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Abstract. A light detection and ranging canopy height model (CHM) was used as training data
for a segment-based classification of woody patches. The classifier is accurate (∼92%) and suit-
able for use at the national scale. Height thresholds and percentage cover of vegetation from the
CHM were used to produce larger quantities of reliable training data compared to other, mostly
point or plot-based, ground-truthing approaches. It was found that the regional-scale differen-
tiation between woody and nonwoody vegetation might be achieved by a combination of L-band
dual-polarized Phased Array type L-band synthetic aperture radar data (HV) with multispectral
optical data that include a short-wave infrared band. The application of a support vector machine
algorithm to these data proved successful. The versatility of these algorithms regarding the dis-
crimination function and their ability to solve classification problems with multiple output
classes were critical factors for success. The identified and classified woody patches constitute
a valuable addition and enhancement of the national land cover database. © The Authors. Published
by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
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1 Introduction

The New Zealand Land Cover Database1 (LCDB) is a digital thematic map of land cover and
land use. It is mainly produced by manual digitization using satellite imagery and aerial photo-
graphs. In the large and relatively homogenous pasture areas, small patches of woody vegetation
are often not identified correctly by human interpretation. An automated, or at least a semiau-
tomated, approach for woody/nonwoody classification using imagery that is available nation-
wide would, therefore, be desirable in order to improve map quality. As the major aim of this
study is to improve the information content of an existing dataset, such a method must be
“conservative” in the sense that it only adds new polygons that are woody with a high probability.
The improvement of manually digitized land cover maps is a problem that is not specific to the
LCDB and the method could, therefore, also be applied to regional and national land cover maps
in other regions of the world.

Current methods for automated land cover mapping on the regional to national scale are well
established for single-source approaches using synthetic aperture radar (SAR) and optical data-
sets2 as well as synergistic use of SAR and optical imagery that generally produces improved
classification results.3–7

A wide range of supervised classification methods are described in this literature.
These include statistical methods, such as maximum likelihood and discriminant analysis,
machine-learning methods, such as decision tree classifiers, neural networks, and support vector
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machines8 (SVMs). A number of studies point out that SVMs are effective in classifying high-
dimensional input datasets.9–12 Mountrakis et al.13 even conclude that “past applications of the
method on both real-world data and simulated environments have shown that SVMs exhibit
superiority over most of the alternative algorithms.” Geographic object-based image analysis
provides advantages over pixel-based techniques14–17 and is well suited to analyses that combine
different data sources as image registration differences average out over segments.

The use of light detection and ranging (LiDAR)-derived canopy height models (CHMs) for
forest mapping is equally well established with the promise of high spatial resolution and asso-
ciated high accuracy. Classification results can be improved by combination with data from other
sensors.2 However, LiDAR data are rarely available as full coverage for regional and national
mapping initiatives due to the high cost. Nevertheless, for small-scale mapping, it is valuable as a
training data, at least if the features to be mapped can be well identified by the LiDAR-derived
products.

It is surprising that despite the existence of methods for automated land cover mapping on
regional to national scales, many mapping programs are still mainly created using manual digi-
tization techniques—e.g., the LCDB of New Zealand and the “Peta Penutupan Lahan”18 of
Indonesia. The two main reasons for this are (1) the general belief that manual mapping
using aerial photography is able to provide better spatial accuracy than automated classification
of satellite images and (2) the need for continuity of multitemporal maps. Therefore, approaches
are needed which enable automated classification to improve map quality without replacing the
manual methods completely. Improvement of map quality in this context refers to the addition of
information content from automated methods to the manually derived maps. This approach can
also be applied to mapping programs that consider introducing new data sources, e.g., if SAR
data are added to a mapping approach that is purely based on optical imagery.

In this paper, we describe a segmentation-based method for automated detection and clas-
sification of so far unmapped woody patches with a minimum mapping size of 1 ha. A LiDAR
CHM is used to train the classifier regarding the woody/nonwoody discrimination, while the
classification of identified woody patches uses the existing LCDB (map) in the training step.
The classifier makes synergetic use of Phased Array type L-band SAR (PALSAR) and Satellite
Pour l’Observation de la Terre (SPOT) data in both training steps. We describe which of the data
sources are most able to differentiate between woody and nonwoody vegetation.

2 Data

2.1 Land Cover Database

The New Zealand LCDB is a multitemporal digital thematic map of land cover and land use.
Land cover at each of four periods—summer 1996/1997, summer 2001/2002, summer 2008/2009,
and summer 2012/2013—is both delineated and classified using SPOT imagery and aerial pho-
tography. The land cover classification evolved over the first three periods, but compatibility has
been maintained. LCDB1 polygons were largely drawn manually by visual interpretation, while
later, change polygons were either automatically created or manually drawn. The current version,
LCDB v4 (and its predecessor LCDB v3), contains 33 classes. The minimummapping unit is 1 ha.

2.2 SPOT-5

SPOT-5 scenes were acquired during the summers of 2008/2009 and 2012/2013 that covered the
whole of New Zealand. All individual scenes were corrected for the effects of atmosphere and
illumination19 and then mosaicked together in a prioritized sequence to maximize the image
quality while minimizing the amount of viewable cloud.

A further standardized reflectance product was then produced in a similar manner where
an additional topographic correction stage was performed.19 Both the cloud minimization and
the standardized reflectance mosaics were accompanied by a “control” mask that defined which
portions of the individual satellite scenes were used in the appropriate mosaic.
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The green band was not included in the analysis as it generally shows strong correlation
with the red band.20

2.3 PALSAR Global Mosaic

The PALSAR Global Mosaic21 is a high-resolution slope-corrected and ortho-rectified L-band
gamma-naught map. The data used for this study were acquired at 10-m resolution in a fine-beam
dual-polarization mode (HH and HV) for the year 2007. The data were resampled to the same
grid and coordinate reference system (New Zealand Transverse Mercator; NZTM) as the SPOT-5
imagery. They were then mosaicked and calibrated to power values using calibration factors
from the study of Shimada et al.22 and the following equation:

EQ-TARGET;temp:intralink-;sec2.3;116;603γ0 ¼ 102�log 10ðDNÞ−8.3;

where DN is the 16-bit unsigned value from the ALOS-PALSAR product.
A conversion to decibels (dB) was not applied at this stage as it was intended to calculate the

mean of the backscatter values for later defined segments; therefore, a logarithmic scale would
be inappropriate. The data were then reprojected to NZTM and geometrically corrected using
a first-order polynomial and 250 GCPs to match the SPOT-5 imagery.

2.4 LiDAR Canopy Height Model

The LiDAR data used in this study were acquired over the entire Wellington region extending to
100-m offshore, an area slightly larger than 8500 km2. The majority of the LiDAR survey was
performed in early 2013 with some additional aircraft flights later in 2013 and 2014, depending
on weather and data quality considerations. The LiDAR scanner was an Optech ALTM 3100EA
flown at a nominal height of 1000 m. The target survey point density was 1.73 ppsm with 50%
swath overlap to ensure the minimum raw data specification of 1.3 ppsm and vertical accuracy of
�0.15 m∕z (1 sigma). The 1261 LiDAR flight lines of raw point cloud data were merged, tiled,
and automatically classified into ground and nonground returns using the open-source LiDAR
processing software, Sorted Pulse Data Software Library.23 The tiles of ground classified points
were then interpolated and mosaicked into a 1-m resolution digital terrain model (DTM).
Similarly, the tiles of nonground classified points were also interpolated and mosaicked at
1-m resolution from which the DTM is subtracted to form a CHM. The term CHM is nominal
as it is primarily derived from canopy returns but will contain other identified nonground features
such as buildings in urban areas.

3 Methods

We used a two-step classification with a first step differentiating between woody and nonwoody
and a second step classifying identified woody patches according to the existing LCDB classes.

3.1 Identification of Woody Patches

We first segmented the SPOT imagery using an algorithm called the iterative elimination method
available in the Remote Sensing and GIS Software Library.24 The algorithm uses K-means clus-
tering25 for seeding and classifying pixels in a first step. Then the classified pixels are clumped
into geographically uniquely labeled regions and small clumps are merged iteratively with their
most similar larger neighboring segments until the minimum mapping size is reached.
Segmentation was based on the red, near-infrared (NIR), and short-wave infrared (SWIR)
band of both SPOT mosaics and the minimal segment size was set to 1 ha, according to the
minimum mapping unit, which resulted in 277,838 segments in the Wellington region. To
allow further analysis, the segments were then associated with statistics relevant to CHM,
SPOT, and PALSAR imagery as well as a prerelease of New Zealand LCDB with the version
4.1. The calculated statistics are as follows:
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• Percentage of segment area covered by CHM values larger than 3, 2, 1, and 0.5 m,
respectively.

• Mean of SPOT reflectance values of the red, NIR, and SWIR bands, as well as mean nor-
malized difference vegetation index (NDVI).

• Mean of PALSAR HH and HV polarized backscatter (power values, not converted to dB)
and the HH/HV ratio.

• Percentage of segment area covered by the different PALSAR quality classes.
• Percentage of segment area covered by each of the LCDB classes.

To derive training data, we used the CHM to identify the segments that are clearly woody
(more than 90% covered by CHM values larger than 3 m; 58,063 segments) and those that are
clearly nonwoody (less than 10% covered by CHM values larger than 0.5 m; 82,236 segments).
The thresholds for defining woody areas were chosen for the following reasons. First, we wanted
to have homogenous sets of segments as a training dataset; vegetation that is higher than 3 m is
certainly woody in the New Zealand context and confusion with agricultural plants such as maize
and vineyards as well as flax can be avoided. The second reason for the 90% threshold is that the
CHM includes built-up areas. Segments greater than 1 ha are never completely covered by build-
ings; therefore, a coverage value larger than 90% makes sure that built-up areas are excluded.
Thirdly, a temporal difference of 7 years between the LiDAR data used for training (2014) and
the PALSAR data (2007) used for application of the classification model exists. To make sure
that a patch of woody vegetation identified by the CHM already existed in 2007, the thresholds,
therefore, have to consider regrowth. The fastest growing vegetation type in New Zealand is pine
tree plantations. Pinus radiata plantations typically grow 6 to 10 m in their first 7 years on the
North Island.26 However, canopy closure would not typically reach 90% except in those stands
planted with exceptionally high stocking density. Therefore, the 90% threshold makes sure the
woody vegetation already existed at the time the PALSAR data were recorded.

Histograms of per segment mean values of SPOT red, NIR and SWIR, NDVI, PALSAR HH
and HV, and the HH/HV ratio were then created to examine the power of the seven predictors to
discriminate between woody and nonwoody segments (Fig. 1). The histograms show that NDVI
has very little ability to differentiate between woody and nonwoody vegetation, while all other
predictors indicate some degree of discrimination between the two classes, with the best sep-
aration shown by SPOT SWIR and PALSAR HV.

Fig. 1 Histograms of woody (in green) versus nonwoody (in red) segments for each of the seven
predictors. X -axis for Satellite Pour l’Observation de la Terre (SPOT) red, near-infrared (NIR), and
short-wave infrared (SWIR) bands shows reflectance values, phased array type L-band synthetic
aperture radar (PALSAR) HH, and HV decibel (dB) of backscatter. Y -axis describes the number of
segments.
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Scatterplots showing the two classes in a two-dimensional feature space were then created for
all combinations of the seven predictors to visually check for potential correlation and none was
detected. Figure 2 displays the three histograms showing the best differentiation based on SPOT
only (red versus SWIR), PALSAR only (HH versus HV), and a combination of SPOT and
PALSAR (SWIR versus HV).

At this stage, we had identified six apparently uncorrelated predictors that had the ability to
differentiate between woody and nonwoody segments with SPOT SWIR and PALSAR HV
showing the best promise. We now had to find a suitable statistical model. Visual interpretation
of scatterplots shows that a nonlinear differentiation function is preferable, which ruled out algo-
rithms based on classification trees such as decision tress or random forest as well as discrimi-
nant analysis. Therefore, we decided to use SVM8 because of their versatility regarding the
applied decision functions. Scikit-learn12 was chosen as the corresponding software library
because of the familiarity of the authors with the python programming language and its
well-structured architecture and documentation.

To find the best SVM-based classifier, we compared model and cross-validation scores for
different sets of predictors, different decision functions (linear, polynomial, and radial basis func-
tion), and parameterizations of the decision functions. Initial runs showed that linear as well as
second- and third-degree polynomials performed best considering both physical interpretation of
the discrimination function as well as model and cross-validation scores. The independent term
of polynomial functions (coefficient 0) is by default set to 0 and we experimented with different
values. Values of 0.05, 0.5, and 1 generally resulted in good results but performed differently for
the various polynomial functions and predictor sets. Therefore, we evaluated all possible com-
binations of the mentioned values. The used predictor sets were as follows:

• PALSAR only (HH and HV backscatter and HH/HV ratio);
• SPOT only (red, NIR, and SWIR bands);
• PALSAR HV backscatter combined with SPOT SWIR; and
• All six predictors.

3.2 Classification of Identified Woody Segments

To include the identified woody segments into the next release of LCDB, it is necessary to clas-
sify them according to the existing scheme. The relevant classes were “Gorse and/or Broom,”
“Mānuka and/or Kānuka,” “Broadleaved Indigenous Hardwoods,” “Mixed Exotic Shrubland,”
“Matagouri or Gray Shrub,” “Deciduous Hardwoods,” “Indigenous Forest,” and “Exotic Forest.”

Fig. 2 Scatterplots of woody (green) and nonwoody (red) segments for SPOT red versus SWIR
band (reflectance), HH versus HV backscatter (dB), and SWIR band (reflectance) versus HV
backscatter (dB).
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We trained an SVM classifier based on the set of six predictors described earlier using segments
with a majority coverage of the corresponding LCDB class. The classifier was then applied to the
identified woody segments.

4 Results

Comparison of the different predictor sets and kernel functions showed that it is possible to
develop a classifier using any of the four parameter sets. Highest scores and cross-validation
scores (>0.99) were achieved by the complete predictor set using third-degree polynomials
and coefficient 0 set to 1.0. Scores of the SWIR/HV combination were only slightly lower.
We decided to use the classifier with the overall highest score: the complete parameter set
using a third-degree polynomial and a coefficient 0 of 1.0. For comparison and display purposes,
we use the SWIR/HV predictor set with the same kernel parameters in parallel.

To understand how the SVM classifier differentiates between the two target classes, we cre-
ated a diagram showing the discrimination function in the two-dimensional case using the
SWIR/HV predictor set (Fig. 3). The third-degree polynomial calculated by the SVM algorithm
separates the two classes well. As shown in Fig. 3, the brown line is the discrimination function,
if the woody and nonwoody classes use a weighting of 1:10. The reason for this weighting is that
we want conservative identification of new woody patches, given that our general purpose is to

Fig. 3 Plot of nonweighted (yellow/blue area) and weighted (brown line) discrimination function
between woody and nonwoody classes. X -axis shows the SPOT SWIR band and Y -axis the
PALSAR HV backscatter, both standardized (centered to 0 and scaled to unit variance).
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improve the LCDB dataset. Therefore, introduction of segments that are incorrectly identified as
woody is avoided. Weighting the two classes achieves this by moving the discrimination func-
tion closer to the woody cluster reducing the number or segments identified as woody and thus
reducing false positives.

The woody/nonwoody classifier was trained with segments that were homogenous (defined
by the 90% larger than the 3-m CHM-value threshold). To better understand the classifier when
using heterogeneous segments, we applied it to all segments thus far classified by LCDB as
pasture (LCDB classes “High-Producing Exotic Grassland,” “Low-Producing Grassland,”
and “Depleted Grassland”), in the Wellington region where the LiDAR CHM was available.
Overall, the Wellington region was divided into 272,856 segments. Of the segments previously
identified by LCDB as pasture, 4733 segments were now identified as being woody by the clas-
sifier based on SWIR and HV backscatter only, while 4880 segments were identified using the
classifier based on six predictors. Figure 4 shows the newly identified woody patches (in pasture)
for the Wellington region, and Fig. 5 shows a subset of this.

We then compared how many of the identified segments were also identified using CHM
thresholds. For this, we identified those segments with a majority (>50%) covered by CHM
values greater than 3, 2, 1, and 0.5 m, respectively (Table 1). According to this analysis, the
classifier based on six predictors performed better than the one based on SWIR and HV
when applied to real-world data, which is in accordance with model and cross-validation scores.
For the height class, where the majority of woody vegetation has a height greater than 0.5 m, over
92% of the segments were correctly classified as woody.

Both steps of the classifier were then applied to all 16 regions of New Zealand. The resulting
raster clumps were polygonized and smoothed. To simplify inclusion in LCDB 4.1, the polygons
were then filtered using a WITHIN spatial operation with existing pasture polygons. The output
of this filter operation only included isolated and completely new polygons that could easily be
checked by an operator before inclusion. Table 2 shows the number of these found in each region
before and after filtering. The 16,840 isolated and smoothed polygons were visually checked
against a temporal sequence of older Landsat7 imagery, the SPOT-5 imagery used in this study,
more recent Landsat8 imagery, and more recent high-resolution SPOTMaps imagery (1.5 m).
Each of these isolated woody features was assessed to see if it would be an improvement to
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Fig. 4 Land Cover Database (LCDB) map of the Wellington region, showing newly identified
woody patches in pasture, as red.
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the LCDB if included without any additional digitizing. The proportion considered useful was
76% (12,743). Those woody features considered to be an improvement were manually classified
into LCDB categories by interpretation of the temporal image sequence and directly inserted into
the LCDB. The prediction of which woody class the feature fell in was less accurate, in all 4627
(7783 ha) were correctly predicted or 36%.

5 Discussion

Land cover classification based on a combination of optical and SAR data depends on the
capability of the input bands to discriminate between the target classes and a discrimination
function that is able to take advantage of this discriminative power. Our results show that it
is possible to create a successful classifier based on SPOT-5 or PALSAR dual-polarized data
alone, but best results are achieved when the two data sources were combined. Model and
cross-validation scores were very high (>0.99) in the initial classification with two output
classes. In the second classification step, achieved scores were much lower. This reflects the
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Fig. 5 A subset of theWellington region (LCDB), showing newly identified woody patches outlined
in red. The woody patches are classified as outlined in Sec. 3.2.

Table 1 Comparison of number of segments identified by the SVC classifier with those identified
by the light detection and ranging canopy height model (LiDAR CHM).

Height class

SWIR/HV Six predictors

Number of
identified
segments

% of identified segments also
identified by CHM class

Number of
identified
segments

% of identified segments also
identified by CHM class

3 m 3084 65.16 3276 67.13

2 m 3431 72.49 3703 75.88

1 m 3863 81.62 4195 85.96

0.5 m 4178 88.27 4499 92.19
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difficulty of differentiating between the multiple target classes and the quality of the LCDB used
to train the classifier.

The SVM algorithm used in this study was able to differentiate between the target classes
with better results in the woody/nonwoody only case and shows general potential for analysis of
combined datasets because of its flexibility regarding the applied discrimination function.
Furthermore, it was helpful to be able to visualize the discrimination function, although
only for two-dimensional parameter sets. This allowed compensating for one of the disadvan-
tages of many machine-learning methods—their tendency to create black box models—and
enabled us to understand and interpret the model from a physical perspective.

Although we have shown that it is possible to add new information content to the existing
LCDB dataset with synergetic usage of LiDAR, SPOT, and PALSAR data, manual examination
of the output is still a necessity and will be in the future. We see potential, though, in refining and
extending the defined methodology for future updates of LCDB. Manual work could then be
redirected from on-screen drawing to quality assurance of automatically created improvement
datasets.

The developed method is applicable to other mapping projects on regional to national scales
if the examined landscape is characterized by a mosaic of woody and nonwoody vegetation
types. The approach used can also be applied to similar problems, e.g., the identification of
clearings in woody areas. A more challenging problem that would need adjustment of the meth-
odology would be to find segments of incorrectly identified vegetation where the discrimination
is not clear-cut woody versus nonwoody. An example would be to identify forest areas on bush/
scrub backgrounds. The training method of the SVM classifier using the CHM would have to be
refined in this case and the temporal difference between the PALSAR and SPOT data would pose

Table 2 Statistics for discovered woody features with potential to improve LCDB. For each region,
the first figure is the total number of woody features and the second figure is the reduction after
filtering to ensure the feature is isolated and completely new to LCDB4.1.

Region Woody sites Total area (ha)

Northland 10271/1820 21478/2892

Auckland 4430/1124 8865/1771

Waikato 5753/1565 10635/2441

Bay of Plenty 2443/466 5043/749

Gisborne 4168/1120 8727/1950

Hawke’s Bay 5235/1198 11060/1978

Manawatu-Wanganui 7437/2366 14335/3831

Taranaki 2775/741 5492/1197

Wellington 4139/1473 8033/2408

Tasman 2237/230 4889/399

Nelson 105/14 201/22

Marlborough 1647/394 3568/688

Canterbury 6461/2153 13482/3644

West Coast 1619/155 3704/262

Otago 2928/1011 5744/1625

Southland 2629/1010 5766/1688

Total 64277/16840 131022/27545
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a greater problem than in this analysis. Current and temporally matching datasets for PALSAR,
SPOT, and LiDAR CHM would generally be beneficial.

The ALOS satellite that produced the PALSAR data used in this study ceased to function in
2011, but fortunately ALOS-2 started regular provision of PALSAR-227 data on December 1,
2014, with improved spatial resolution. Therefore, it should be possible to repeat the analysis
described here in the future with more current SAR data. SPOT-6, on the other hand, no longer
provides a SWIR band,28 which was found to be the most useful of the optical bands for woody/
nonwoody discrimination. Therefore, the combination of PALSAR-2 and SPOT-6 might be a
powerful combination for future vegetation classification, with PALSAR-2 compensating for
the missing SWIR band.

6 Conclusion

It is possible to use a LiDAR CHM of a region as training data for a classifier. The classifier is an
SVM applied to nationally available PALSAR and SPOT-5 imagery. Application of the classifier
to segments increased the accuracy to levels suitable for use in enhancing the national LCDB
(∼92%). Regional-scale differentiation between woody and nonwoody vegetation was best
achieved by a combination of L-band dual-polarized PALSAR data (HV) with multispectral
optical data that include an SWIR band. The application of an SVM algorithm to these data
proved successful. The versatility of these algorithms regarding the discrimination function
and their ability to solve classification problems with multiple output classes were critical factors
for success. The identified and classified woody patches constitute a valuable addition and
enhancement of the national LCDB.
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