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Abstract. We address lossy compression of noisy remote sensing images, where the noise is
supposed to be spatially uncorrelated (white), additive originally or after a proper variance-
stabilizing transformation (VST). In such situations, the so-called optimal operation point (OOP)
might exist. The OOP is associated with the parameter that controls compression (e.g., quan-
tization step) for which the compressed image is the closest to the noise-free image according to
a certain criterion and is closer than the original noisy image. Lossy compression in the neigh-
borhood of OOP, if it exists, relates to an essential noise filtering effect and some distortions.
Then such lossy compression (in the neighborhood of OOP) becomes expedient. However,
it may be that OOP does not exist for a given image and the observed noise intensity. In such
a situation, it can be reasonable to carry out a more “careful” image compression (with a lower
compression ratio). Also, it is expedient to predict the existence of OOP and the compression
parameters at this point in advance in order to perform adaptive and automated compression. The
OOP existence that can be predicted for some coders based on the discrete cosine transform
(DCT) is shown. The proposed prediction procedure is simple and fast. It presumes the calcu-
lation of DCT coefficient statistics in nonoverlapping 8 × 8 pixel blocks for a given image and
uses an approximating curve obtained in advance. It is shown that it is possible to predict values
for both conventional metrics, such as mean square error or peak-signal-to-noise ratio, and
some visual quality metrics for the coder parameters that correspond to a possible OOP. The
designed prediction procedure is tested on Hyperion and AVIRIS hyperspectral remote sensing
data. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JRS.9.095066]
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1 Introduction

Today, Earth monitoring systems find more and more applications.1,2 Most modern remote sens-
ing (RS) systems are multichannel (e.g., full-polarization, multispectral or hyperspectral). On
one hand, the multichannel character of the provided RS data increases their usefulness and
information content. On the other hand, the amount of acquired data for multichannel sensors
is large or even huge3 due to several factors. The first is the aforementioned number of sub-bands
(channels). The second is the good spatial resolution of existing RS systems and/or a rather large
area of imaged terrains.

For these reasons, such RS data often has to be compressed before the transferring downlink
and its archiving in on-land centers of data processing or dissemination.3–6 Note that there are
many data compression techniques that belong to two major groups of lossless and lossy com-
pression. The best lossless compression techniques provide a compression ratio (CR) up to 4.5
and this happens only for hyperspectral images under a condition that spatial and spectral data
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redundancies are exploited to a full extent.3–6 However, a desired CR might be larger3,7 and then
one would have to apply lossy compression methods.

For lossy compression of hyperspectral data, strategies and requirement priorities can be
different.3 According to one strategy, the first-order task can be to provide a CR not less than
the desired one; then compressed image quality is the second-order task. This paper concentrates
on a different strategy associated with another set of requirements’ degradation. It is assumed
that the first-order task is to have such “acceptable” losses that they do not result in hyperspectral
data degradation,7–9 while it is also desired to provide a higher CR (second-order task).

A common assumption in design and testing lossy compression techniques is that com-
pressed images are noise free.10,11 Used quantitative criteria such as the mean square error
(MSE) or peak-signal-to-noise ratio (PSNR) that characterize compression are then calculated
accordingly, i.e., for compressed and original images. RS and other images are often noisy, in
fact, all real-life images are noisy, but noise can be invisible or visible by considered image
inspection.12–14 For hyperspectral data, noise is visible or, at least, can be noticed in about
20% of the sub-band images.12,13 The noisiest sub-bands are sometimes removed from consid-
eration, but some of these sub-bands contain useful information which is worth preserving and
retrieving.14

The noise presence in conventional and RS images is often not taken into account in lossy
compression. Al-Shaykh and Mersereau15 were the first to demonstrate the peculiarities of
noisy image lossy compression and to stress the necessity of taking noise and its properties into
account.

First, Al-Shaykh and Mersereau15 outlined the phenomenon of image denoising (filtering
effect) due to lossy compression. Certainly, this denoising is specific and is less efficient com-
pared to the best image denoising techniques,16 but the partial effect of noise filtering can be
regarded as a favorable phenomenon. In particular, it can lead to improving hyperspectral RS
data classification accuracy.8,9

Second, it has been stressed in Ref. 15 that it is worth carrying out an analysis of noisy image
lossy compression using untraditional quantitative criteria (or criteria determined in an uncon-
ventional way). While performing simulations [when one has true (noise-free), noisy, and com-
pressed noisy images], it is worth analyzing metrics calculated for compressed and true images.
Such metrics may have values which are better than the corresponding metric calculated for
noisy (uncompressed, compressed in a lossless manner) and true images. In other words, a com-
pressed image under certain conditions15–19 can be better (closer to the noise-free image accord-
ing to a considered metric) than the noisy image. It can take place for different techniques of
lossy image compression, e.g., based on discrete cosine transform (DCT)17,18 and wavelets,19 for
different noise types15,17,19 and for different used metrics (criteria).9,20

If a compressed image can be closer to the true image than the noisy one, then a used metric
dependence on a parameter that controls compression (PCC) can have an extreme [it is a mini-
mum in the case of, e.g., mean square error (MSE) or a maximum in the case of peak signal-to-
noise ratio (PSNR)]. This extreme in a wide sense is called OOP. In a narrow sense, OOP is
associated with PCC that provides the extreme and it can be, for example, quantization step (QS),
scaling factor (SF) or bits per pixel (bpp), depending on an applied coder.15,17,19

Lossy compression of noisy images in OOP has certain advantages. On one hand, it is pos-
sible to expect that the provided CR is considerably larger than for lossless compression. On the
other hand, RS data compressed in OOP can be classified better than the original data or data
compressed in a lossless manner.8,9 There are certain problems in compressing noisy images, in
general, and hyperspectral images, in particular, to demonstrate that OOP exists. First, true
images are not available in practice. This does not allow considering dependences that determine
OOP. Fortunately, there are methods that allow rough estimation of PCC at OOP and provide
compression in the OOP neighborhood.17,18,20 For example, for DCT coders, this can be done by
setting the QS or SF proportional to the noise standard deviation with a properly chosen pro-
portionality factor.18,20 Second, noise in hyperspectral images is rather complicated.21–23 One
often has to take into account the signal-dependent noise component22–24 and its different inten-
sity. Fortunately, there are several ways to cope with this, including blind estimation of noise
characteristics,23,24 data normalization in sub-bands before compression,25 and application of
VSTs.22,26 Third, OOP does not always exist,15,20 in fact, it exists if noise is rather intensive
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and the image is not textural (complex). This fact has been ignored earlier in the methods
described in literature21,25–27 for which the OOP existence has been supposed for any sub-
band image. Such compression can introduce losses of an undesired level in compressed data.

Our idea is the following.28,29 If OOP exists for a given (sub-band) image, it is worth carrying
out compression in an OOP neighborhood. If OOP does not exist, it is worth performing a more
careful compression (introducing fewer losses). To realize this idea, it is necessary to predict the
OOP existence. Such a prediction can be helpful in practice if it is fast and accurate (reliable).

Our recent paper29 demonstrated that there is an approach that works rather well in predicting
OOP existence and the corresponding compression parameters for lossy noisy image compres-
sion using four coders. There are several aspects not considered in this paper29 and the obtained
results have some shortcomings. First, a limited number of test images (12) and noise standard
deviation values (3) have been used to obtain prediction dependences by curve fitting. Second,
fitting has not been considered in detail. Third, the approach has not been tested on real-life RS
data. Thus, the present paper can be regarded as an extended version of Ref. 29, where the
aforementioned aspects are paid special attention. Its main novelty consists in a specific adap-
tation of PCC to image/noise properties in hyperspectral data sub-bands. Another contribution is
in method verification for real hyperspectral data.

The paper is organized as follows: Sec. 2 revisits the used image-noise model and quanti-
tative criteria (metrics) of lossy compression applied componentwise (or to a single-channel
image). OOP and filtering effects at this point are discussed. This section also briefly describes
the considered DCT-based coders. Section 3 shows the obtained numerical simulation results for
lossy compression of test noisy images. Aspects of curve fitting are discussed and improvements
(compared to Ref. 29) are shown. Comparison of coder performance is done. Section 4 contains
practical details for componentwise noisy image compression. Results for hyperspectral images
after VST are presented. Then the conclusions and directions of future research are given in
Sec. 5.

2 Used Image-Noise Model, Coders, and Lossy Compression Metrics

Our further research is based on several assumptions. First, we concentrate on considering lossy
compression of single-channel images or componentwise compression of multichannel (hyper-
spectral) data. Clearly, joint [three-dimensional (3-D)] compression of hyperspectral data is able
to provide better CR,5,7,21,27 but it is necessary to understand from the beginning how to set
the PCC for each (sub-band) image. Second, a simple case of additive white Gaussian noise is
considered. Here, one has to keep in mind that if noise is signal dependent (Poissonian, additive
and Poissonian, additive and multiplicative, etc.), there is a VST able to convert such noise to the
additive one.22,27,30 This is possible if parameters of signal-dependent noise are estimated with
appropriate accuracy and modern existing methods.23,24 Third, major attention is paid to consider
DCT-based coders for which it is simpler to provide compression in an OOP neighbor-
hood17,18,20,21 and for which we are more experienced in their design and performance analysis.
Finally, we will focus on analyzing two metrics: conventional PSNR and visual quality metric
PSNR-human visual system (HVS)-masking (M).31 It might seem that these metrics (especially
the latter one) do not have a direct relation to RS data processing. However, one has to take into
account the following. On one hand, the criteria used in RS data compression are application
oriented.8,32 On the other hand, metrics exploited in compression of conventional images are also
used in lossy compression of hyperspectral images and this relates to HVS metrics as well.33 One
reason is that HVS metrics highly correlate with such important properties as edge, detail, and
texture feature preservation by lossy compression techniques.

Then the noisy image model in a n’th sub-band image is

EQ-TARGET;temp:intralink-;e001;116;141Inoisyij ðnÞ ¼ Itrueij ðnÞ þ ηijðnÞ; (1)

where ij denotes image indices in the spatial domain, ηijðnÞ is zero mean additive white and
Gaussian (AWGN) with variance equal to σ20ðnÞ, Itrueij ðnÞ denotes the true image value in the ij’th
pixel of the n’th sub-band image; i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm, IIm and JIm determine the
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image size. As has been noted above, even if Eq. (1) is not valid for original images, it becomes
adequate after the corresponding VSTs. Besides, let us start from considering single-channel
images supposing the componentwise processing of multichannel images. Hence, let us omit
the index n in this and the next sections.

In fact, only the noisy image Inoisyij , i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm is available in practice.
Usually, for analysis purposes, one has a true image Itrueij , i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm and
noise is generated and added artificially. After applying a considered lossy compression tech-
nique to the noisy image, a compressed image is obtained, which will be further denoted as Icij,
i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm.

Then having all three images, it is possible to calculate any metricMetr for any pair of them.
Recall that only a metric Metrnc for the pair of images fInoisyij g and fIcijg can be calculated in
practice. But in simulations, it is also possible to calculate a metricMetrtc for the images fItrueij g
and fIcijg. For any metricMetrnc, its dependence on CR is clear. It becomes worse for any coder
if CR increases (bpp reduces, QS or SF increases). The reason is that the introduced distortions
characterized by Metrnc increase if CR becomes larger.

The behavior of a metric Metrtc can be specific.15,20 It might happen that the metric Metrtc
has an extreme (optimum) for a certain PCC of a used coder. Then one might have bppOOP or
QSOOP or SFOOP. To get some ideas of dependences and OOP that might be observed for them,
let us present several typical dependences. For this purpose, consider three test images, namely,
Airfield, Aerial, and Frisco [see Figs. 1(a)–1(c), respectively]. These images differ sufficiently
from each other in complexity, where we associate complexity with the percentage of pixels that
belong to heterogeneous image regions.

The AWGN has been added with two variance values equal to 100 and 200 to these three
images and they have been compressed by the coder AGU.34 This coder uses DCT in
32 × 32 pixel blocks and deblocking after the decompression. Recall that QS serves as PCC
for this coder. The behavior is controlled by two quality metrics: conventional PSNRtc and
PSNR-HVS-Mtc, both determined between the true and compressed images. Both quality met-
rics are expressed in dB and their larger values relate to a better quality. The obtained depend-
ences are presented in Fig. 2.

As is seen [Fig. 2(b)], four out of six curves PSNR-HVS-MtcðQSÞ are monotonously decreas-
ing. According to this metric, the quality of compressed images steadily reduces if QS increases

Fig. 1 The noise-free test images (a) Airfield, (b) Aerial, and (c) Frisco; (d) noisy and (e) com-
pressed image Frisco.
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and, respectively, CR increases as well. This means that for these test images and noise inten-
sities, OOP does not exist and a trade-off between the reduction of compressed image quality and
the reached CR should be found. Meanwhile, there are also two dependences in Fig. 2(b) that
have maxima (both are observed for the test image Frisco that has a simple structure).

The curves PSNRtcðQSÞ in Fig. 2(a) are somewhat specific. Five out of six curves have OOPs
according to its definition, i.e., the extreme metric value is better than for the uncompressed (origi-
nal, noisy) image—this value is practically the same as for QS ¼ 1. One dependence has a local
maximum in the neighborhood of QS about 40 (the image Airfield, σ20 ¼ 100, QS ≈ 4.0σ0).
Formally, this is not OOP since PSNRðQS ¼ 1Þ is larger than PSNR for QS ≈ 4.0σ0.

Analysis of the dependences, PSNRtcðQSÞ and PSNR-HVS-MtcðQSÞ, presented in Fig. 2
shows the following. If OOP is observed, it happens when QSOOP ≈ ð3.5: : : 4.0Þσ0. The
same observations can be found for the coder AGU applied to other images and noise variance
values in the paper.20 The positions (arguments) of OOP slightly differ depending upon an image
and noise variance, but QSOOP ≈ ð3.5: : : 4.0Þσ0 can be considered as the recommended value to
attain OOP (if it exists) for the AGU coder.20 This means that the compression in OOP or its close
neighborhood can be provided without having a noise-free image if σ0 is known in advance or
accurately pre-estimated.

It has already been mentioned that OOP appears due to the filtering effect provided by lossy
compression applied to noisy images. Let us explain why it happens and give one illustration.

Fig. 2 Dependences (a) PSNRtcðQSÞ and (b) PSNR-HVS-MtcðQSÞ for three test images and two
variances.
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For the very beginning, recall how DCT-based filtering is carried out.35,36 The basic operations
are direct DCT in blocks, DCT coefficient thresholding (assigning them zero values if the
magnitudes are smaller than a set hard threshold), and inverse DCT. An additional operation
is filtered value averaging for overlapping blocks. Noise removal is achieved due to the
thresholding of DCT coefficients with small magnitudes, which are supposed to be related
to noise.

DCT-based lossy compression14,34,37 has similar operations at the initial processing stages.
Direct DCT in blocks is carried out. Then DCT coefficient quantization is applied. For DCT
coefficients with small magnitudes, this quantization (which leads to zero values after perform-
ing it) is very similar to hard thresholding and this explains the filtering effect for lossy com-
pression. The quantization of larger magnitude DCT coefficients introduces distortions; besides,
blocks used in lossy compression are usually nonoverlapping. These two factors explain why the
filtering effect caused by lossy compression is less efficient than the corresponding orthogonal
transform based denoising. The explanation for wavelet-based compression and denoising is
almost the same. OOP exists if the positive effect of noise removal is more pronounced
than the negative effect of losses introduced by quantization.

An example of the filtering effect is shown in Figs. 1(d) and 1(e). The noisy image Frisco
(σ0 ¼ 10) is presented in Fig. 1(d); noise is observed clearly especially in homogeneous image
regions. The compressed image (AGU coder with QS ¼ 3.5σ0 ¼ 35, CR ¼ 11.34) is repre-
sented in Fig. 1(e). The noise suppression effect is obvious and the information content is
sufficiently preserved.

The dependences presented in Fig. 2 and the example given in Fig. 1 indicate that OOP
might or might not exist. Thus, it is expedient to predict that does OOP exists for a given
coder, metric, image, and noise variance (assumed known or pre-estimated in advance). This
is quite a general task that is addressed here. Since there is a wide variety of image compression
techniques and coders, our “narrower” task is to demonstrate that the prediction task can be
solved for two metrics (conventional and visual quality) and several DCT-based coders with
QS or SF serving as the PCC. The proposed approach, although based on DCT, could be useful
for wavelet-based coders (this has not been checked yet).

It has been shown earlier15,17,20 that OOP might exist for different coders, in particular, for the
standard JPEG, for the DCT-based AGU34 and advanced DCT (ADCT)37 coders with QS serving
as PCC, and for the wavelet-based JPEG2000 or SPIHT coders with CR controlled by bpp.38–40

OOP might also exist for coders with SF used as PCC, and the examples are the recently pro-
posed modifications of AGU and ADCT called AGU-M and ADCT-M.41 Below, the following
four DCT-based coders are considered: AGU,34 ADCT,37 AGU-M, and ADCT-M.41 The AGU
coder has been briefly described above. The ADCT coder uses DCT in blocks of different sizes
obtained as the result of partition scheme optimization. The ADCT coder outperforms AGU as
well as JPEG2000 and SPIHT37 (see also Ref. 42). Both AGU and ADCT employ uniform quan-
tization of DCT coefficients. Similar to AGU, ADCT provides compression in the OOP neigh-
borhood for QS ≈ 3.5σ0.

20

The modifications of these coders called AGU-M and ADCT-M have only one difference
with respect to their counterparts. They employ different quantization for different DCT coef-
ficients (similar to the standard JPEG). The quantization factors are calculated as SF multiplied
by the quantization table (matrix). For AGU-M, there is a fixed 32 × 32 pixel matrix. For
ADCT-M, there are matrices for all possible sizes of the blocks obtained by the partition scheme.
The coders, AGU-M and ADCT-M, were designed to improve compressed image visual quality.
Our studies have shown that to get into an OOP neighborhood, one has to apply the fixed SFOOP
equal to 2.0σ0.

Thus, the recommendations of how to set QSOOP or SFOOP if OOP exists can be given.
If OOP does not exist, QS or SF should be smaller. This will be analyzed later more in detail.

Let us discuss what can be indicators of the existence of OOP. One standard metric frequently
used in lossy compression analysis is MSE, defined as

EQ-TARGET;temp:intralink-;e002;116;112MSEtc ¼
XIIm
i¼1

XJIm
j¼1

ðItrueij − IcijÞ2∕ðIImJImÞ: (2)
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If OOP (according to this metric) exists, then MSEtc has to be smaller than σ20. This can be
also treated in another manner—the ratio MSEtc∕σ0 has to be less than unity in OOP and its
neighborhood.

Another standard metric is PSNR which is strictly connected with MSEtc as

EQ-TARGET;temp:intralink-;e003;116;687PSNRtc ¼ 10 log10½ðImax − IminÞ2∕MSEtc�; (3)

where Imax, Imin are the maximal and minimal image values (the difference Imax − Imin is
assumed to be fixed and equal to 255 if one deals with 8-bit images). In a similar manner,
for the original (noisy) image, one has

EQ-TARGET;temp:intralink-;e004;116;620PSNRor ¼ 10 log10½ðImax − IminÞ2∕σ20�: (4)

Additionally, we propose using a parameter that can be called improvement or the difference
of PSNR defined as

EQ-TARGET;temp:intralink-;e005;116;563ΔPSNR ¼ PSNRtc − PSNRor ¼ 10 log10ðσ20∕MSEtcÞ: (5)

Positive ΔPSNR (expressed in dB) in the neighborhood of (possible) OOP indicates that
OOP exists and it is expedient to carry out compression with the recommended PCC.
Otherwise, if MSEtc∕σ0 is larger than unity or ΔPSNR is smaller than zero, then in our opinion,
compression with a smaller CR is desired.

The decision on the existence of OOP can also be based on an analysis of metrics other than
MSE or PSNR. HVS-metrics have become popular.32,43,44 Therefore, let us consider the visual
quality metric PSNR-HVS-M.31 This metric takes into consideration two important peculiarities
of the HVS: different sensitivity to distortions in low and high spatial frequencies as well as
masking effects. For characterizing the visual quality of single-channel images, PSNR-HVS-
M is among the best.45 A larger PSNR-HVS-M relates to a better visual quality where the values
of PSNR-HVS-M over 40 dB indicate that distortions are practically invisible46 (this property
will be exploited below).

The metric PSNR-HVS-M can be determined for the pair of true and compressed images
(then one obtains PSNR-HVS-Mtc) as well as for the pair of original (noisy) and compressed
images (then PSNR-HVS-Mnc is obtained). The general equation is

EQ-TARGET;temp:intralink-;e006;116;350PSNR-HVS-M ¼ 10 log10½ðImax − IminÞ2∕MSEHVS�; (6)

where MSEHVS denotes the MSE calculated in the DCT domain, taking into account the
aforementioned peculiarities of HVS. Similar to ΔPSNR, let us consider

EQ-TARGET;temp:intralink-;e007;116;294ΔPHVS ¼ PSNR-HVS-Mtc − PSNR-HVS-Mnc: (7)

This parameter is expressed in dB; OOP is supposed to exist if ΔPHVS is positive.
Before starting to consider the prediction of the OOP existence, we would like to note the

following. Recently, approaches to predict the denoising efficiency for two DCT-based filters
and the metrics ΔPSNR and ΔPHVS have been proposed and tested.47–49 For carrying out such
predictions, one needs two very simple operations. First, some simple statistic parameter has to
be calculated for a given image. Calculations are made in nonoverlapping 8 × 8 pixel blocks of a
source noisy image to obtain one of two probabilities: either probability P2σ that absolute values
of DCT coefficients in blocks are less than 2σ0 or probability P2.7σ that absolute values of DCT
coefficients exceed 2.7σ0. The second operation is to calculate a predicted metric value using the
available analytical dependence of this metric on P2σ or P2.7σ. Such analytical dependences may
be obtained for a considered metric in advance. Using a set of test images and different values of
noise variances, the dependences of the considered metrics on P2σ (and on P2.7σ) are obtained by
fitting curves to the corresponding scatter plots.

Keeping in mind similarities between denoising and the lossy compression of noisy images, a
similar approach has been proposed to predict the OOP existence and its compression parameters
in our paper.29 The advantage of this approach is its high computational efficiency. It uses DCT in
8 × 8 pixel blocks that is a standard operation in image processing.10 Moreover, blocks are
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nonoverlapping and for large size images, it is enough to have 500 nonoverlapping blocks
chosen randomly to estimate P2σ or P2.7σ with an appropriate accuracy.48,49 All other operations
needed to calculate P2σ or P2.7σ are very simple (logical and arithmetic).

3 Simulation Methodology and Result Analysis

Recall the basic aspect of the prediction approach. We assume that some statistical parameter is
calculated for a given image. The requirements for this parameter are the following. First,
it should be simple enough and computed quickly (desirably faster than the compression, see
discussion at the end of Sec. 2). Second, these parameters should be able to “jointly describe”
image complexity and noise intensity. This requirement assumes that the probability of OOP
existence increases for a larger noise intensity and lower complexity of a compressed image.
Third, the prediction has to be carried out with appropriate accuracy. We mean here that the
STD of the prediction error should be small, about 0.2 dB, for the metrics ΔPSNR and ΔPHVS.

We do not know at the moment what statistical parameter is the best for our purpose and try
not to invent new statistical parameters that can be used in the prediction (this is outside the scope
of this paper). Therefore, let us analyze the applicability of statistical parameters that have been
already used with a certain success.47 Let us use the aforementioned probabilities P2σ and P2.7σ .
More formally, the probability P2σ is defined as the mean of the local probabilities estimated for
the considered image blocks as

EQ-TARGET;temp:intralink-;e008;116;497

͡P
2σ ¼

��X7
k¼0

X7
l¼0

δ2σðp; q; k; lÞ
�
− δ2σðp; q; 0; 0Þ

�
∕63

δ2σðp; q; k; lÞ ¼
�
1; if jBðp; q; k; lÞj ≤ 2σ0
0 otherwise

;

(8)

where Bðp; q; k; lÞ denotes the kl’th DCT coefficient calculated for the block of 8 × 8 pixels in
which the left upper corner corresponds to the image pq’th pixel.

Similarly, the probability P2.7σ is estimated as the mean of local probabilities in image blocks:

EQ-TARGET;temp:intralink-;e009;116;381

͡P
2.7σ ¼

��X7
k¼0

X7
l¼0

δ2.7σðp; q; k; lÞ
�
− δ2.7σðp; q; 0; 0Þ

�
∕63

δ2.7σðp; q; k; lÞ ¼
�
1; if jBðp; q; k; lÞj > 2.7σ0
0 otherwise

:

(9)

Consider now the methodology of obtaining and processing simulated data. In Ref. 29, 12
grayscale test images have been used. Eight of them can be considered as the standard optical test
images: Baboon, Stream&Bridge, Man, Lenna, Tiffany, F − 16, Peppers, Boats. These images
have different complexity starting from rather simple ones as Lenna and ending with the complex
structure (textural) test image Baboon. Four other test images have more relation to RS. They are
the images Frisco, Aerial, and Airfield, as shown in Fig. 1, and a quite popular image San Diego.
The results presented in Ref. 29 have already shown that the observed tendencies are the same for
both groups of images. The same tendencies for two groups of the test images have been earlier
found in Ref. 48. Thus, the image content does not influence the results. The main requirement is
to have a rather large number of test images with properties varying in wide limits.48

Another aspect is what levels of noise to study. In Ref. 29, we considered three noise levels
characterized by variances equal to 25, 100, and 225. This makes the probabilities P2σ and P2.7σ

vary in the limits from 0.53 to 0.93 and from 0.03 to 0.35, respectively. Meanwhile, both prob-
abilities can potentially vary from 0 to 1. Thus, since different values of these probabilities can be
met in practice, we had to consider wider limits of probability variation in the simulated noisy
images. For this purpose, we have also added noisy images corrupted by AWGN with σ0 (STD)
equal to 0.5, 1, 2, and 20.

Let us present the results obtained for rather small noise STD values (0.5, 1.0, and 2.0) that
are at the same level as the “internal noise” STD of the test images. The simulation data are given
for the AGU coder in Table 1. The values of P2σ vary in the limits from 0.07 (very close to zero)
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to over 0.6 (for simple structure test images if σ0 ¼ 2.0). In turn, the values of P2.7σ vary from
0.23 to about 0.9 (i.e., almost unity for σ0 ¼ 0.5). The values of MSEtc∕σ0 are larger than unity
(are close to 2) and ΔPSNR is about −3 dB, respectively, for almost noise-free images (if STD
equals to 0.5 or 1.0). Only if the noise STD is equal to 2, might MSEtc∕σ0 differ from 2 and be
sufficiently smaller (this happens for the simplest structure images).

Analysis of ΔPHVS values shows that they are even smaller than ΔPSNR and are from −2.5
to −4.6 dB. Obviously, the visual quality of images compressed in the considered way (with QS
equal to 3.5σ0) does not improve. Moreover, according to the analyzed metrics, the visual quality
becomes worse. However, an interesting fact is that for all cases considered in Table 1, the intro-
duced distortions are not visually seen46 since PSNR-HVS-Mnc exceeds 47 dB (see data in
the lines for each STD in Table 1). CR values in these cases are small (see CR values in
the corresponding column). For σ0 ¼ 0.5, CR is about 2.0 and it does not exceed 4.5 for σ0 ¼
2.0 (when QS ¼ 3.5σ0 ¼ 7) and simple structure images. Thus, for these three values of noise
variance, one practically deals with near-lossless image compression.7

Let us now present data for four other values of noise STD: 5, 10, 15, and 20. They are given
in Table 2 and grouped for noise STD. For each group, we put the images in such an order that
the values of P2.7σ (they are in the second column) are reduced.

Analysis of data presented in Table 2 shows the following:

1. Now the values of P2σ and P2.7σ (together with data in Table 1) practically cover the
entire interval of their possible variation (from almost zero to almost unity).

2. In each group, there is a tendency of increasing the probability P2σ and decreasing the
probability P2.7σ. This is not surprising since probabilities P2σ and P2.7σ are mutually
dependent.

3. The values of P2σ are the smallest and the values of P2.7σ are the largest for the most
complex images corrupted by nonintensive noise (this has also been seen for data in
Table 1). Accordingly, P2σ increases and P2.7σ decreases for simple structure images
and/or for intensive noise.

4. This means that both considered statistical parameters are able to jointly indicate noise
intensity and image complexity. This is the property we need from statistical parameters
to be used in prediction.

5. OOP most probably does not exist for complex structure images corrupted by non-
intensive noise (then MSEtc∕σ0 is larger than unity, ΔPSNR and ΔPHVS are negative).
Then one has to decide what QS to set (one possible decision could be to set QS smaller
than QS ¼ 3.5σ0).

6. According to the metrics MSEtc∕σ0 and ΔPSNR, there is a large probability that OOP
exists if P2σ exceeds 0.81 or P2.7σ is less than 0.11. More insight will be given to this
threshold later.

7. According to ΔPHVS, OOP exists with a high probability if P2σ exceeds 0.88 or
P2.7σ is less than 0.05; this happens only for simple structure images and if noise
is intensive.

8. Obviously, OOP (ΔPSNR reaches a few dB and ΔPHVS exceeds 1 dB) occurs only for
simple structure images and high intensity noise.

9. Noise in original images is visible and distortions due to lossy compression are visible as
well; this happens if PSNR-HVS-Mnc is of the order 30 to 40 dB and ΔPHVS is from −1
to −3 dB; this takes place for P2σ in the limits from 0.55 to 0.85 or for P2.7σ in the limits
from 0.06 to 0.35.

10. While for σ0 ¼ 5, CR varies in the limits from 3.86 to 7.79, it is considerably larger for
σ0 ¼ 20 and can be larger than 20. This is due to a large QS value being used.

Data in Tables 1 and 2 could be presented in another manner. In particular, it was also possible
to separately put data for each test image. Such a study is also possible by a joint analysis of data in
Tables 1 and 2 for any particular test image. Consider, for example, the test image Airfield. If σ0
equals to 0.5, 1, or 2 (see data in Table 1), P2σ is small,MSEtc∕σ0 is about 2.0 and, respectively,
ΔPSNR is about−3 dB. The metricΔPHVS is about−4 dB, i.e., formal lossy compression leads
to image quality degradation. However, the quality of the original images is so high that noise in
them cannot be noticed by visual inspection. Introduced losses cannot be noticed as well. Hence, it

Zemliachenko et al.: Lossy compression of noisy remote sensing images with prediction. . .

Journal of Applied Remote Sensing 095066-9 Vol. 9, 2015



Table 1 Simulation results for compression in optimal operation point (OOP) neighborhood for
the AGU coder for small STD values.

P2σ P2.7σ MSEtc∕σ0 ΔPSNR ΔPHVS CR Image

σ0 ¼ 0.5, PSNRor ¼ 54.1 dB. PSNR-HVS-Mnc > 62 dB

0.08 0.89 2.01 −3.04 −3.43 1.57 Baboon

0.07 0.9 2.03 −3.07 −3.14 1.54 San Diego

0.11 0.85 2.01 −3.04 −3.49 1.63 Stream&Bridge

0.09 0.88 2.01 −3.04 −3.66 1.62 Airfield

0.18 0.77 1.98 −2.97 −3.77 1.74 Aerial

0.22 0.71 1.99 −2.99 −4.04 2.00 Man

0.18 0.76 2.01 −3.02 −4.19 2.02 Boats

0.24 0.68 1.99 −2.98 −4.42 2.27 Frisco

0.2 0.74 2.02 −3.06 −4.44 2.12 Peppers

0.33 0.58 1.92 −2.83 −4.09 2.43 F-16

0.25 0.67 1.99 −2.99 −4.43 2.34 Lenna

0.27 0.65 1.97 −2.95 −4.45 2.31 Tiffany

σ0 ¼ 1. PSNRor ¼ 48.1 dB. PSNR-HVS-Mnc > 55 dB

0.17 0.78 2 −3.01 −4.04 1.94 Baboon

0.14 0.81 2.02 −3.06 −3.81 1.91 San Diego

0.21 0.73 1.98 −2.97 −3.91 2.04 Stream&Bridge

0.18 0.77 2.01 −3.04 −4.53 2.02 Airfield

0.3 0.63 1.9 −2.79 −3.80 2.20 Aerial

0.38 0.53 1.89 −2.76 −4.07 2.60 Man

0.34 0.57 1.93 −2.87 −4.18 2.64 Boats

0.43 0.46 1.89 −2.76 −3.86 3.05 Frisco

0.36 0.54 1.94 −2.88 −4.33 2.83 Peppers

0.51 0.39 1.73 −2.37 −3.56 3.27 F-16

0.43 0.45 1.88 −2.73 −4.10 3.18 Lenna

0.45 0.44 1.86 −2.70 −4.05 3.13 Tiffany

σ0 ¼ 2. PSNRor ¼ 42.1 dB. PSNR-HVS-Mnc > 47.6 dB

0.3 0.62 1.94 −2.88 −4.21 2.52 Baboon

0.27 0.65 1.98 −2.98 −4.60 2.49 San Diego

0.35 0.56 1.89 −2.75 −4.47 2.67 Stream&Bridge

0.33 0.58 1.97 −2.94 −4.47 2.66 Airfield

0.45 0.46 1.75 −2.43 −3.93 2.92 Aerial

0.55 0.34 1.64 −2.16 −3.70 3.57 Man

0.53 0.36 1.72 −2.35 −3.62 3.63 Boats

0.63 0.26 1.57 −1.95 −2.73 4.31 Frisco

0.57 0.3 1.7 −2.32 −3.56 3.99 Peppers

0.68 0.23 1.35 −1.32 −2.67 4.59 F-16

0.64 0.25 1.56 −1.93 −3.26 4.54 Lenna

0.65 0.24 1.53 −1.85 −3.24 4.45 Tiffany
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Table 2 Simulation results for compression in OOP neighborhood for the AGU coder for middle
and large STD values.

P2σ P2.7σ MSEtc∕σ0 ΔPSNR ΔPHVS CR Image

σ0 ¼ 5. PSNRor ¼ 34.1 dB. PSNR-HVS-Mnc > 38 dB

0.54 0.35 1.66 −2.21 −3.92 3.86 Baboon

0.53 0.35 1.78 −2.50 −4.28 3.89 San Diego

0.59 0.31 1.58 −1.98 −3.94 4.16 Stream&Bridge

0.60 0.28 1.67 −2.23 −3.67 4.19 Airfield

0.66 0.25 1.37 −1.38 −3.39 4.54 Aerial

0.75 0.16 1.14 −0.57 −2.70 5.80 Man

0.76 0.15 1.14 −0.57 −2.28 5.96 Boats

0.81 0.11 0.91 0.41 −0.57 7.43 Frisco

0.81 0.11 1.05 −0.22 −1.93 6.79 Peppers

0.82 0.11 0.80 0.95 −1.05 7.52 F-16

0.83 0.10 0.86 0.68 −1.39 7.79 Lenna

0.83 0.10 0.88 0.55 −1.34 7.71 Tiffany

σ0 ¼ 10. PSNRor ¼ 28.1 dB. PSNR-HVS-Mnc > 30.9 dB

0.71 0.19 1.26 −1.01 −2.89 5.69 Baboon

0.73 0.16 1.35 −1.31 −3.23 5.85 San Diego

0.75 0.15 1.19 −0.77 −3.03 6.21 Stream&Bridge

0.78 0.13 1.16 −0.64 −2.61 6.35 Airfield

0.78 0.14 0.98 0.07 −2.52 6.69 Aerial

0.85 0.08 0.75 1.25 −1.54 8.66 Man

0.86 0.08 0.71 1.46 −1.17 8.89 Boats

0.89 0.05 0.58 2.39 0.81 11.34 Frisco

0.89 0.05 0.57 2.41 −0.23 10.53 Peppers

0.88 0.06 0.51 2.91 0.15 11.20 F-16

0.89 0.05 0.50 3.03 0.15 11.94 Lenna

0.90 0.04 0.51 2.91 0.18 12.48 Tiffany

σ0 ¼ 15 PSNRor ¼ 24.6 dB. PSNR-HVS-Mnc > 27 dB

0.79 0.12 1.01 −0.04 −2.23 7.29 Baboon

0.82 0.09 1.02 −0.10 −2.55 7.68 San Diego

0.83 0.09 0.92 0.34 −2.27 8.04 Stream&Bridge

0.84 0.08 0.85 0.72 −1.76 8.30 Airfield

0.84 0.09 0.76 1.20 −1.95 8.56 Aerial

0.89 0.05 0.56 2.50 −0.77 11.19 Man

0.89 0.05 0.53 2.72 −0.30 11.34 Boats

0.91 0.03 0.43 3.67 1.54 14.74 Frisco

0.91 0.03 0.42 3.81 0.79 13.49 Peppers

0.91 0.04 0.40 4.02 0.84 14.01 F-16

0.91 0.03 0.38 4.25 1.11 14.85 Lenna

0.93 0.03 0.36 4.43 1.27 17.80 Tiffany
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is possible to ignore these losses. For σ0 ¼ 5 (see Table 2), we haveP2σ ¼ 0.60 and noise becomes
visible.MSEtc∕σ0 is still larger than unity, but starts decreasing, andΔPSNR andΔPHVS are both
negative. This means that lossy compression leads to considerable (visually noticeable) image
quality degradation and it is desirable to avoid or to diminish this effect. Similar effects are
observed for σ0 ¼ 10, one has quite large P2σ ¼ 0.78 but MSEtc∕σ0 is still larger than unity,
while ΔPSNR and ΔPHVS are both negative. This means that the compression with QSOOP ¼
3.5σ0 is undesired. The situation starts radically changing for σ0 ¼ 15 (P2σ ¼ 0.84). The ratio
MSEtc∕σ0 occurs to be less than unity, ΔPSNR is positive while ΔPHVS is still negative. Thus,
OOP exists, at least for the metrics MSEtc∕σ0 and ΔPSNR. Finally, for σ0 ¼ 20, we have an
obvious OOP according to the metrics MSEtc∕σ0 and ΔPSNR.

The observations and conclusions for other test images are similar. If σ0 increases, P2σ

becomes larger, P2.7σ reduces, MSEtc∕σ0 decreases, ΔPSNR, ΔPHVS, and CR increase.
Because of these, it is more probable that OOP exists.

Such dependences are observed not only for the 8-bit images considered above. Suppose that
one has multiplied all values of Inij, i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm and Itrueij , i ¼ 1; : : : ; IIm; j ¼
1; : : : ; JIm by some constant C > 1, then more than 8 bits are needed to represent data, noise
standard deviation, dynamic range, and QSOOP increase by C times, P2σ , P2.7σ , ΔPSNR, and
ΔPHVS do not change. Thus, the conclusions are valid for other than 8 bit data representations
as well.

Consider now other approaches to the aggregated presentation of the obtained data. Figure 3
shows the scatter plot (ΔPSNR versus P2σ) for the AGU coder with four fitted polynomials, of
the second, third, fourth, and fifth orders. Fitting has been carried out with the standard
MATLAB tools; several parameters characterizing fitting are presented, and the coefficient
of determination R2 and root mean square error (RMSE) are the main ones.50 It is usually con-
sidered that an R2 larger than 0.9 relates to good fitting and, together with a small RMSE, this
indicates the possibility of accurate prediction. The obtained polynomials are also presented by
scatter-plots for providing careful analysis.

Analysis of the data shows the following. A higher order of the used polynomial results in a
better approximation according to all analyzed quantitative criteria. It seems enough to use the
fifth order polynomial since it reflects the behavior of the considered dependence correctly and
accurately. The fitted curves allow accurate determining of the point where ΔPSNR becomes
positive. The best fitted curves take place for a P2σ about 0.80 to 0.82, and this is in agreement
with conclusion 6 mentioned above.

Table 2 (Continued).

P2σ P2.7σ MSEtc∕σ0 ΔPSNR ΔPHVS CR Image

σ0 ¼ 20, PSNRor ¼ 22.1 dB. PSNR-HVS-Mnc > 24.6 dB

0.84 0.08 0.83 0.80 −1.67 8.76 Baboon

0.86 0.06 0.79 1.00 −1.81 9.40 San Diego

0.87 0.06 0.74 1.32 −1.67 9.88 Stream&Bridge

0.88 0.06 0.66 1.79 −1.13 10.23 Airfield

0.87 0.06 0.63 2.01 −1.45 10.32 Aerial

0.91 0.04 0.46 3.41 −0.07 13.21 Man

0.91 0.04 0.44 3.61 0.34 13.49 Boats

0.93 0.02 0.35 4.61 2.21 17.37 Frisco

0.93 0.03 0.33 4.87 1.50 16.72 Peppers

0.92 0.03 0.33 4.83 1.27 16.64 F-16

0.93 0.03 0.32 5.01 1.69 16.98 Lenna

0.94 0.02 0.28 5.59 1.99 24.08 Tiffany
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Fig. 3 The scatter plot (ΔPSNR versus P2σ) for the AGU coder with fitted polynomials of
the (a) second, (b) third, (c) fourth, and (d) fifth orders.
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Let us present data for the prediction of ΔPSNR based on P2.7σ . Note that the tendencies for
the polynomial order are the same as for the scatter plot of ΔPSNR versus P2σ (see data in
Table 3). For this reason, we present only the data for the fifth order polynomial in Fig. 4(a).
The fitting is not as good as for the scatter plot ΔPSNR versus P2σ (R2 is slightly smaller
and RMSE is larger). This means that it is better to use the statistical parameter P2σ for the
prediction.

Let us now analyze the results obtained for the ΔPHVS prediction. Data for the prediction
based on P2σ are presented in Table 3 (the lower part). As is seen, better results are obtained by
increasing the polynomial order where the fifth order seems to be enough [see also the scatter
plot and the fitted curve in Fig. 4(b)] Obviously, OOP exists only if P2σ exceeds 0.9. Analysis of
data obtained for P2.7σ has shown that again, the prediction is less accurate (R2 reaches 0.946 and
RMSE attains 0.47 for the fifth order polynomial).

Let us consider data for the ADCT coder (the recommended QS ¼ 3.5σ0). Some data in table
format are presented in Ref. 29. It confirms conclusions 1 and 2 given above. Here, we prefer to
represent the best results as scatter plots for the fifth order polynomial and the prediction based
on probability P2σ (the results for the probability P2.7σ are again worse). These scatter-plots are
depicted in Fig. 5.

The scatter plot in Fig. 5(a) is very similar to the scatter plot in Fig. 3(d). The only difference
is that the fitted curve crosses the zero level for a smaller P2σ (about 0.75). This means that the
probability of having OOP for the ADCT coder in practice is larger than for the AGU coder.
Other conclusions for the AGU coder practically coincide with the conclusions 3 to 5 for
the AGU coder given above.

The scatterplot in Fig. 5(b) is very similar to the one in Fig. 4(b). The conclusions 7 and
8 given above for AGU are, in general, valid for the ADCT coder as well. The difference is that
the fitted curve crosses zero level at a smaller P2σ (about 0.87). This means that the ADCT coder
provides a slightly better visual quality of the compressed noisy images (under the condition of
the same QS).

The results for the AGU-M coder have been obtained for SF ¼ 2.0σ0. Some quantitative data
are given in Table 3 in the paper.29 Here, we prefer to present the obtained results as scatter-plots
(see Fig. 6). The best fitting has been provided by the fourth (for ΔPSNR) and fifth (for ΔPHVS)
order polynomials. Therefore, we give the fitted curves only for these cases.

Analysis shows the following. OOP does not occur for the complex structure images cor-
rupted by nonintensive noise. According to the metric ΔPSNR, there is a high probability that
OOP exists if P2σ exceeds 0.8 [this is seen in Fig. 6(a)] or if P2.7σ is less than 0.11. According to
the metric ΔPHVS, OOP very likely exists if P2σ exceeds 0.9 [analyze the zero crossing in
Fig. 6(b)] or if P2.7σ is less than 0.05.

There are no obvious advantages of the AGU-M coder compared to the AGU and ADCT
coders. The results are similar for ΔPSNR if P2σ > 0.7 and for ΔPHVS if P2σ > 0.5. However,

Table 3 Parameters of fitted polynomials.

Parameter used
for prediction

Predicted
parameter R2 RMSE Polynomial parameters

P2.7σ ΔPSNR 0.885 0.92 20.29; 24.29; 3.64

P2.7σ ΔPSNR 0.948 0.62 −49.81; 85.1; −45.8; 4.859

P2.7σ ΔPSNR 0.971 0.46 135.6; −291.5; 221.2; −71.36; 5.9

P2.7σ ΔPSNR 0.979 0.40 −349; 913.3; −901.8; 420.6; −95.85; 6.66

P2σ ΔPHVS 0.898 0.63 16.69; −12.49; −2.23

P2σ ΔPHVS 0.924 0.55 24.62; −22.0; 4.70; −4.15

P2σ ΔPHVS 0.955 0.42 113.9; −209.0; 137.7; −36.14; −1.11

P2σ ΔPHVS 0.987 0.23 210.8; −418.3; 277.6; −56.83; −3.79; −2.79
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there are essential differences for a small P2σ , especially for the metric ΔPSNR. It might seem
a serious drawback of the AGU-M coder that ΔPSNR for P2σ < 0.5 is about −6 to −12 dB.
But this is not a problem. Large values of ΔPSNR happen for the cases of nonintensive
noise when PSNRor is high (over 40 dB, see Table 1). Then, PSNRtc is also large, and the
introduced distortions are not seen. The values for ΔPHVS of about −3 to −6 dB can be
regarded as large (sufficient loss of visual quality) if the PSNR-HVS-Mnc is rather low (e.g.,
30 to 35 dB). But ΔPHVS of about −3 to −6 dB occurs for noisy images with P2σ < 0.5, i.e.,
for nonintensive noise. Then the visual quality is very high and distortions in compressed data
cannot be noticed.

Consider now the results for the ADCT-M coder (SF ¼ 2.0σ0). For brevity, let us present
only the scatterplots (Fig. 7) and the fitted polynomials of the fourth (for ΔPSNR) and fifth (for
ΔPHVS) orders. Analyzing the metric ΔPSNR, we can conclude that OOP exists if P2σ exceeds
0.80 [see the fitted curve in Fig. 7(a)] or if P2.7σ is lower than 0.10. If the metric ΔPHVS is
considered, compression in an OOP neighborhood is quite probable if P2σ exceeds 0.88 [analyze
the fitted curve in Fig. 7(b)] or if P2.7σ is less than 0.06. The results are, in general, very close to
the corresponding data for the AGU-M coder (see Fig. 6). Compared to the AGU and ADCT
coders, the ADCT-M coder does not have obvious advantages.

Completing our analysis for the test images and simulated AWGN, we can state the follow-
ing. The proposed prediction methodology is fast and accurate enough. The AGU coder and,
especially, the ADCT coder provide, on average, better results for the considered cases of noisy
image lossy compression than the AGU-M and ADCT-M coders, especially when oriented on
visual quality. There could be three types of practical situations.

The “first one” takes place for low intensity noise which is invisible in the original images.
It is difficult to expect that OOP exists, and formal lossy compression (according to quantitative
criteria) leads to a worse image quality. This is usually not a problem since the introduced

Fig. 4 Scatter plots (a) ΔPSNR versus P2.7σ and (b) ΔPHVS versus P2σ and the fitted fifth order
polynomials.
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distortions are small and they are either invisible or hardly noticeable. Then it seems reasonable
to carry out compression at OOP according to the earlier recommendations. Such a decision can
be undertaken if, e.g., P2σ < 0.6.

The “second situation” is that ΔPSNR and ΔPHVS are negative (or ΔPSNR is positive but
small while ΔPHVS is negative). This happens if 0.6 < P2σ < 0.8. Then if lossy compression is
performed in an OOP neighborhood, there is some filtering effect but the introduced distortions
are at the same level or more. In such a case, it seems reasonable to carry out “a more careful”
lossy compression. An example and a more thorough discussion will be given in the next section.

The “third practical situation” relates to P2σ exceeding 0.8. It seems obvious that it is worth
carrying out lossy compression in an OOP neighborhood. Recall here that we assume that there
is no limitation on CR provided by our approach to lossy compression. That is, we discuss how
to make compressed data appropriate for further use (having a high enough quality) simulta-
neously wishing to provide a CR adaptive to image and noise properties and sufficiently larger
than that for lossless compression.

4 Real-Life Processing Results

For the aforementioned second situation (0.6 < P2σ < 0.8), it seems a reasonable decision to
have a smaller CR than that reached for QS or SF recommended CRs for attaining OOP.
One possible decision could be to apply a smaller QS or SF, e.g., QS ¼ 2.0σ0 for the AGU
and ADCT coders and SF ¼ 1.2σ0 for the AGU-M or ADCT-M coders. It is expected then
that noise suppression is smaller, but distortions are also less than for QS ¼ 3.5σ0 or SF ¼ 2.0σ0.

Let us see what happens in this case. Figure 8(a) presents the noisy image Airfield (σ0 ¼ 10).
The noisy image has been compressed by the AGU coder with QS ¼ 3.5σ0 (in OOP), and
the result is demonstrated in Fig. 8(b). There is a noise-filtering effect that can be observed
in homogeneous image regions (see the wide road in the left lower part). The introduced

Fig. 5 Scatter plots (a) ΔPSNR versus P2σ and (b) ΔPHVS versus P2σ and the fitted fifth order
polynomials for ADCT coder.

Zemliachenko et al.: Lossy compression of noisy remote sensing images with prediction. . .

Journal of Applied Remote Sensing 095066-16 Vol. 9, 2015



distortions are seen as well (sharp edges are partly smeared). The provided CR ¼ 6.35, ΔPSNR
and ΔPHVS are both negative (they are equal to −0.64 and −2.61 dB, respectively, see data in
Table 2), P2σ ¼ 0.78, i.e., we deal with the second situation and, according to our recommen-
dation, it is reasonable to use a smaller QS.

The image compressed by the same coder but with QS ¼ 2.0σ0 is shown in Fig. 8(c). The
visual analysis allows stating that the compressed image quality is higher. This conclusion is
confirmed by analysis of quantitative metrics: ΔPSNR and ΔPHVS are equal to −0.23 dB and
−1.10 dB, respectively, i.e., they are sufficiently smaller than in the previous case. The negative
outcome of such a decision is that CR reduces to 4.0. Certainly, in practice, one has to take into
account both the quality aspects of the compressed images and the CR. The final decision is to
be undertaken by a user.

Along with a hard decision to apply a smaller and fixed QS or SF if 0.6 < P2σ < 0.8, soft
adaptation is also possible. One variant is to use

EQ-TARGET;temp:intralink-;e010;116;204QSðnÞ ¼
�
σ0ð2þ ðP2σðnÞ − 0.7Þ2 × 150Þ; if 0.6 ≤ P2σðnÞ ≤ 0.8

3.5σ0; otherwise
; (10)

EQ-TARGET;temp:intralink-;e011;116;155SFðnÞ ¼
�
σ0ð1.2þ ðP2σðnÞ − 0.7Þ2 × 80Þ; if 0.6 ≤ P2σðnÞ ≤ 0.8

2:0σ0; otherwise
: (11)

Only this variant has been applied to the componentwise compression of real-life data.
Based on the obtained data and the analysis carried out, we can propose the following auto-

matic procedure for RS sensing data lossy compression. The first operation is estimation of
the noise characteristics, e.g., noise variance for AWGN for each image to be compressed if

Fig. 6 Scatter plots (a) ΔPSNR versus P2σ and (b) ΔPHVS versus P2σ (b) and the fitted fourth (a)
and fifth (b) order polynomials for the AGU-M coder.
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noise characteristics are a priori unknown (the case when noise is not additive is shown below).
Then the statistical parameter P2σ has to be calculated. It can be substituted into the correspond-
ing expression to calculate a given metric (e.g., ΔPSNR) for a given coder (it can be needed if
a decision on the PCC setting is undertaken by a human or is based on ΔPSNR and/or ΔPHVS
automatic analysis). The determination of ΔPSNR and/or ΔPHVS could be unnecessary if
the decision is undertaken on the base of analysis (comparison of the thresholds 0.6 and 0.8)
of P2σ , as shown at the end of Sec. 3.

The procedure described above can be applied componentwise if multichannel images have
to be compressed. Let us show this for Hyperion hyperspectral data. We have to take into account
several aspects here. First, the noise in such images is not additive (it is signal dependent23,24,27).
This shortcoming can be overcome by applying a special algorithm of a generalized Anscombe

Fig. 7 Scatter plots (a) ΔPSNR versus P2σ and (b) ΔPHVS versus P2σ and the fitted fourth (a) and
fifth (b) order polynomials for the ADCT-M coder.

Fig. 8 (a) Original noisy and compressed image Airfield with (b) QS ¼ 3.5σ0 and (c) QS ¼ 2.0σ0.
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transform30 described in Ref. 29. Then the noise after the direct transform becomes practically
AWGN with unity variance. Second, one might doubt if OOP exists in the directly transformed
compressed image and inverse transformed image. The simulation results presented in Refs. 20
and 28 show that this is true. Third, for real-life RS data, we do not have a true image, so no
metric Metrtc can be calculated. Thus, we can only calculate the predicted values of ΔPSNR
and/or ΔPHVS based on estimated P2σ or P2.7σ and look at how these predicted values behave,
depending upon the sub-band index. Fourth, there are sub-bands in Hyperion RS data, which are
usually not exploited (with indices 1 to 12, 58 to 76, 224 to 242). We also do not present data for
these sub-bands.

Let us start by analyzing the values P2σ and P2.7σ for real-life data (the set
EO1H1800252002116110KZ). The plots are given in Fig. 9. Analysis shows that both prob-
abilities vary practically from zero to unity. Therefore, our decision undertaken above to obtain
fitting curves for the entire intervals of probability variation was correct (see the beginning of
Sec. 3). Joint analysis of the plots P2σ and P2.7σ shows that they behave in an “opposite manner”
where the sum P2σ þ P2.7σ is close to unity.

Analysis also shows that there is a very small percentage of sub-bands for which P2σ > 0.8,
i.e., for which compression in an OOP neighborhood providing visible effects of noise filtering
can be carried out. These are sub-bands with indices 13, 14, and 127. There are also many sub-
bands (most sub-bands of the optical range, 14 < n < 21, and some sub-bands of the infrared
range (n ¼ 83, 125, 127, 173, 175, 177 to 181) for which “careful” compression is desirable.
Recall here that n from 13 to 57 relates to the optical range and from 83 to 224—to the infrared
range of the sensor Hyperion.

Fig. 9 Dependences of (a) P2σ and (b) P2.7σ on sub-band index n for real-life Hyperion data set
EO1H1800252002116110KZ (sub-bands with indices 1 to 12, 58 to 76, 224 to 242 are usually not
exploited).
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These conclusions also follow from the analysis of the predicted values of ΔPSNRðnÞ for
the AGU coder shown in Fig. 10. As is seen, the obtained prediction results are very similar and
they usually differ by not more than by 1 dB. The predicted values for ΔPHVSðnÞ based on P2σ are
depicted in Fig. 11. They confirm the conclusions and recommendations given above. The number of
sub-bands for which quality improvement of images compressed in the OOP neighborhood is
expected is quite small; this is probable only for the sub-bands 13 and 14 of the optical range.

The dependence CRðnÞ for fixed QSðnÞ ¼ 3.5 (recommended for OOP, noise STD equals to
unity after the generalized Anscombe transform) is presented in Fig. 12 (blue line). This depend-
ence correlates with all dependences presented in Figs. 10 and 11. It means that CR is quite
large (exceeds 10) for sub-bands where noise is quite intensive (or, more correctly, where the
input PSNR or SNR are quite small). In other sub-bands, noise is negligible. Because of this,
compression is carried out by “carefully” introducing relatively small and practically invisible
distortions. As a result, CR is in the limits 4 to 10.

Even more “careful” compression with a slightly smaller CR takes place if QSðnÞ is set
adaptively according to Eq. (10) [CR for such sub-bands is shown by the red color, it can be
considerably smaller than for QSðnÞ ¼ 3.5]. Note that the direct VST has been carried out as
described in the paper.29

It might seem that the obtained values of CR are only slightly larger than those for the
advanced lossless compression techniques. However, we feel that the proposed approach can
be modified to 3-D compression applied in groups of sub-bands.21,29 Then an increase of CR
by about twice is to be expected without additional degradation of the compressed image quality.

Figure 13 shows the original (uncompressed) image in the 14th sub-band and the image
compressed using the proposed procedure with VST (after decompression and inverse VST).
It is seen that noise is partly suppressed and the introduced distortions are not essential. In

Fig. 10 Predicted (a) ΔPSNRðnÞ based on P2σ and (b) P2.7σ for real-life Hyperion data set
EO1H1800252002116110KZ (sub-bands with indices 1 to 12, 58 to 76, 224 to 242 are usually
not exploited).
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Fig. 11 Predicted ΔPHVSðnÞ based on P2σ for real-life Hyperion data set
EO1H1800252002116110KZ (sub-bands with indices 1 to 12, 58 to 76, 224 to 242 are usually
not exploited).

Fig. 12 Dependences CRðnÞ on sub-band index for real-life Hyperion data set
EO1H1800252002116110KZ (sub-bands with indices 1 to 12, 58 to 76, 224 to 242 are usually
not exploited). Red points relate to the proposed procedure [Eq. (10)].

Fig. 13 The 14th sub-band images (a) before and (b) after compression.
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turn, Fig. 14 demonstrates original and decompressed images in the 110th sub-band. Noise can-
not be seen in the original image and the compression practically does not influence the image
quality (both images look the same).

The proposed approach to lossy compression has been also tested on the hyperspectral
images acquired by airborne sensor AVIRIS. A peculiarity of this sensor is that it has four ranges
with 32 sub-bands in the optical range and 64 sub-bands in the three latter infrared ranges.
The dependences of P2σðnÞ and ΔPSNRðnÞ for the standard test image Lunar Lake are shown
in Fig. 15. As is seen, there are many sub-bands for which P2σðnÞ > 0.8 and for which

Fig. 14 The 110th sub-band images (a) before and (b) after compression.

Fig. 15 Dependences of (a) P2σ and (b) ΔPSNR on sub-band index n for real-life AVIRIS data set
Lunar Lake.
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0.6 < P2σðnÞ < 0.8. The obtained dependence of CRðnÞ is given in Fig. 16, where the curve for
a fixed QSðnÞ ¼ 3.5 is again shown in blue color and the red dots indicate CR values obtained
for a QSðnÞ determined according to the adaptive algorithm [Eq. (10)] for the AGU coder.

The conclusions that follow from the analysis of data in Fig. 16 are the following. There are
sub-bands where the noise intensity is high (e.g., optical range sub-bands with n ¼ 1, 2, 3, 4) for
which P2σ is large and the compression is carried out, providing OOP and CR > 10. Meanwhile,
there are also sub-bands where the compression is “careful” and, thus, the CR is only about 4.

In our opinion, the proposed approaches and the obtained results can be also useful for
applications other than RS. First, the results for the optical test images (see Tables 1 and 2)
do not differ from the results obtained for the test RS images, i.e., the observed dependences
and tendencies are general enough. Second, the results can be interesting for the researchers
dealing with the compression of medical images and video where the prediction of ΔPSNR
or ΔPHVS can be exploited to properly set QS or SF.

5 Conclusions and Future Work

We have demonstrated that the existence of OOP for a given image corrupted by AWGN can
be quite accurately predicted if the variance of AWGN is a priori known or accurately
pre-estimated. Such a prediction can be performed for several quality metrics. Moreover, the
metric values for OOP can be predicted and used in further analysis.

Prediction curves have been provided (dependences) for four lossy compression techniques
based on DCT and have been compared. The prediction is very fast and is quite accurate (the
prediction error rarely exceeds 1 dB) and this happens if the fourth or fifth order polynomials are
used for fitting.

Practical recommendations for componentwise lossy compression are given. If OOP exists,
then the lossy compression in the OOP neighborhood is expedient. If, according to the predic-
tion, OOP does not exist, then “more careful” compression is necessary. This can lead to less
distortion being introduced and a better quality of compressed data. Also, it seems possible to
carry out an adaptive setting of QS or SF depending on image local content. This is one possible
direction for future research.

The proposed approach can be put into the basis of componentwise compression of multi-
channel RS images, as has been shown for hyperspectral RS data of Hyperion and AVIRIS
sensors. We expect that 3-D compression of such data collected into groups might increase
CR sufficiently. This is another possible direction for future research.
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