076 0.000 0.089 0.000 0.088 0.000 0.068 0.000 0.099 0.000 0.092 0.000

HOM 0.086 0.000 0.103 0.000 0.102 0.000 0.000 0.327 0.031 0.000 0.001 0.066

CON 0.048 0.000 0.053 0.000 0.055 0.000 0.172 0.000 0.198 0.000 0.196 0.000

DIS 0.069 0.000 0.080 0.000 0.081 0.000 0.160 0.000 0.190 0.000 0.189 0.000

Note: NBR, normalized burn ratio; NDVI, normalized difference vegetation index; SAVI, soil adjusted vegeta-
tion index; DI, disturbance index; IFZ, integrated forest z-score index; MSI, moisture stress index; MN, mean;
VAR, variance; ENT, entropy; HOM, homogeneity; CON, contrast; DIS, dissimilarity.
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In the leaf-on image, the R2 values of W, NBR, NDVI, DI, and MSI against the stand age of
Betula platyphylla are >0.3 (p < 0.001). G, W, NBR, NDVI, and SAVI show increasing trends
with the stand age, while B, DI, IFZ, and MSI decrease with the stand age. The changes of W,
NBR, SAVI, and MSI with the stand age of Betula platyphylla in the leaf-on image are opposite
to those in the leaf-off image. In both leaf-on and leaf-off images, the correlations of most
vegetation indices with the stand age of Larix gmelinii switch positively or negatively when
the stand ages are in the range from 74 to 158 years. When stand ages are smaller than
80 years, the pattern might be different for each single vegetation index, but it is similar for
Larix gmelinii and Betula platyphylla.
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Fig. 3 Boxplots of reflectance changes with stand age in which boundary of boxes indicates 25th
and 75th percentile, line and circle within boxes mark median and mean, and lines below and
above boxes indicate minimum and maximum, respectively (the best and worst variables of
each group are shown). (a) and (b) are the best and worst examples in leaf-on image for
Larix gmelinii; (c) and (d) are the best and worst examples in leaf-off image for Larix gmelinii;
(e) and (f) are the best and worst examples in leaf-on image for Betula platyphylla; (g) and (h)
are the best and worst examples in leaf-off image for Betula platyphylla, respectively.
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3.3 Linkages of Textural Measures with Forest Stand Age

Figure 5 shows the changes of mean texture measures with the stand ages of Larix gmelinii and
Betula platyphylla in two seasons. All textural measures are significantly correlated with the
stand age except HOM in leaf-off image for Betula platyphylla (Table 3). In the leaf-on
image, the changes of texture measures with forest stand age show less degree of parabola
and logarithm than those of reflectance and vegetation indexes for Larix gmelinii and Betula
platyphylla, respectively. The R2 values of texture measures against the stand age are in the
range from 0.046 (CON, p < 0.001) to 0.071 (ENT, p < 0.001) for Larix gmelinii and from
0.001 (HOM, p ¼ 0.066) to 0.230 (MN, p < 0.001) for Betula platyphylla in leaf-off image.
As for Larix gmelinii, HOM slightly increases with the stand age until it approaches 100
years and then decreases with further increase of stand age. In contrast, other texture measures
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Fig. 4 Boxplots of vegetation indices change with stand age in which boundary of boxes indicates
25th and 75th percentile, line and circle within boxes mark median and mean, and lines below and
above boxes indicate minimum and maximum, respectively (the best and worst variables of each
group are shown). (a) to (h) are same as Fig. 3.
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show opposite trends changing with the stand age, decreasing first and then increasing. The
transition occurs at stand ages ranging from 98 to 158 years. Texture measures exhibit similar
changes with the stand ages of Betula platyphylla and Larix gmelinii before the stand ages
approach the transition points. VAR, ENT, CON, and DIS perform better in indicating the
stand age in the leaf-off season than in the leaf-on season, especially for Betula platyphylla.

3.4 Estimation of Forest Stand Age

The MLP NN method was used to develop models predicting forest age with different remotely
sensed variables as inputs. Table 4 shows the statistics for the validation of age predicted using
the MLP NN model with different multivariables as inputs. In the leaf-on image, the R2 and
RMSE values of predicted age are in the range from 0.13 to 0.47 and 27.1 to 21.3 years for
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Fig. 5 Boxplots of texture measures change with stand age in which boundary of boxes indicates
25th and 75th percentile, line and circle within boxes mark median and mean, and lines below and
above boxes indicate minimum and maximum, respectively (the best and worst variables of each
group are shown). (a) to (h) are same as Fig. 3.
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Larix gmelinii and from 0.18 to 0.60 and 14.5 to 10.1 years for Betula platyphylla, respectively.
In the leaf-off image, the R2 and RMSE values of predicted age are in the range from 0.11 to 0.26
and 27.5 to 25.1 years for Larix gmelinii and from 0.41 to 0.50 and 12.3 to 11.3 years for Betula
platyphylla, respectively. Vegetation indices and reflectance perform better than texture mea-
sures in predicting forest stand age. The combination of all variables together can improve
the prediction of forest stand age to some extent. The data acquired in the leaf-on season perform
better in predicting stand age than the data acquired in leaf-off season.

Figure 6 shows the comparison of stand age retrieved from the inventory data and predicted
using the MLP NN model with all variables of reflectance, vegetation indices, and texture mea-
sures as inputs. The predicted age agrees well with the inventory age when the ages of Larix
gmelinii and Betula platyphylla are in the ranges from 40 to 100 years and from 20 to 50 years,
respectively. However, the model tends to overestimate the age of young stands and under-
estimate the stand age of old stands. The transition occurs when the ages are ∼70 years for
Larix gmelinii and 30 years for Betula platyphylla. The RMSE of predicted stand age ranges
from 12 to 62 years and 13 to 72 years for Larix gmelinii and from 7 to 38 years and 8 to 38 years
for Betula platyphylla in the leaf-on and leaf-off images, respectively. As for Larix gmelinii,
the RMSE of the predicted age is ∼20 years when the inventory age is <100 years and then
increases dramatically. The RMSE of the predicted age of Betula platyphylla is ∼10 years
when the inventory age is <50 years and then increases obviously.

Based on the sensitivity analysis for the multivariate MLP NN model, the most important
predictors (NIV > 0.5) for the stand age of Larix gmelinii are ETM2, NBR, and ETM7 in the
leaf-on image and IFZ, ETM1, and SAVI in the leaf-off image (Fig. 7). For Betula platyphylla,
there are more variables that play relatively important roles in predicting the age (NIV > 0.5),
including W, ETM5, ETM4, and NBR in the leaf-on image and G, ETM1, ETM7, ETM5, NBR,
VAR, and DI in the leaf-off image.

Meanwhile, LR and SMR models were also used to estimate stand age of Larix gmelinii and
Betula platyphylla for the five subsamples. The logarithm transformation was used to convert the
forest age of Betula platyphylla to linear trend with predictors. For Larix gmelinii, the R2 values

Table 4 Validation of stand age predicted using the multilayer perceptron neural network, step-
wise multivariate regression, and univariate linear regression models.

Forest species Variables

Image on September
5, 1999

Image on January
27, 2000

R2 RMSE R2 RMSE

Larix gmelinii

Reflectance 0.33 23.9 0.20 26.0

Vegetation indices 0.43 22.0 0.21 26.0

Texture measures 0.13 27.1 0.11 27.5

All variables 0.47 21.3 0.26 25.1

SMR 0.25 25.3 0.16 26.8

LR 0.13 27.2 0.14 27.0

Betula platyphylla

Reflectance 0.60 10.2 0.46 11.8

Vegetation indices 0.60 10.2 0.45 11.9

Texture measures 0.18 14.5 0.41 12.3

All variables 0.60 10.1 0.50 11.3

SMR 0.54 11.0 0.42 12.5

LR 0.52 11.2 0.41 12.6

Note: RMSE, root mean square error; SMR, stepwise multivariate regression; LR, univariate linear regression
(only the best variables are shown).
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of LR and SMR are 0.13 and 0.25 for leaf-on image, and 0.14 and 0.16 for leaf-off image,
respectively. For Betula platyphylla, comparing with the LR model, the SMR model marginally
improves the prediction accuracy of the stand age with R2 increased from 0.52 to 0.54 in the
leaf-on image and from 0.41 to 0.42 in the leaf-off image, respectively (Table 4). The MLP NN
model with all variables as input outperforms the LR and SMR models in predicting forest
stand age.
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Fig. 6 Validation of forest age predicted using the multivariate multilayer perceptron neural
network model and the leaf-on and leaf-off images for Larix gmelinii [(a) and (b)] and Betula
platyphylla [(d) and (e)], and changes of the root mean square error of predicted forest age
with forest age [(c) and (f)]. Error bars are the standard deviations of predicted stand age
corresponding to a specific inventory age class.

0.000 0.037 0.075 0.112 0.150 0.187

IFZ

ETM1

ETM3

NDVI

ETM5

ETM7

NBR

ETM2

Importance

Normalized importance

Larix gmelinii
leaf-on image

(a)

0% 20% 40% 60% 80% 100%

0.000 0.026 0.052 0.077 0.103 0.129

IFZ

DI

VAR

NBR

ETM5

ETM7

ETM1

G

Normalized importance

Importance

Betula platyphylla
leaf-off image

(d)

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

0.000 0.035 0.070 0.104 0.139 0.174

ETM3

CON

ETM5

ETM7

VAR

SAVI

ETM1

IFZ

Normalized importance

Importance

Larix gmelinii
leaf-off image

(b)

0% 20% 40% 60% 80% 100%

0.000 0.030 0.060 0.091 0.121 0.151

VAR

ETM2

ETM7

DI

NBR

ETM4

ETM5

W

Normalized importance

Importance

Betula platyphylla
leaf-on image

(c)

Fig. 7 Sensitivity analysis of the input variables in the leaf-on and leaf-off images for Larix gmelinii
[(a) and (b)] and Betula platyphylla [(c) and (d)] (eight variables with higher importance values are
shown). The values shown for each input variable are the importance (lower x axis) and normal-
ized importance (upper x axis).
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4 Discussion

4.1 Correlations of Reflectance, Vegetation Indices, and Texture Measures with
Forest Stand Age

Understanding reflectance trajectories is important for detecting forest changes in satellite
remote sensing applications and quantifying carbon sequestration by forest ecosystems. The
nonlinear trajectories found in earlier studies in other geographic locations were most in
leaf-on images.27 This study revealed nonlinear relationships of remote sensing variables
with forest stand ages of Larix gmelinii and Betula platyphylla in both leaf-on and leaf-off
images, indicating the applicability of leaf-off images in estimating stand age. Forest spectral
signatures were affected not only by the biochemical properties of leaves, but also by the spatial
distribution and sizes of trees, which can be well sensed in the leaf-off images.

In this study, it was found out that reflectance of bands 1, 2, 3, and 4 shows much closer
correlations with the stand age of Larix gmelinii and Betula platyphylla than that of bands 5 and
7 in the leaf-off image. In contrast, the reflectance of band 5 has much stronger linkages with
forest age than the other bands in the leaf-on image. The correlations of reflectance in visible and
NIR bands with forest age change with canopy density.9,34 Shadow probably is an important
factor altering the response of the reflectance in all bands to the changes in forest age.
However, in the leaf-on image, the complexity of canopy and understory might impose
noise on the relationship between forest age and the spectral signals. In the leaf-off season,
the background is less complex and the shadow plays a dominant role in affecting remotely
sensed signals under the condition of very low sun elevation, resulting in high sensitivity of
the reflectance of visible and NIR bands to forest age. In the leaf-off image used here, the reflec-
tance of visible and NIR bands is higher than that in the leaf-on image due to the high reflectance
of snow on the floor and decreases with forest age until stand age approached >90 years. The
reflectance of short-wave infrared bands 5 and 7 decreases with canopy and soil water content
and canopy closure, and shows very low dynamic ranges under the low-illumination conditions
with snow-covered ground in winter. Therefore, the reflectance of these two bands is more sig-
nificantly correlated with forest age in the leaf-on image than in the leaf-off image.

In the leaf-on season, among three tasseled cap (TC) transform indices (B, G, W), W, which
distinguishes among different classes of closed-canopy forests10 and displays high correlation
with stand attributes47 and forest stand age,11 outperforms B and G in depicting the stand age
trajectories of Larix gmelinii and Betula platyphylla. Among three biophysical properties veg-
etation indices (NBR, NDVI, and SAVI), SAVI and NDVI, which are sensitive to living chloro-
phyll and moisture content of leaves and soils, show more sensitivity to stand age variations of
Larix gmelinii and Betula platyphylla, respectively. Among three structure indices (DI, IFZ, and
MSI), IFZ and DI, which were found very effective for mapping forest damage, show excellent
ability to trace the forest stand age dynamics for Larix gmelinii and Betula platyphylla, respec-
tively. The good predictors of stand age in the leaf-off image differ from those in the leaf-on
image. The trajectories of W, NBR, SAVI, and MSI changing with stand age are opposite in leaf-
on and leaf-off images for both Larix gmelinii and Betula platyphylla. This might be due to the
sensitivity of the reflectance in near-infrared band (ETM4) to the snow background fraction in
winter and insensitivity to forest floor conditions in the leaf-on season.48 The reflectance, veg-
etation indices, and texture measures variables show better correlations with the age of Betula
platyphylla than with that of Larix gmelinii. This mainly results from more complex tree struc-
ture of Larix gmelinii and its more interception of snow in comparison with Betula platyphylla in
the leaf-off season. The observable fraction of sunlit snow dominantly determines the forest
reflectance, especially for the visible spectrum region.7

Texture measures indicate the heterogeneity in the tonal values of pixels within a defined area
of an image.12 For Larix gmelinii, the six texture measures in the leaf-on image show less
obvious parabola trends changing with the stand age in comparison with reflectance and veg-
etation indices. The changes of texture measures with the age are similar for Larix gmelinii and
Betula platyphylla in the leaf-on image. It should be noted that texture measures have complex
features as they strongly depend on the window size as well as spatial and spectral resolutions.
The appropriate window size for higher-resolution data might be more explanatory in regards to
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forest structure and may be more important than actual texture measure itself.11 Here we used
3 × 3 window size in texture measures calculation for consistency in different forest species and
images; however, more investigations should be conducted for investigating texture measures
used to estimate forest stand age.

In the growing season, remotely sensed reflectance changes with phenology, resulting in
corresponding changes in calculated vegetation indices and texture measures. The leaf-on
image used in this study was acquired on September 5, 1999, just about two weeks prior to
the initiation of defoliation. The color of Larix gmelinii and Betula platyphylla leaves in the
remote sensing data acquisition time might have slightly changed. Therefore, it should be
kept in mind that the relationships of reflectance, vegetation index, and texture measures
with forest age identified here may not be directly applicable for remote sensing data acquired
earlier in growing season.

4.2 Uncertainties in Estimated Forest Age

There are uncertainties in estimated forest age, which are possibly caused by the following rea-
sons. The spectral signatures mixture significantly impacts the forest age prediction, especially
for Larix gmelinii. Borders, roads, and dead trees within the forest stands may cause bias in the
estimated age. The exclusion of stand edge pixels and resegmentation forest stand polygons can
significantly improve the forest age estimation.6,49 The low spatial resolution limits the accuracy
improvement by combining texture and spectral information.50 The wide age range and few
polygons for young and old forest stands induce uncertainties in the MLP NN model. Of course,
the coarse resolution and uncertainties of ages (at intervals of 5 and 10 years) in the inventory
data might cause additional disagreement between predicted and observed ages. The changes in
the accuracy of predicted forest age with the forest age were also reported for rubber forest in
southern China.49 Previous studies for Canada’s boreal forests reported similar systematic biases
of estimated age, i.e., an overestimation for young stands and an underestimation for old stands.
Young stands with open canopy and old stands with natural gaps are more easily impacted by the
background (understory, leaf litter, grass, lichen, moss, rock, soil, snow, or their mixtures) due to
the abundant understory and relative sparse canopy. The background reflectance inevitably
impacts the relationships between forest stand attributes and satellite-measured reflectance, par-
ticularly in the low canopy cover of the tree layer. The difference in reflectance due to the under-
story vegetation can reach up to �18% of the total reflectance in the red and up to 10% in the
NIR regions of the spectra.51 Recently, researchers have developed algorithms for extracting
seasonal and spatial background reflectance values using the multiangle imaging spectroradi-
ometer data and MODIS bidirectional reflectance distribution function model parameters prod-
uct.52,53 This would be helpful to explore the effect of background reflectance on these obtained
relationships and should be further considered in forest stand attributes (e.g., forest age) retrieval.

According to our study, the leaf-off image covered with snow is not as good as the leaf-on
image for predicting forest stand age. This might be caused by noise mentioned above, single
winter remote sensing image used, and without consideration of spatial heterogeneity of snow
cover. A previous study declared that the combination of two or more Landsat images acquired at
different dates in winter might improve the estimation of forest basal area compared with the
common approaches using either a single-date image or multitemporal summer images.16 Also
time series of winter satellite images combined with summer images would be more effective in
estimating the forest succession stage after disturbance.48 The present study shows the distinct
trajectories of reflectance, vegetation indexes, and texture measures changing with the forest age,
and the potential of mapping forest stand age over a large area with a snow-covered Landsat
image. Remote sensing images with snow covered in the winter provide a unique view of the
forest conditions. The application of multitemporal winter imagery and snow indices to explore
the potential relationships between deciduous forest age and satellite data will be our next step.

The best variables for predicting forest stand age vary for different phenology and forest
species. The important predictors in the MLP NN model are not identical to those identified
in traditional statistical methods. The MLP NN provides dynamic NIVs as further data are
fed to it. The better predictors identified in the univariate models and multivariate stepwise
regression models do not certainly have higher NIVs. This is mainly owing to the ability of

Li et al.: Estimating the age of deciduous forests in northeast China with Enhanced Thematic Mapper Plus. . .

Journal of Applied Remote Sensing 083670-16 Vol. 8, 2014



the MLP NN model to take into consideration the outliers and nonlinear interactions among
variables and to reveal previously unrecognized and/or weak relationships between given
input variables and an outcome.45 Therefore, the MLP NN often includes variables that may
not be significantly correlated with the predictand, as evidenced by the fact that the reflectance
of ETM2 and ETM4 play important roles in the MLP NNmodel for estimating the ages for Larix
gmelinii and Betula platyphylla in the leaf-on image, respectively, although the reflectance of
these two bands is not so significantly correlated with the age. Validations showed that with
reflectance, vegetation indices, and texture measures all together as inputs, the MLP NN
model was able to improve the accuracy of forest age estimation for Larix gmelinii in both
leaf-on and leaf-off images, and for Betula platyphylla in the leaf-off image (Table 4). This
is largely due to different ability of most variables to indicate the stand age and different degree
of interactions among them in leaf-on and leaf-off images (Table 4, Figs. 3 to 5). For Larix
gmelinii with a large age range and complicated canopy structure, reflectance, vegetation indi-
ces, and texture measures should be simultaneously applied for estimating forest age in both leaf-
on and leaf-off images. As for Betula platyphylla with a small age range and less complicated
canopy structure, forest age can be well estimated only with reflectance or vegetation indices in
the leaf-on image.

5 Conclusions

In this study, we used Landsat ETMþ imageries acquired in different seasons to estimate the
stand age of two typical forest species (coniferous Larix gmelinii and broad-leaved Betula
platyphylla) in northeastern China. The ability of reflectance, vegetation indices, and texture
measures to estimate forest age and the effects of remote sensing acquisition time on the retrieval
of forest age were examined. Following conclusions can be drawn from this study:

1. There are nonlinear trajectories of remote sensing variables changing with the stand ages
of Larix gmelinii and Betula platyphylla in both leaf-on and leaf-off images. These
trajectories could be fitted by parabola and logarithm curves, respectively.

2. The correlations of remotely sensed variables with forest age depend on the data acquis-
ition season. Reflectance in short-wave infrared bands 5 and 7, and wetness (W) have
higher sensitivity to the variation of stand age in the leaf-on image, while the reflectance
of visible and NIR bands 1, 2, 3, and 4, TC transform indices (B, G, and W), and NDVI
are more significantly correlated with the forest age in the leaf-off image. Generally,
texture measures are more sensitive to variation of stand age in the leaf-off image
than in the leaf-on image, but do not show extraordinary sensitivity to the variation
of forest stand age comparing with reflectance and vegetation indices.

3. The MLP NN model driven by remote sensing data is able to estimate forest age of
young and middle-aged stands in the study area and outperform the LR and SMR
models. As for old stands, the age predicted by the MLP NN model contains large uncer-
tainties. The data acquired in the leaf-on season are more suitable for retrieving forest
age than that acquired in the leaf-off season. Spectral properties overpass texture
measures in predicting forest age in the study area.
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