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Abstract. The snow water equivalent (SWE) products from passive microwave remote sensing
are useful in global climate change studies due to the long-time and all-weather imaging capa-
bilities of passive microwave radiometry at the hemisphere scale. Northern Hemisphere SWE
products, including products from the National Snow and Ice Data Center (NSIDC) and
GlobSnow from the European Space Agency (ESA), have been providing long-time series infor-
mation since 1979. However, the different algorithms used to produce the NSIDC and GlobSnow
products lead to discrepancies in the data. To determine which product might be superior, this
paper assesses their hemisphere-scale quality for the time period 1979−2010. By comparing the
data with historical snow depth measurements obtained from 7388 meteorological stations in the
Northern Hemisphere, the accuracies of the different SWE products are analyzed for the period
and for different snow types. The results show that for SWEs above 30 mm but below 200 mm,
GlobSnow estimates maintain a better linear relation with the ground measurements. NSIDC
products are more influenced by microwave “saturation,” producing obvious underestimations
for SWEs over 120 mm. However, for shallow snow (SWE less than 30 mm), the slight over-
estimate produced by GlobSnow is more obvious than that of the other NSIDC products. © The
Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.JRS.8.084688]
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1 Introduction

The snowpack is important both as a boundary condition on the atmosphere and as storage for
fresh water. The snowpack directly affects climate dynamics and the ecology of cold regions in
particular. Therefore, our ability to acquire frequent, high quality, reliable data on the global
snow coverage and the volume of water stored in the seasonal and permanent snowpack
influences our ability to monitor changes in the climate and to understand the climate system.
Although considerable progress has been made recently in determining trends and variability
(including quantifying the statistical uncertainty) in snow extent datasets, an adequate under-
standing of the snow water equivalent (SWE) remains elusive.1–3

The SWE is equal to the mass of water per unit area that would be produced if the snowpack
was to melt in place. SWE is a product of the snow depth multiplied by the snow density and is
generally the preferred measure of snow depth. Recently, gridded SWE products have been pro-
duced using interpolations of ground-based observations,4–6 atmosphere reanalysis datasets,7

general circulation models (GCMs),8,9 and various inversions of values obtained from satellite
data.10,11 However, none of these methods are able to balance the need for better precision and
larger spatiotemporal coverage. For climate applications, the SWE values retrieved from satellite
passive microwave data are suitable for global large-scale monitoring and temporal analysis
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because of the wide swath of these data, the all-weather imaging capabilities of the passive
microwave radiometry (PMR), and PMR’s multifrequency response to the presence of snow
on land. In addition, continuous time series of these data are available dating back to 1978,
including sources such as the scanning multichannel microwave radiometer (SMMR) from
1978 to 1987, the special sensor microwave imager (SSM/I) from 1987 to 2007, and the
advanced microwave scanning radiometer-EOS (AMSR-E) from 2002 to 2011.

Inversion algorithms based on PMR have been developed and improved to produce several
global-scale SWE products. Early SWE retrieval approaches depended on the linear relationship
between snow depth and the brightness temperature difference between two channels operating
at different frequencies (usually near the Ka band at 19 GHz and the K band at 37 GHZ obtained
from PMR).11 This approach was used because the radiation intensity received by PMR is emit-
ted from soil and will be scattered and attenuated by the snowpack in snow-covered areas. The
higher the frequency is, the greater the apparent attenuation.12 Snow grain size is the major
source of error in SWE estimates because microwave radiation is sensitive to this factor.
Increasing grain size has a positive influence on scattering and, therefore, the SWE is overesti-
mated if the algorithm considers it as a constant (0.3 mm). In reality, snow grain sizes vary
considerably with time and location. The snow grain size often grows during the compaction
process as the snowpack becomes deeper or forms depth hoar.13 Vegetation is another major
source of error in the SWE estimates.14 The vegetation layer masks the signal of the underlying
snowpack via scattering and absorption. The SWE tends to be significantly underestimated if the
forest cover density exceeds 30%–40% and the degree of underestimation can reach 50% in the
densely forested areas of Canada.15 The forest fraction is often used to systematically adjust this
underestimation in global retrievals of SWE. However, parameters, such as stem volume or can-
opy closure, are theoretically more capable than the forest fraction of describing the impact on
the emitted radiation.16 Most seasonal snow covers are found in boreal forest areas; thus, this
problem is inevitably encountered by global SWE retrieval algorithms.17 Wet snow is usually
identified using a brightness threshold, and the amount of liquid water cannot accurately be
estimated via passive microwave signals because the influence of water in the snow leads to
a completely saturated brightness temperature response once the liquid water fraction reaches
10%.18 The influences of the atmosphere and topography are of less concern.19

Based on these influences, current global-scale algorithms are applied in dry snow areas, and
impossible to retrieve pixels, such as those corresponding to mountains and areas of wet snow,
are excluded. Published global SWE products derived from SMMR& SMM/I and AMSR-E data
are released by the National Snow and Ice Data Center (NSIDC), and their algorithms include
modified versions of Chang’s brightness temperature difference algorithm. The two NSIDC
products are referred to as NSIDC (SMMR & SSM/I)20 and NSIDC (AMSR-E)21 in this
paper. Comparisons of Chang’s retrieval algorithm and the station SWE datasets from the former
Soviet Union indicate that the algorithm has a general tendency to underestimate the snow water
equivalence, especially in densely forested areas. However, the systematic errors in the results
produced using this method when compared with the validation data are fairly constant and, thus,
this method is capable of detecting temporal changes in the SWE.16 The NSIDC (SMMR &
SSM/I) and NSIDC (AMSR-E) introduced the global forest fraction dataset into their algorithms
with the intent of minimizing the vegetation influence.

In contrast, some advanced studies have attempted to introduce microwave radiation models
into the retrieval process with the aim of better predicting the microwave radiation from the
snowpack based on physical mechanisms.22–26 These methods often have higher precision
but are too complex for direct retrieval of snow variables under varying snow conditions at
the hemisphere scale. Among these methods, the HUT model (developed at Helsinki
University of Technology) is an adequate simple model that has proven feasible in global
SWE retrieval. This method effectively simulates emitted radiation by considering the contri-
butions from a single-layered homogenous snowpack, the vegetation cover, and the atmosphere
via empirical methods and combining them into the total model. A Bayesian inversion method
for the HUT emission model27–29 has proven to be more accurate, with a lower root-mean-square
error (RMSE) and bias than those of other algorithms30 (including the NSIDC operational algo-
rithm20 and the AMSR-E standard SWE product21) when applied over Eurasia, Canada, and
northern Finland. This so-called FMI (Finnish Meteorological Institute) algorithm has been
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developed further, resulting in an advanced process known by its SWE product, GlobSnow31.
Some studies have confirmed that GlobSnow has the advantage of being able to estimate peak
snow accumulation, as well as derive seasonal patterns in SWE values. 32 However, occasional
abrupt changes in the values seen in the daily (v1.0 and v1.2) and weekly (v1.2) products have
been reported, even though this method uses two pixel observations.33

A problem associated with both the brightness temperature difference algorithms and the
assimilation algorithm is that it is difficult to determine their accuracy. Thus, there is a lack
of reliable quantifiable indices for SWE product selection in practical applications. Until
now, no comparisons have been performed at the global-scale and over long time periods.
In this paper, we describe the comparison between a large set of snow depth measurements
from meteorological stations and three PMR products, such as GlobSnow and the two
NSIDC SWE products. The comparison was made for the Northern Hemisphere for the period
1978–2010 and provides an assessment of the scope of application of these products for SWE
retrieval. Because the PMRs’ brightness temperature is influenced by the properties of the snow
(i.e., the amount of snow, snow grain size, snow density, and the presence of liquid water), it is
necessary to make comparisons for similar snow classes, which are defined according to the
properties of the snow.

2 Data

2.1 Satellite-Retrieved Monthly Snow Water Equivalent Products

2.1.1 NSIDC (SMMR & SSM/I) snow water equivalent product

This product consists of global monthly SWE derived from SMMR data spanning the period
from 1978 to 1987 and SSM/I data from 1987 to 2007. These data are gridded to the northern
25-km equal-area scalable Earth grids (EASE-grids)20 and released by the NSIDC. The SWE is
derived for pixels in which visible snow was observed in the EASE-grid weekly snow cover and
sea ice extent Version 2 data at least once during the month under study. Pixels from the 25-km
EASE-grid version of the BU-MODIS land cover data that have more than 50% ice cover are
set as permanent ice without SWE inversion values.

The classical Chang algorithm makes use of a brightness temperature difference to estimate
the SWE and is implemented in this product as follows:

SMMR: SWE½mm� ¼ 4.77 � ðTb18H − Tb37HÞ; (1)

SSM∕I: SWE½mm� ¼ 4.8 � ðTb19H − Tb37H − 5Þ; (2)

where Tb18H (Tb19H) and Tb37H are the brightness temperatures for the horizontal polarizations
at 18 (19) and 37 GHz, respectively. For SSM/I data, the 19-GHz frequency takes the place of
18 GHz on the SMMR, and an adjustment of −5 is made to the spectral difference. Two impor-
tant approximations are made. First, the snow grain size is assumed to be a constant 0.3 mm, and
second, the snow density is set to a constant 0.3 g∕cm3. For pixels covered by forest, an adjust-
ment is made using the forest fraction, and the final SWE is written as

SWEadjust ¼ SWE∕ð1 − FÞ: (3)

In this work, the value of F is defined according to the forest fractions in the 25-km EASE-
grid version of BU-MODIS land cover. Specifically, F is equal to the forest fraction except
when the forest fraction is greater than 50%, in which case the value of F is set to 0.5.

2.1.2 NSIDC (AMSR-E) snow water equivalent product

The AMSR-E L3 Global SWE is a global monthly inverted SWE product based on the bright-
ness temperatures from AMSR-E covering the period from June 2002 to October 2011. This
product is also projected onto a 25-km EASE-grid at the hemisphere scale and is available
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on the NISDC website.21 The land cover, ocean, and ice-sheet masks used are based on the
EASE-grid version of MODIS land cover data, MOD12Q1 IGBP. Pixels that are assumed to
represent wet snow, mountains, rain, or other impossible pixels are excluded before SWE
retrieval.

The algorithm used to produce this product is derived from Chang’s brightness temperature
difference method. However, with the availability of the special X-band channels on AMSR-E at
10.7 GHz, the algorithm’s ability to detect deep snow (using the difference between 10.7 and
18.7 GHz) is improved and its dynamic range is enhanced to aid in forest attenuation.34 The snow
depth is estimated using the equation

SD ¼ ff � SDf þ ð1 − ffÞ � SDo; (4)

where SD is the total sample snow depth, SDf and SDo are the snow depths in the forested and
nonforested components of the instantaneous field of view, respectively, and ff is the forest frac-
tion ranging from 0% to 100% obtained from the MOD12Q1 IGBP data. The forested snow
depth (SDf) and nonforested snow depth (SDo) can be calculated as follows:

SD0½mm� ¼ 1∕log10ðpol36Þ � ðTb18V − Tb36VÞ∕ð1 − fd � 0.6Þ; (5)

SDf½mm� ¼ ½1∕log10ðpol36Þ � ðTb18V − Tb36VÞ� þ ½1∕log10ðpol18Þ � ðTb10V − Tb18VÞ�; (6)

where fd is the high spatial resolution (500 m) forest density obtained from the University of
Maryland MODIS vegetation continuous fields (VCF) (GLCF_MODIS_VCF) (http://glcf
.umiacs.umd.edu/data/vcf/). Both of the estimated forest variables (fraction and density) are cir-
cularly smoothed at a diameter of 15 km and regridded globally at 1 km. The Pol18 and Pol36 are
the brightness temperature differences between the vertical and horizontal channels at 18.7 and
36.5 GHz, respectively. Note that if either Pol18 or Pol36 is less than 1.1, then Pol36 is set to 1.1 to
ensure that the value of the logarithm is greater than zero. Finally, the estimated SWE values for
the 25-km pixels can be obtained by multiplying the SD by the snow density. The snow density
employed in this product is obtained from a global snow density map, in which the average snow
density value for each of the six seasonal classes is calculated according to in situ measurements
collected in Canada35 and the former Soviet Union.36

2.1.3 GlobSnow snow water equivalent products

The GlobSnow SWE product (Version 1.3) for the Northern Hemisphere provides information
on the SWE obtained using the SMMR, SSM/I, and AMSR-E sensors combined with ground-
based weather station data from 1979 to 2011. This product is one of the products that comprise
the European Space Agency (ESA) data user element (DUE) GlobSnow project and is also
stored in the EASE-grid format (http://www.GlobSnow.info/). All land surface areas are covered,
except for mountainous regions and Greenland, based on a mask derived from a 2 0 × 2 0 grid of
ETOP2 data, which contain global elevation and bathymetry from the National Geophysical
Data Center (NGDC).30

The GlobSnow SWE is retrieved using an assimilation scheme based on a semiempirical
HUT snow emission model, which uses the brightness temperature combined with ground-
based measurements from meteorological stations (obtained from the ECMWF). The HUT
model considers emissions at frequencies of 11 to 94 GHz to be affected by the atmosphere,
forest cover, and a single-layer homogenous snowpack that covers frozen ground, all of which
are modeled separately using an empirical approach and which constitute the overall model.
Snow variables, including SD/SWE, grain size, and snow density, describe the influence on
the radiation emitted by the snow. The SWE estimate is obtained by minimizing the differences
between the observed and modeled values of the brightness temperature differences for a set of
snow variables, as well as the difference between the estimated and prior values of snow depth.

In practice, the retrieval process consists of three steps. First, the effective snow grain size at
the reference stations, in which the snow depth is observed, is estimated. Second, a kriging-inter-
polated background map of the effective snow grain size (prior) is constructed, as well as a coarse
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estimate of snow depth or SWE (prior) derived from a set of ground-based observations. Third,
the SWE is produced by comparing the satellite Tb observations and the HUT model Tb
simulations by weighting the two data sources according to the variance in their respective
estimates using the interpolated effective grain size produced in the previous step. The final
SWE (posteriori) is optimized as follows using a Bayesian approach:

minDt

��ðTb19V;modðDtÞ − Tb37V;modðDtÞÞ − ðTb19V;obvðDtÞ − Tb37V;obsðDtÞÞ
σt

�
2

þ
�ðDt −D

̯
ref;tÞ

λD;ref;t

��
; (7)

where D
̯
ref;t and λD;ref;t are the mean snow depth and standard deviation of the snow estimated

from the integrated map, respectively. Tb19V and Tb37V denote the vertically polarized brightness
temperatures at 19 and 37 GHz, respectively, with the respective subindices mod and obs refer-
ring to the HUT-modeled and observed values. This process is fully described in the paper by
Pulliainen.29 In addition, areas that are identified as snow covered by Takala’s time series melt-
detection algorithm, but for which an SWE estimate is not produced, are set to a marginal SWE
value (0.001 mm) in the final SWE product.37

The daily effective grain-size map used in this product is dynamically changed according to
the real-time station measurements. The snow density is treated as a constant with a value of
0.24 g∕cm3, which is a reasonable “global” value given by the analysis of Sturm.38 The forest
inventory variables used in the HUT model are forest fraction and stem volume, with the forest
fraction values taken from GLC2000 (Global Land Cover classification 2000).39 Although the
stem volume has not been considered in the version currently released, relative modifications
have been made in test versions (private communication with Kari Luojus).

2.2 Ground Meteorological Station Measurements

2.2.1 GHCN-daily measurements data

A hemisphere-scale comparison of SWE products requires large quantities of ground truth data
that include as many measurements from across the world as possible to preserve continuity and
to avoid accidental errors introduced by the use of single measurements to represent the average
values of large pixels. The consecutive records of snow depth measurements that can be found in
the Global Historical Climatology Network (GHCN)-daily dataset on the NOAA website meet
our spatial and temporal needs. The GHCN-daily dataset is an integrated database of daily cli-
mate summaries from land surface stations across the globe that are produced using more than 20
sources of data. Daily variables (i.e., total daily precipitation and maximum and minimum tem-
peratures) from a total of over 79,834 stations in 180 countries and territories are integrated and
subjected to a common suite of quality assurance reviews. The snow depth data are provided by
29,814 stations (all marked with a colored cross in Fig. 1) covering different continuous time
spans. Since the 1980s, the stations that provide snow depths and the consistency of their records
have been enhanced, especially in the case of the stations in North America, northern Europe,
and Siberia. These GHCN-daily data can be obtained from NOAA at http://www.ncdc.noaa.gov/
oa/climate/ghcn-daily/index.php. However, snow density is not one of the parameters included
in this dataset. In practice, snow depth is converted into SWE using the uniform value for snow
density used in the different products derived from satellite data.

2.2.2 Ground measurement data selection

Before the ground truth data could be used in the evaluation of the monthly retrieved SWE
products, it was necessary to eliminate invalid values from the GHCN-daily datasets and to
convert the daily measurements to monthly averages. In the projection conversion operation,
all the GHCN-daily meteorological stations were projected onto the EASE-grid projection.
Only the pixels that featured simultaneous collection of both the ground measurements and
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the observations used to produce the GlobSnow and NSIDC products were selected. If two or
more stations were located within a single pixel, their average value was taken as the value of that
pixel. In addition, the meteorological stations that are used in the GlobSnow assimilation algo-
rithm were eliminated from the GHCN-daily datasets to maintain the fairness of the evaluation.
Finally, we selected 7388 meteorological stations in the GHCN-daily database (points in Fig. 1).
For each of these stations, there were at least 15 days of snow cover in the month, and the mean
depth is thus referred to as the “monthly GHCN measurement.”

The “monthly GHCNmeasurement” had to be converted into the required “ground-measured
SWE” to evaluate the monthly retrieved SWE values from the three products. The most common
method is to multiply the measured snow depth by the snow density. Because the snow density
values used in the three products are different [0.24 g∕cm3 in the case of GlobSnow, 0.3 g∕cm3

in the case of NSIDC (SMMR & SSM/I), and average density values for each of the six snow
classes38 in the case of NSIDC (AMSR-E)], the “ground-measured SWE” datasets were calcu-
lated separately for each product.

3 Results

3.1 Overview of Satellite-Retrieved Monthly Snow Water Equivalents

For the retrieval products, the SWE maps of the Northern Hemisphere from NSIDC (SMMR &
SSM/I), NSIDC (AMSR-E), and GlobSnow display completely different spatial distributions,
primarily due to their use of different algorithms. Taking the climatological monthly SWE dis-
tributions as an example, it is clear that the patterns of SWE values including the locations of

Fig. 1 Locations of the GHCN-daily meteorological stations. The crosses indicate the 29,814 sta-
tions that provide snow depth measurements for 1979–2010, and these are colored according to
the seasonal snow classification (i.e., the six snow classes known as tundra, taiga, maritime,
ephemeral, prairie, and alpine).40 The points denote the selected stations and at each of
these, there were at least 15 days of snow cover in the month studied.
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highest SWE (or greatest snow depths) contain dissimilarities at the hemisphere scale
(Fig. 2).

In terms of coverage, both NSIDC products extend to lower latitude regions, especially over
Eurasia, whereas the GlobSnow products cover a smaller area. To avoid topographic influences,
GlobSnow excludes additional mountain areas, such as the Tibetan plateau and the Rocky
Mountains, in its retrieval process.

Both NSIDC products exhibit greater SWE values over Siberia and lower values over western
Eurasia, whereas the GlobSnow SWE algorithm map locates the maximum SWE (or snow
depth) in western Siberia. The locations of the greatest SWE estimates in the NSIDC products
are exactly the same as those of the coldest locations at the time. This result is believed to be
caused by variations in snow grain size, which are influenced by the low air temperatures. In the
Chang-based static algorithms, the coefficient between the brightness temperature differences
and the SWE actually represents an index of relative grain size growth. At air temperatures
well below freezing, e.g., those occurring in Siberia in winter, temperature gradient metamor-
phism greatly accelerates the snow grain growth.41,42 The value of this coefficient may, therefore,
change and using a constant value for this coefficient, as is done in the NSIDC algorithms, will
not reflect these variations. This effect has been confirmed by a dynamic simulation result that
attributed the growth in snow grain size to the temperature gradient metamorphism and success-
fully corrected the locations of the maximum SWE values westward in central Siberia,41 similar
to the situations shown in the GlobSnow SWEmap [Fig. 2(c)]. In addition, previous studies have
also shown that the Chang-based static algorithms tend to overestimate SWE to a greater extent

Fig. 2 The Northern Hemisphere monthly SWE data and the corresponding monthly average air
temperature in January 2003. (a)–(c) are SWE data from NSIDC (SMMR &SSM/I), NSIDC (AMSR-
E) and GlobSnow in January 2003, respectively, including the detectable snow cover areas of these
different retrieval processes. The data in (d) are obtained from the gridded dataset “GHCN_CAMS
Gridded 2m Temperature (Land)” (0.5 deg latitude × 0.5 deg longitude) in January 2003.
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than the GlobSnow does when the cold air temperature is particularly low(< − 35°C).43 However,
the global effective grain size maps that are used in the GlobSnow retrieval process are produced
every day upon request. The effective grain size not only acts as a physical equivalent parameter
of crystal size but also includes many environmental factors (e.g., liquid water content, soil tem-
perature variations, physical snow grains, etc.) that affect the relation between the SWE and
microwave signals. Therefore, GlobSnow has the advantage of being able to reduce these errors
caused by snow metamorphism.7

3.2 Perspective on the Mean Difference Between Snow Water Equivalent
Products and Ground Measurements

An overall assessment of the algorithm performance was further achieved by comparing SWE
retrievals with the reference to “ground-measured SWEs,” which were derived from “GHCN
measurements” in this study, for the entire period of the SWE products’ validity in the
Northern Hemisphere. Figure 3 contains a histogram that shows the biases of the three products
from each November to the following April during the period of validity of the products and also
shows the degree of dispersion in the estimates derived from the three different satellite products.
Compared with the two NSIDC products, the degree of discrete deviation between the
GlobSnow SWE product and the “ground-measured SWE” is smaller. More of the biases in
both NSIDC products (especially NSIDC (AMSR-E)) are negative, which means that the
NSIDC products are more likely to underestimate SWE.

Figure 4 presents the mean differences between the derived SWE products and “ground-
measurement SWE” for all selected meteorological stations for the entire period of availability
of the SWE products for the snow-covered area of the Northern Hemisphere. In general, cases of
extreme overestimation or underestimation by GlobSnow are very few and they are widely sep-
arated, without any regional concentration. In the area of extreme cold, i.e., Siberia, both NSIDC
products detect higher values of SWE than those acquired by meteorological stations (most mea-
surements are higher by at least 50 mm); whereas in western Eurasia, the NSIDC products detect
values that are much lower than those acquired by the meteorological stations (in most cases the
difference is again at least −50 mm). These observations are completely consistent with the
misallocation of deeper snow in the Eurasian areas of extreme cold shown in Fig. 2. The reason
for this possible induced error is discussed in Sec. 3.1.

In North America, the SWE estimates are higher than the station measurements in eastern
Canada, where the snow is classified as being maritime snow. This is the case for all three sat-
ellite-derived SWEs but is more obvious for the NSIDCs products. Foster15 attributed the over-
estimates partly to the presence of open water bodies, which contaminate pixels in the maritime
snow class and affect passive emission and also the air temperature. This generally warmer
region [where the temperature is approximately 0°C even in January, as shown in Fig. 2(d)]
tends to have wetter snow, which results in there being less attenuation of satellite-received

Fig. 3 Histogram of biases between satellite-derived SWEN (or SWEG) and ground-measured
SWET: (a) SWE from NSIDC (SMMR&SSM/I) and GlobSnow in the period 1979–2010 (the num-
ber of samples is 139,877) and (b) SWE from NSIDC (AMSR-E) and GlobSnow in the period
2002–2010 (the number of samples is 21,501).
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radiation at a frequency of 37 GHz and thus smaller brightness temperature differences. The
SWE is, therefore, underestimated. The SWE values from the meteorological station measure-
ments agree quite well with retrieved estimates over the Canadian prairies, and this result was
also reported by Brown44 and Mote.45 The Scandinavian Peninsula is an exception in that all
SWE estimates are larger than the in situmeasurements; unfortunately, the underlying reason for
this is not clear.

3.3 Global Analysis of Correlation and Retrieval Errors for
Satellite-Derived Snow Water Equivalents

The accuracies of the GlobSnow SWE and the two NSIDC SWE products were also assessed by
comparing the results with various measured snow depths to illustrate the correlation and mag-
nitude of the differences between the snow depths and the derived SWE products. Table 1 shows
the results obtained for this accuracy testing. To display the trends more clearly, accumulations
are displayed in 5-mm steps in Fig. 5. It is obvious that the estimated SWE, as produced by all
three products, does not increase monotonically with increasing snow depth.

Compared with the two NSIDC products, a better linear relationship exists between
GlobSnow SWE and “ground-measured SWE” for values over 30 mm, and GlobSnow provides
a clear improvement in retrieval accuracy (lower RMSE, standard deviation and bias). The cor-
relation coefficients are 0.62 (Table 1) for the period from 1979 to 2007 and 0.55 for the period

Fig. 4 Northern Hemisphere mean difference distribution. The differences shown are between the
following: (a) NSIDC (SMMR&SSM/I) SWEN and ground-measured SWET in the period 1979–
2010; (b) GlobSnow SWEG and SWET in the period 1979–2007; (c) NSIDC (AMSR-E) SWEN and
SWET in the period 2002–2010; (d) GlobSnow SWEG and SWET in the period 2002–2010.
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from 2002 to 2010. The underestimation of the SWE by the NSIDC products becomes clear for
values over around 120 mm (Fig. 5) and, in this case, the correlation coefficients are only 0.22
and 0.13 for the same two periods, respectively. However, an inevitable underestimation exists in
all of the products due to the high-frequency microwave “saturation” in deep snow. Theoretically
speaking, because the microwave upwelling radiation emitted from the ground by scattering no
longer decreases with increasing snow depth at higher microwaves frequencies (37 GHz), pas-
sive microwave SWE retrieval algorithms do not have the ability to detect deep snow and thus
have a documented tendency to systematically underestimate the SWE in such conditions. When
SWE values exceed a certain threshold, the snowpack experiences a transition from acting as a
scattering medium to being a microwave emission source.37 Previous studies have shown that
this observable scattering saturation for thick snow packs was often achieved beyond a certain
threshold of approximately 100 mm for the NSIDC products. However, with the abundant site
measurements of snow depth assimilated into GlobSnow’s inversion process, the GlobSnow
SWE threshold was greater than approximately 150 mm32,42,46 and was perhaps even as high
as 200 mm.

Table 1 Correlation (Coor), root-mean-square error (RMSE), standard deviation (SD), and bias
for the relation between “ground-measured SWE” and satellite-derived SWEs in the Northern
Hemisphere.

Global

0 < SWE < 30 mm 30 mm < SWE < 200 mm

Coor RMSE/mm Std/mm Bias/mm Coor RMSE/mm Std/mm Bias/mm

SMMR&SSM/I 0.23 28.07 21.07 10.97 0.24 62.23 34.39 −27.01

GlobSnow(1979–2007) 0.21 43.13 28.78 22.58 0.62 35.27 21.41 −12.57

AMSR-E 0.26 29.08 15.24 17.58 0.13 54.90 19.26 −29.61

GlobSnow(2003–2010) 0.16 62.20 30.68 43.18 0.55 38.86 19.34 −16.35

Fig. 5 Comparisons of “ground-measured SWE” and the satellite-derived SWE for the complete
time period of each product: (a) SWE from NSIDC (SMMR & SSM/I) and GlobSnow (the number of
samples is 139,877); (b) SWE from NSIDC (AMSR-E) and GlobSnow (the number of samples is
21,501).
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For values of SWE of less than 30 mm, the GlobSnow product shows a tendency to over-
estimate, an effect that is more obviously pronounced than that of the NSIDC products. This
overestimation was also observed in previous accuracy testing experiments performed for
Eurasia,47 but the specific reason for this phenomenon remains unclear. Given the differences
in the retrieval algorithms, the most likely explanation is that shallow snow tends to be missed in
the assimilation approach in the early or late snow seasons and GlobSnow mistakes the existence
of localized deeper snow for continuous snow cover over large areas.32 However, this speculation
requires further investigation.

3.4 Accuracy of Snow Water Equivalent Products for Different Snow Classes

Given the influence of the snow properties on the snow retrievals and the various environments
across the global snow-covered area, the accuracy of the SWE products for different snow
classes should be discussed. Sturm40 categorizes the snowpack in the Northern Hemisphere
into six classes: tundra, taiga (the Russian word for the subarctic, moist, coniferous forest),

Fig. 6 Comparisons of “ground-measured SWE” and the satellite-derived SWE for each of
Sturm’s snow classes between 1979 and 2007, including (a) Tundra snow, (b) Taiga snow,
(c) Maritime snow, (d) Prairie snow, (e) Alpine snow, and (f) Ephemeral snow. The SWE estimates
are from NSIDC (SMMR & SSM/I) and GlobSnow.
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maritime, prairie, alpine, and ephemeral. Each of the six snow classes listed above in Fig. 1 is
defined by a unique ensemble of comprehensive characteristics, including snow density, depth,
crystal morphology, and grain size features within each snow layer, all of which directly affect
the SWE retrievals. To link all of the accuracy results with these classes of each meteorological
station, Fig. 6 presents the details of the comparisons between the “ground-measured SWE” and
the satellite-derived SWE products for each snow class for the period between 1979 and 2007.
The same process was carried out for NSIDC (AMSR-E) and GlobSnow for the period between
2002 and 2010, but the results are not displayed here due to their similarity to the results shown

Table 2 Correlation, standard deviation (Std), root mean square error (RMSE) and bias for
the relations between “ground-measured SWEs” and satellite-derived SWEs for Sturm’s snow
classes.

0 < SWE < 30 mm 30 mm < SWE < 200 mm

Coor
RMSE/
mm Std/mm Bias/mm Coor

RMSE/
mm Std/mm Bias/mm

1979–2007

Tundra NSIDC(SMMR&SSM/I) 0.09 58.22 42.81 37.02 0.31 57.72 36.31 −5.83

GlobSnow 0.02 67.26 50.89 41.18 0.67 32.40 19.90 −3.63

Taiga NSIDC(SMMR&SSM/I) 0.18 71.97 41.11 47.84 0.13 72.05 49.73 −8.71

GlobSnow 0.07 45.47 17.96 20.76 0.76 28.05 16.92 −4.58

Maritime NSIDC(SMMR&SSM/I) 0.14 17.80 12.62 2.83 0.09 72.90 16.27 −60.83

GlobSnow 0.13 57.82 32.95 33.04 0.44 45.41 22.13 −19.32

Prairie NSIDC(SMMR&SSM/I) 0.32 23.39 16.62 7.54 0.32 45.59 25.04 −23.81

GlobSnow 0.25 27.83 16.66 13.74 0.61 30.17 16.34 −12.66

Alpine NSIDC(SMMR&SSM/I) 0.23 36.25 22.35 20.37 0.22 61.55 26.83 −35.47

GlobSnow 0.21 54.18 27.54 33.71 0.65 34.37 17.70 −13.13

Ephemeral NSIDC(SMMR&SSM/I) 0.28 8.61 4.84 −1.29 0.11 63.09 8.56 −47.53

GlobSnow 0.41 6.05 3.17 −1.40 0.65 56.06 4.66 −47.81

2002–2010

Tundra NSIDC(AMSR-E) 0.15 40.94 19.76 28.03 0.29 46.90 33.99 −11.35

GlobSnow 0.11 43.28 16.58 26.81 0.62 32.46 17.51 −6.54

Taiga NSIDC(AMSR-E) 0.26 31.50 18.85 17.55 0.15 46.69 21.17 −18.65

GlobSnow 0.12 37.47 10.87 12.18 0.67 31.35 14.23 −9.83

Maritime NSIDC(AMSR-E) 0.20 23.76 13.39 14.23 0.19 68.34 13.24 −54.84

GlobSnow 0.11 75.00 34.31 52.86 0.41 47.09 21.37 −22.12

Prairie NSIDC(AMSR-E) 0.37 29.57 14.69 18.66 0.22 38.87 25.05 −10.33

GlobSnow 0.27 49.50 19.03 30.53 0.42 37.27 14.91 −20.01

Alpine NSIDC(AMSR-E) 0.20 33.33 18.37 20.95 0.08 55.70 21.59 −33.60

GlobSnow 0.19 63.65 25.55 44.58 0.59 39.31 16.39 −21.36

Ephemeral NSIDC(AMSR-E) 0.11 5.20 19.58 −20.86 — — — —

GlobSnow 0.61 4.54 1.58 −2.03 — — — —
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in Fig. 5 and the limited length of this paper. However, the relevant statistical parameters are
shown in Table 2 together with those for NSIDC (SMMR&SSM/I).

Figure 6 shows that the GlobSnow SWE maintains better consistency with ground measure-
ments than NSIDC (SMMR & SSM/I) for all snow classes, and NSIDC (SMMR&SSM/I)
appears to produce higher SWE values for the taiga class up to the saturation point. With
Table 2, these data show that the correlations between GlobSnow and ground measurements
for SWEs less than 30 mm are all smaller than those between the NSIDC products and ground
measurements. This situation is reversed for deep snow, similar to what was seen in the global
comparisons. The smaller standard deviations and RMSEs in GlobSnow indicate that the errors
in the estimates are relatively smaller, regardless of the difference between the retrievals and
ground measurements or the deviation of single estimated values. The bias of GlobSnow dis-
plays a larger number of positive values for shallow snow and a smaller number of negative
values if the SWE is greater than 30 mm.

In Fig. 6, the NSIDC (SMMI &SSM/I) presents obvious systematic overestimates in the taiga
snow class, which is characterized by dense forest and deep snow cover. This provides good
evidence of the error induced by forest scattering, which produces higher brightness temperature
differences. However, the overestimates in NSIDC (AMSR-E) are significantly reduced due to
the algorithm that is used and the special 10.7 GHz channel on this instrument (Table 2). Both
NSIDC products tend to consistently underestimate SWE values in the case of the maritime snow
classes. This observation is consistent with the error distributions described in Sec. 3.2 and is
primarily due to the melt features in relatively warm maritime climates. The NSIDC products are
more reliable as the snow depth increases on the prairies because vegetation is sparse, and the
discrepancies between their values and those of GlobSnow are then minimal. Overestimate of
GlobSnow in shallow snow (SWE < 30 mm) is a common occurrence for the tundra and alpine
classes because tundra and alpine areas, whatever the snow depth, are frequently influenced by
wind. In these areas, the meteorological stations are sparsely distributed and topographic
influences on the redistribution of snow by the wind can be significant, thus leading to shallow
snow that is overlooked in the GlobSnow process.32,48 Note that the NSIDC overestimate for
tundra, in which the SWE is less than 30 mm, is greater than any other class and the error
in this case is large. In contrast to the reasons given for GlobSnow, the typically larger
basal snow crystals of tundra snow might contribute more to these overestimates.15

Although ground measurements of ephemeral snow class are rare, better correspondence is
observed between these measurements and both the NSIDC and the GlobSnow products for
this relatively warm and thin snow class.

4 Conclusion

In this paper, the Northern Hemisphere monthly SWE products NSIDC (SMMR & SSM/I),
NSIDC (AMSR-E), and GlobSnow SWE were validated through comparisons with worldwide
ground-based measurements of snow depth over the time period 1979 to 2010 to demonstrate the
accuracies of the typical stand-alone brightness temperature difference algorithms and assimi-
lation approach used in SWE retrieval.

The spatial mean distribution differences between these retrieved products also highlight the
NSIDC static algorithm defects. These problems include mislocating the location of the maxi-
mum SWE that occurs in the extreme-cold region of Siberia and underestimating the SWE val-
ues in western Eurasia and eastern Canada. In contrast, the station-based assimilation approach
of GlobSnow has the advantage of being able to reduce these errors.

The comparisons show that for values of SWE below 200 mm, the abilities of the two NSIDC
products and the GlobSnow SWE product to measure SWE differ depending on whether the
SWE value is greater or less than 30 mm. For SWEs greater than 30 mm, GlobSnow displays
a better linear relationship with the ground measurements, whereas the two NSIDC SWE prod-
ucts are more heavily influenced by the inevitable underestimation due to the “saturation” of
high-frequency microwaves in deep snow. For areas with thin snow cover, i.e., with values
of SWE less than 30 mm, the overestimation by GlobSnow is more obvious. Passive microwave
radiometers lose the ability to retrieve SWE or snow depth for SWE values above 200 mm.
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Further comparison analysis for each of Sturm’s snow classes presents the same conclusions.
The regional differences in the errors in the SWE products can be explained well by considering
the algorithms that are used and the characteristics of the snow classes.

In conclusion, GlobSnow appears to be the superior product in the vast majority of cases,
with the exception of its tendency to slightly overestimate the SWE in areas with thin snow
cover. Although our method of selecting the reference GHCN measurements may introduce
a bias into our assessment of the SWE products, these unavoidable errors are systematic
and have a similar impact on all three products.
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