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Abstract. A previously proposed vegetation isoline equation suffers from errors if the soil back-
ground of a canopy layer is bright. These errors arise from the truncation of the second- and
higher-order terms that represent photon interactions between the canopy and the soil. An isoline
equation that includes a second-order interaction term is introduced. The equation was initially
derived by explicitly including a second-order interaction term in both the red and near-infrared
(NIR) reflectance spectra (symmetric approximation). We also examined an alternative model in
which the interaction term was included only in the NIR band (asymmetric approximation). In
this model, the derived isolines tend to shift upward (overcorrection effects). Numerical experi-
ments revealed that the errors in the isoline obtained by the asymmetric approximation were
reduced in magnitude to nearly one-fifth of the errors in the previously proposed method.
Its accuracy was higher than that of the symmetric approximation, despite the fact that the asym-
metric approximation included fewer terms than the symmetric approximation. The improved
model accuracy resulted from the overcorrection effects, which compensated for the truncation
error. With the simplicity and improved accuracy, the current isoline equations provide a good
alternative to the previous approach. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.9.095987]

Keywords: vegetation isoline; leaf area index; fraction of vegetation cover; canopy radiative
transfer model; inversion.

Paper 15278P received Apr. 16, 2015; accepted for publication Oct. 14, 2015; published online
Nov. 18, 2015.

1 Introduction

Biophysical parameter retrieval from remotely sensed reflectance spectra is a fundamental goal
in the field of land remote sensing. Qin et al.1 categorized the available retrieval algorithms into
four groups based on the approaches taken: (1) techniques that relied on a spectral vegetation
index (VI) and its correlation with biophysical parameters, such as the leaf area index (LAI);2–7

(2) algorithms that used lookup tables;8,9 (3) neural networks;10–12 and (4) direct inversions of
numerical models [e.g., models of radiative transfer (RT)] using optimization methods.1,9,13–15

These approaches present advantages and disadvantages over other approaches in terms of accu-
racy, computational costs, complexity, and applicability. The common feature of all categories of
approach is that a better model increases the accuracy of the retrieved parameters. For this rea-
son, significant efforts have been applied toward improving the accuracy of physical and numeri-
cal models.

The concept of vegetation isolines2,16–20 forms the basis of the spectral VI,2,7,18,20 which has
been widely used as a proximity measure (model) of surface biophysical parameters.21 The iso-
line concept has been used as an analytical tool for investigating the influence of the soil on the
retrieved parameters.22–28 From this standpoint, vegetation isoline equations provide a model for
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the relationship between reflectances at different wavelengths. Several reports have attempted to
use isolines in the analysis of the VI 24,28 and in parameter retrieval.29,30 Recently, these
relationships were applied to intercalibration studies of the VI values obtained from different
sensors.31–33 Thus, the accuracy of the vegetation isoline equation must be improved in
order to improve parameter retrieval algorithms and better understand the factors that affect inter-
calibration studies.

Yoshioka et al.34 found that the derived isoline by the isoline equations loses accuracy in
intermediate ranges of the LAI. Loss of accuracy in the isoline equation arises from truncations
of the terms that correspond to multiple interactions among the photons reflected from the can-
opy layer (at the bottom surface) and the soil surface. These terms are referred to as higher-order
interaction terms34 in this study. The isoline equations derived by Yoshioka et al. 24,34,35 retain the
interaction terms up to the first-order terms. The truncation, however, simplifies the derivation
and yields a final form that is useful as an analytical tool.24,28,31–33 One drawback of this trun-
cation, however, is the loss of accuracy, which must be improved while simultaneously retaining
the simplicity of the model. This study seeks to do just this.

We conducted a series of pilot studies36–38 to explore possible improvements to the higher-
order terms in the isoline equations. Derivations were developed for use in several cases. Three
model issues have yet to be clarified. First, the relationship between the previously derived iso-
line, which includes a first-order interaction term, and the newly derived isoline, which includes
higher-order interactions, is not yet understood. Second, the mechanism by which the errors were
reduced upon inclusion of the higher-order term has not yet been identified. In some cases, iso-
lines containing fewer interaction terms to describe one of the two bands showed significantly
better accuracy. This mechanism must be explored systematically. This study examines these
matters from an analytical and numerical perspective. The isoline equation derived here is
even simpler than the equation introduced in the pilot studies; thus, this equation may be readily
applied to new analyses. Finally, numerical procedures for determining the isoline parameters
were not discussed in the pilot studies. These matters require further study for application
purposes.

The objective of this study is to improve the first-order isoline equation by including second-
order interaction terms while maintaining the model simplicity. This objective was achieved
through a novel approach. Instead of retaining the second-order interaction terms of both the
red and near-infrared (NIR) bands, we retained the term only for the reflectance of the NIR
band. The asymmetric treatment of the second-order interaction significantly improved the
model accuracy without sacrificing the simplicity of the derived expression. This study describes
the formal steps, which used to derive the improved version of the vegetation isoline equation
and validate its accuracy by conducting numerical experiments based on a coupled leaf and
canopy RT model, PROSAIL.39

The remainder of this discussion presents a review of a previously derived vegetation isoline
equation,24,34 referred to as a first-order isoline equation in this study. Two forms of higher-order
approximations are derived. The results of numerical experiments using an RT model are then
shown to evaluate the degree to which the accuracy was improved by the introduction of the
higher-order approximations. The mechanism by which the accuracy was improved by the
approximations is discussed in detail. Finally, the findings of this study are summarized.

2 Analytical Model and First-Order Vegetation Isoline

2.1 Analytical Canopy Reflectance Model

This study begins with an analytical form of the top of the canopy (TOC) reflectance model,
which has been used extensively in this field of study:40

EQ-TARGET;temp:intralink-;e001;116;129ρλ ¼ ωρvλ þ ω
T2
λRsλ

1 − RsλRvλ
þ ð1 − ωÞRsλ; (1)

where the variables and notations mainly follow those given in Refs. 24 and 34, except for the
fraction of vegetation cover (FVC) represented by ω in this study. The variable ρλ represents the
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TOC reflectance at the wavelength λ, ρvλ represents the “pure” canopy reflectance, which can
only be obtained by assuming perfect absorbance beneath the canopy layer, Rsλ and Rvλ re-
present the bihemispherical reflectance of the soil and canopy layers, respectively. The variable
Rvλ is somewhat special among these variables because it represents the albedo of the bottom
surface of the canopy layer. The details of the model are illustrated in Fig. 2 of Ref. 34. T2

λ

represents the two-way transmittance of the canopy layer at the indicated wavelength, λ. We
next defined the area-averaged two-way transmittance at a point:

EQ-TARGET;temp:intralink-;e002;116;651T2
λ ¼ ωT2

λ þ 1 − ω: (2)

The word “area-averaged” indicates that the bare soil region, ð1 − ωÞ, provides “perfect” two-
way transmittance properties, and the averaged transmittance of the partially vegetated area may
be modeled using a weighted average of T2

v and 1.0, with weighted values of ω and ð1 − ωÞ. In
the following section, we briefly explain the vegetation isoline equation introduced
previously.24,34

2.2 Vegetation Isoline Equation with a First-Order Interaction Term in
the Red–Near-Infrared Reflectance Subspace

The isoline equation introduced in this subsection is referred to as the first-order isoline because
only a single interaction term with the soil surface is included.

The model was derived by explicitly including the first-order interaction term as the second
term of the right-handside (RHS) of Eq. (3),

EQ-TARGET;temp:intralink-;e003;116;459ρλ ¼ ωρvλ þ ωT2
λRsλ þ

ωT2
λR

2
sλRvλ

1 − RsλRvλ
þ ð1 − ωÞRsλ; (3)

where the second term of the RHS in Eq. (3) indicates the first-order interaction term. The second
and higher interaction terms, represented by the third term of the RHS, are further defined as a
truncated-order term:

EQ-TARGET;temp:intralink-;e004;116;379OðR2
sλÞ ¼

T2
λR

2
sλRvλ

1 − RsλRvλ
: (4)

Equation (3) can be simplified using Eq. (2):

EQ-TARGET;temp:intralink-;e005;116;321ρλ ¼ ωρvλ þ T2
λRsλ þ ωOðR2

sλÞ: (5)

Two equations were used to describe the red (denoted by the subscript R) and NIR wave-
lengths (N):

EQ-TARGET;temp:intralink-;e006;116;262ρR ¼ ωρvR þ T2
RRsR þ ωOðR2

sRÞ; (6)

EQ-TARGET;temp:intralink-;e007;116;228ρN ¼ ωρvN þ T2
NRsN þ ωOðR2

sNÞ: (7)

The soil line assumption of Ref. 41 was applied:

EQ-TARGET;temp:intralink-;e008;116;186RsN ¼ aRsR þ b; (8)

where a and b represent the slope and offset of the soil line, respectively. Equations (6)–(8) were
used to eliminate the soil reflectances RsR and RsN to obtain the first-order approximated veg-
etation isoline equation:

EQ-TARGET;temp:intralink-;e009;116;119ρN ¼ aγ1ρR þD1 þ ϵ1; (9)

where γ, D, and ϵ1 are defined by
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EQ-TARGET;temp:intralink-;e010;116;735γ1 ¼ T2
N∕T2

R; (10)

EQ-TARGET;temp:intralink-;e011;116;711D1 ¼ bT2
N þ ωðρvN − aγ1ρvRÞ; (11)

EQ-TARGET;temp:intralink-;e012;116;682ϵ1 ¼ ω½OðR2
sNÞ − aγ1OðR2

sRÞ�: (12)

Finally, we obtained an approximated form of the vegetation isoline equation by truncating
the higher-order interaction term:

EQ-TARGET;temp:intralink-;e013;116;630ρN ≈ aγ1ρR þD1: (13)

The first-order isoline model suffers from truncation errors. For example, Yoshioka et al.34

indicated that the truncation error increases at higher soil reflectance values, and the relative error
can reach 5%. Their findings suggest that the errors in the retrieved biophysical parameters,
calculated based on the isoline formula, can reach the same magnitude. The truncation errors
in the isoline formula should, therefore, be minimized to obtain more accurate parameter retriev-
als using the isolines.

The truncation error pattern obtained from the first-order isoline model was numerically char-
acterized using a RT model PROSAIL.39 Figure 1 shows the first-order isoline and reflectance
spectra simulated using the model in the red and NIR reflectance subspaces. The empty circles
denote the simulated reflectance, which was considered to be a “true” spectrum. The solid lines
indicate the first-order isoline at various LAI values of the pure canopy component ranging from
0 to 4 at intervals of 0.5. The left and right figures present the results obtained from different FVC
(ω) values: full coverage (ω ¼ 1) or half coverage (ω ¼ 0.5), respectively. A detailed description
of the simulation conditions is provided in the latter section. These results confirmed that the
error (the discrepancy between the empty circles and the solid lines) in the first-order isoline
could be reproduced numerically using the model presented in this study.

The error trend was characterized by plotting the distance between the isolines and the true
spectra, as shown in Fig. 2, at LAI ¼ 1.0 (solid line) and LAI ¼ 4.0 (dashed line) for both the
fully covered and partially covered cases. The error was plotted as a function of the soil reflec-
tance in the red band. The figure clearly reveals two characteristics: first, the error increased as
the soil became brighter. Second, the error at LAI ¼ 1.0 always exceeded that obtained for
LAI ¼ 4.0. Because these trends have been analyzed previously,24,34 we summarize the conclu-
sions briefly: (1) the influence of the higher-order interaction terms increased for brighter soils
and (2) this influence first increased and then decreased as the canopy thickened.

The error could be reduced to some extent by adjusting the higher-order terms. The next
section discusses the derivation steps that are used to obtain the second-order approximated
reflectance and a new isoline equation referred to as the “asymmetric order isoline” in this study.
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Fig. 1 First-order vegetation isolines and simulated reflectance spectra obtained using PROSAIL.
The value of the fraction of vegetation cover (FVC) represented by ω was assumed to be (a) unity,
representing a fully covered case and (b) 0.5, representing a partially covered case.
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3 Second-Order Approximation and Asymmetric Order Isoline

3.1 Parametric Form of the Second-Order Approximated Reflectance Spectra

The second-order interaction term could be explicitly separated from the higher-order term in
Eq. (3) using the approach taken to separate the first-order term. Specifically, the interaction
terms were retained up to the second order for both the red and NIR spectra in Eq. (3). The
resulting equation then becomes

EQ-TARGET;temp:intralink-;e014;116;442ρλ ¼ ωρvλ þ T2
λRsλ þ ωT2

λRvλR2
sλ þ ωOðR3

sλÞ; (14)

where

EQ-TARGET;temp:intralink-;e015;116;396OðR3
sλÞ ¼

T2
λR

3
sλR

2
vλ

1 − RsλRvλ
: (15)

We next rewrote Eq. (14) to describe the red and NIR bands using the subscripts R and N to
obtain

EQ-TARGET;temp:intralink-;e016;116;331ρR ¼ ωρvR þ T2
RRsR þ ωT2

RRvRR2
sR þ ωOðR3

sRÞ; (16)

EQ-TARGET;temp:intralink-;e017;116;297ρN ¼ ωρvN þ T2
NRsN þ ωT2

NRvNR2
sN þ ωOðR3

sNÞ: (17)

The soil line in Eq. (8) was used to obtain the reflectance spectrum to a second-order approxi-
mation, as represented by the following form with RsR as a parasite parameter:

EQ-TARGET;temp:intralink-;e018;116;243�
ρR

ρN

�
¼

�
T2
R ωT2

RRvR

aT2
N þ ω2abT2

NRvN ωa2T2
NRvN

��
RsR

R2
sR

�

þ ω

�
ρvR

ρvN þ bT2
N∕ωþ b2T2

NRvN

�
þ ω

�
OðR3

sRÞ
OðR3

sNÞ

�
: (18)

The last term could be neglected to obtain a parametric representation of the approximated
second-order spectrum. This form was used only in the numerical experiments to evaluate the
isoline equation, as discussed in Sec. 3.2.
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Fig. 2 Distance between the first-order isoline and the true reflectance spectrum shown in Fig. 1
for (a) ω ¼ 1.0 and (b) ω ¼ 0.5.
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3.2 Isoline Equation Obtained by Asymmetrically Truncating the Higher-Order
Interactions

The previous subsection discussed the retention of the higher-order interaction terms up to the
second-order terms for both the red and NIR bands. In this subsection, we include the second-
order interaction term only in the description of the NIR band, and the red band is approximated
up to the first-order interaction term.

A system of equations was obtained using Eqs. (6), (8), and (17), in which the soil reflec-
tances were eliminated. Algebraic manipulations yielded the final results:

EQ-TARGET;temp:intralink-;e019;116;632ρN ¼ a2ζρ2R þ aðγ1 þ δ1ÞρR þD1 þ δ0 þ ϵ2; (19)

where

EQ-TARGET;temp:intralink-;e020;116;588ζ ¼ ωT2
NRvN∕ðT2

RÞ2; (20)

EQ-TARGET;temp:intralink-;e021;116;559δ0 ¼ ζðbT2
R − ωaρvRÞ2; (21)

EQ-TARGET;temp:intralink-;e022;116;530δ1 ¼ 2ζðbT2
R − ωaρvRÞ; (22)

EQ-TARGET;temp:intralink-;e023;116;489ϵ2 ¼ ωOðR3
sNÞ þ a2ω2ζ½OðR2

sRÞ�2 − aω½2aζρR þ γ1 þ 2ζðbT2
R − aωρvRÞ�OðR2

sRÞ: (23)

Neglecting ϵ2 from Eq. (19), we have

EQ-TARGET;temp:intralink-;e024;116;447ρN ≈ a2ζρ2R þ aγ2ρR þD2; (24)

where

EQ-TARGET;temp:intralink-;e025;116;404γ2 ¼ γ1 þ δ1; (25)

EQ-TARGET;temp:intralink-;e026;116;378D2 ¼ D1 þ δ0: (26)

4 Results of the Numerical Simulations

4.1 Parameter Settings Used in the Numerical Experiments

A series of numerical experiments was conducted using the canopy RT model PROSAIL.39 This
model consists of the leaf model PROSPECT42 and the canopy model SAIL;43 thus, two types of
input parameter were required. Numerical experiments were conducted using the set of input
values provided with the code, except that the three input parameters—LAI, leaf angle distri-
bution (LAD), and soil factor—were set as follows. The soil factor was obtained from the mix-
ture ratio of the wet and dry soil spectra provided with the code. The parameter ranges of the
three parameters were as follows. LAI was varied from 0.0 to 4.0 at 0.5 intervals (9 levels), and
the soil factor was varied from 0.0 to 1.0 at 0.1 intervals (11 levels). During the numerical experi-
ments, six LAD models (planophile, erectophile, plagiophile, extremophile, spherical, and uni-
form distributions) were assumed. (This section focuses on the case of a spherical LAD, as a
representative case, for brevity.) Finally, the obtained reflectance spectra were linearly mixed
with the pure soil reflectance spectra using the fraction of green cover (ω) as a weight. The
parameter ω was varied from 0.0 to 1.0 in 0.1 intervals (11 levels). The total number of spectra
used to model each LAD was 1089. In the analysis, we assumed that the reflectances at 655 and
865 nm provided representative values of the red and NIR bands in this study. This choice of
wavelength pair corresponded to the center of the red and NIR bands obtained from the Landsat
8 operational land imager sensor.
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The other input parameters provided with the code were fixed as follows. For the SAIL part
of the code, the parameter describing the hot spot (hspot) was set to 0.01. The solar zenith,
observation zenith, and relative azimuth angle were set to 30, 10, and 0 deg, respectively.
For the PROSPECT part of the code, chlorophyll-a and -b, carotenoid, and the leaf mass
per area were assumed to be 40, 8, and 0.009 in g∕cm2, respectively. The equivalent water thick-
ness was set to 0.01 cm, and the brown pigment content was assumed to be zero. Finally, the leaf
mesophyll structure (N) was assumed to be 1.5 (the equivalent number of layers).

4.2 Numerical Procedure Used for the Isoline Parameter Retrieval and
the Error Estimation

The isoline parameters used in Eqs. (9) and (19) were computed from T2
vλ and ρvλ, which were

determined using the algorithm described in Ref. 34. This algorithm required two hypothetical
simulations in which the soil was assumed to be “spectrally flat,”with a zero reflectance value, or
the soil was assumed to have a medium reflectance value over the entire wavelength range. In
addition to T2

vλ and ρvλ, the asymmetric order approximated isoline, Eq. (19), required a value of
RvN to define ζ. RvN was determined by conducting an additional simulation in which the soil
was assumed to be spectrally flat and even brighter than was assumed in the simulation used to
determine T2

vλ. The assumption of brighter soil increased the photon contributions of the higher-
order interactions. The parameter RvN was determined by solving Eq. (17) for RvN and using T2

vN
and ρvN , which were computed prior to RvN . With these variables in hand, the isoline parameters
γ1, D1, γ2, D2, ζ, δ0, and δ1 were obtained. In summary, three hypothetical simulations were
conducted to determine the isoline parameters that corresponded to spectrally flat soil at three
different brightness levels.

The errors in the isolines and the approximated reflectance spectra were estimated by com-
puting the distance from the true spectra. Note that the error in the isolines should be equal to the
distance between the true reflectance spectrum (which includes all higher-order interaction
terms) and the “isoline” represented by Eqs. (9) and (19), corresponding to the first-order
and asymmetric order isolines, respectively. Even if a spectrum approximated using a model
based on truncated higher-order terms was far from the true spectrum, the error could be
zero provided that the “isoline” passed through the point of the true spectrum in the red–
NIR reflectance subspace. This distance was employed as a measure of the error because
the error in the biophysical parameter retrieval obtained using the isoline reached zero numeri-
cally under conditions in which the true spectrum point coincided with the isoline. The goal of
isoline determination is to identify the conditions under which the isoline coincides with the true
spectra.

4.3 Comparison of the Accuracy Across the Three Approximations

The performances of the two types of isoline, namely, the first-order and second-order isolines,
were compared with the true and second-order reflectance spectra obtained in the red–NIR
reflectance subspace. Figure 3 represents the isolines as solid lines. The first-order [Eq. (9)]
and the asymmetric order [Eq. (19)] isolines are plotted as black and red lines, respectively.
The empty circle represents the true spectra obtained directly from PROSAIL and corresponds
to the spectra represented by Eq. (1). The crossmark was used to indicate the second-order
approximated reflectance spectra [Eq. (18)]. The isolines were compared at two values of
the vegetation cover: (a) ω ¼ 1.0 and (b) ω ¼ 0.5.

These figures reveal that the asymmetric isolines (red lines) provided much better approx-
imates for the true spectra (empty circles) than the first-order isolines (black lines) over the entire
LAI range. The error in the asymmetric order isoline was smaller than that obtained from the
first-order isoline. Further analyses in this subsection (Table 1) and the next subsection (Fig. 6)
indicated that the asymmetric isolines were even closer to the true spectra than the second-order
approximated reflectance spectra (crossmarks) over the full spectral range. This result is, to some
extent, surprising because the error in the second-order approximated spectrum was expected to
be smaller than the error obtained from the asymmetric isoline, in which one of the bands (the red
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band in this study) was approximated to the first order instead of to the second order. This result
will be further discussed later in this section.

The errors obtained from the two isolines and the second-order reflectance spectra were
directly compared, and the distance between these isolines and the spectra obtained from
the true values (including all higher-order terms) are plotted as a function of the soil reflectance
RsR for the four combinations of LAI and ω (Fig. 4). The errors obtained from the first-order
isoline, second-order reflectance, and asymmetric order isoline are denoted using different col-
ors. Figures 4(a) and 4(b) show the results obtained for the fully covered case, with LAI ¼ 1.0

and 4.0, respectively. Figures 4(c) and 4(d) show the results obtained for the half-covered case.
These figures indicated that (1) the error over RsR was high at high values of RsR and (2) in most
cases, the errors of the asymmetric isoline were the smallest among the three models over the
range of RsR. This result indicates that the accuracy of the asymmetric isoline dramatically
improved over the entire range of RsR. Again, recall that the asymmetric isoline used a first-
order approximated reflectance to model the red band, whereas a second-order reflectance
was used to model the second-order interaction terms in both the red and NIR bands. The
error in the second-order reflectance (blue line) was expected to be smaller than the error
obtained from the asymmetric isoline (red line). These results could be explained in terms
of the relationship between the overcorrection and the truncation error. This mechanism is
described in detail below.

Before discussing these surprising results, we will analyze the error trend by investigating the
error distributions obtained from the simulations conducted using combinations of the three
input parameters (LAI, FVC ω, and soil reflectance RsR) employed in this study. Figure 5
shows a histogram of the errors obtained from the three approximations. The figure reveals
that the asymmetric order isoline errors were clustered at lower errors, unlike the errors of
the other two approximations, and very few simulations provided errors of 1.0E − 3. On the
other hand, the errors of the first- and second-order isoline reflectance simulations were uni-
formly distributed at distances exceeding 1.0E − 3. These results confirmed that the asymmetric
order isoline outperformed the other two approximations.

The model performances were further validated by varying the LAD. The experiments com-
pared the results obtained by assuming six different LAD models: planophile, erectophile, pla-
giophile, extremophile, spherical, and uniform distributions. The error values were averaged
over the entire range of the three parameters (LAI, ω, and RsR). These results are summarized
in Table 1, which lists the standard deviation and the maximum values obtained in all cases. The
table indicates that the average error of the asymmetric order isoline was much smaller (by nearly
one order of magnitude) than the average error of the first-order isoline for all LAD cases. The
table also reveals that the performance of the asymmetric order isoline was better than that of the
second-order reflectance in terms of the average, standard deviation, and the maximum value.
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Fig. 3 First-order isoline (black line) defined by Eq. (9), and the asymmetric isoline (red line)
defined by Eq. (19), with the second-order reflectance spectra (cross mark) computed using
Eq. (18) and the true spectra (empty circle) computed using PROSAIL. The value of the FVC
represented by ω was assumed to be (a) unity, representing a fully covered case and (b) 0.5,
representing a partially covered case.
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Table 1 supports the above findings (e.g., that the asymmetric order isoline performed better than
the other models), derived in Figs. 4 and 5. Section 4.4 analyzes the detailed mechanisms under-
lying this trend.

4.4 Error Reduction Mechanisms Using the Second-Order Isoline

The numerical results presented above indicate that the asymmetric order isoline model was
more accurate than the reflectance approximated up to the second-order interaction terms,
despite the fact that the latter included a greater number of terms in the red band than did
the asymmetric order isoline. This trend is not easy to understand intuitively, but it appeared
to result from the tendency of the model to overcorrect by a degree that was approximately
equal to the order of magnitude of the truncation error in the isoline.

Table 1 Average, standard deviation, and maximum differences between the true reflectance
spectra and the three cases of the isoline/reflectance spectra. The differences were computed
by assuming six types of leaf angle distribution (LAD): planophile, erectophile, plagiophile, extrem-
ophile, spherical, and uniform distributions.

First order isoline Second order spectrum Asymmetric isoline

LAD: planophile

Mean 1.93E − 03 8.53E − 04 3.46E − 04

STD 2.47E − 03 1.33E − 03 5.06E − 04

MAX 1.30E − 02 8.08E − 03 2.56E − 03

LAD: erectophile

Mean 2.93E − 03 1.92E − 03 8.44E − 04

STD 3.68E − 03 2.84E − 03 1.16E − 03

MAX 1.85E − 02 1.60E − 02 5.79E − 03

LAD: plagiophile

Mean 1.57E − 03 5.53E − 04 2.16E − 04

STD 2.06E − 03 8.89E − 04 3.23E − 04

MAX 1.10E − 02 5.60E − 03 1.62E − 03

LAD: extremophile

Mean 1.74E − 03 6.33E − 04 2.47E − 04

STD 2.26E − 03 1.01E − 03 3.68E − 04

MAX 1.18E − 02 6.22E − 03 1.84E − 03

LAD: spherical

Mean 1.95E − 03 8.79E − 04 3.57E − 04

STD 2.51E − 03 1.37E − 03 5.21E − 04

MAX 1.32E − 02 8.31E − 03 2.65E − 03

LAD: Uniform

Mean 1.65E − 03 5.85E − 04 2.28E − 04

STD 2.15E − 03 9.38E − 04 3.41E − 04

MAX 1.13E − 02 5.86E − 03 1.71E − 03
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We further examined the model performances by plotting the four reflectance spectra: (1) the
true spectrum computed directly using PROSAIL; (2) the first-order approximated reflectance;
(3) the second-order approximated reflectance; and (4) the asymmetric order approximated
reflectance using two types of vegetation isoline (first-order isoline and asymmetric order
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Fig. 4 Distance between the first-order isoline, second-order reflectance spectrum, or the asym-
metric isoline and the corresponding true reflectance spectra, as a measure of the error shown in
Fig. 3 at four combinations of leaf area index (LAI) and ω: (a) LAI ¼ 1.0; ω ¼ 1.0, (b) LAI ¼ 4.0;
ω ¼ 1.0, (c) LAI ¼ 1.0; ω ¼ 0.5, and (d) LAI ¼ 4.0; ω ¼ 0.5.
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Fig. 5 Histogram of the errors obtained from the first-order isoline, second order reflectance, and
asymmetric order isoline. The total number of simulated cases was 1089 = (9 discrete values of
LAI) × (11 values of FVC, ω) × (11 values of soil reflectance RsR ), assuming a spherical leaf angle
distribution.
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isoline). Figure 6 shows a limited region of the red-NIR reflectance subspace to illustrate the
differences between the four predicted spectra. This part of the subspace corresponds to the
results obtained at LAI ¼ 2.0 for the case of full canopy coverage.

Figure 6 reveals that the closest spectrum to the true spectrum (denoted by the circle) is the
second-order approximated reflectance, denoted by the crosses. The asymmetric isoline repre-
sented by the red line is even closer to the true spectrum, whereas the asymmetric order approxi-
mated reflectance spectrum (triangle) is further from the true spectrum compared to the second-
order approximated spectrum. Recall that the errors are measured as the distance between the
true spectrum (circle) and the model spectra. Because the distance to the isoline (red line) was
smaller than the distance between the true spectrum and the second-order approximated spec-
trum (cross), the error of the asymmetric isoline was surely smaller. Therefore, these results are
consistent with the trend described in the previous subsection.

This trend could be understood as resulting from an overcorrection to the NIR band in the
asymmetric approximation and the truncation error in the isoline. In the asymmetric case, the
inclusion of a second-order term only in the NIR band overcorrected the spectrum upward in
the direction from the first-order spectrum (square), as illustrated in Fig. 7. The overcorrection of
the NIR band shifted the asymmetric order approximated spectrum (triangle) from the position of
the first-order approximated spectrum (square) parallel to the NIR axis instead of toward the true
reflectance spectrum (circle). Fortunately, this shift direction and distance compensated for the
truncation error. As a result, the isoline of the asymmetric approximation (red line) ran through
the subspace between the true (circle) and second-order approximated spectra (cross). In sum-
mary, the overcorrection of the NIR band and the truncation error in the NIR band nicely can-
celed each other out, thereby shifting the isoline (red) upward into the subspace to decrease the
distance between the true spectrum and the isoline.

5 Discussion and Conclusions

The truncation of higher-order interaction terms presents a major limitation to isoline models
based on a first-order approximation, although this truncation can simplify the final expression.
The simplicity of the analytical form is advantageous for analytical and numerical investigations
of parameter retrieval algorithms, such as the LAI, FVC, as well as of proximity measures,
such as the spectral VI. The accuracy of the vegetation isoline models may be increased by
including the second-order interaction terms in both the red and NIR reflectances; however,
the derived expression was rather complex, thereby reducing the utility of the model as a
tool for analytical and numerical studies. This study took a unique approach: instead of including
the second-order terms in both the red and NIR bands, this study included the term only in the
NIR reflectance.
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Fig. 6 Comparison of the four approximated reflectance spectra: true spectrum calculated using
PROSAIL (circle), first-order approximated spectrum (square), second-order approximated spec-
trum (cross), and asymmetric order approximated spectrum (triangle), with the two isolines (first-
order, black line, and asymmetric order, red line.) The value of LAI ¼ 2.0 and full canopy coverage
(ω ¼ 1.0) was assumed.
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The final form of the derived asymmetric isoline is rather simple; thus, it can be easily altered,
similar to the previously derived first-order isoline. This model, however, dramatically reduces
the errors obtained in the first-order isoline, and the accuracy of the asymmetric case is even
better than that obtained from the reflectance spectrum using the second-order term. With both
simplicity and accuracy, the derived expression can contribute to a wide range of applications,
from designing optimal spectral VI sets to developing inversion algorithms in which the derived
expression may be used as a constraint in the optimization algorithm.

This study focused on only the relationship between the red and NIR reflectances. Although
overcorrections in the NIR band nicely compensated for the truncation errors inherent in the
isoline equation, this compensation mechanism may not apply to other combinations of wave-
lengths. The applicability of this model to other combinations, e.g., the NIR and shortwave
bands, will require more thorough investigations. The findings of this study are currently limited
to the combination of red and NIR wavelengths.

Overcorrection by intentionally truncating more terms in the red band than in the NIR band
compensated for the truncation errors of the higher-order term in a derivation of the vegetation
isoline. These findings suggest that optimal control over the overcorrection level could further
reduce the errors in the asymmetric isoline. This possibility is worth exploring in future studies.
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