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Abstract. The Geostationary Ocean Color imager (GOCI) is the first geostationary ocean color
satellite sensor that collects hourly images eight times per day during daylight. This high fre-
quency image acquisition makes it possible to study more detailed dynamics of red tide blooms,
sediment plumes, and colored dissolved organic matter plumes, and can aid in the prediction of
biophysical phenomena. We apply the red band difference and the fluorescence line height algo-
rithms to GOCI imagery to separate waters with high algal and nonalgal particles and validate the
results with the MODIS imagery. We also track optical features using hourly GOCI imagery and
assess their movement through comparisons with predicted ocean currents derived from the navy
coastal ocean model and tidal data. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.9.096024]
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1 Introduction

The Geostationary Ocean Color Imager (GOCI) is one of the three payloads of the Korean
Communication, Ocean and Meteorological Satellite (COMS) that was successfully launched in
June 2010 from the Space Center in Kourou, French Guiana, by the Ariane 5 Launch Vehicle.1,2

GOCI is the world’s first geostationary ocean color sensor designed with visible and near-infra-
red (NIR) bands that can measure radiance from the ocean surface. The advantage of GOCI is
that it can obtain images every hour during the day which facilitates monitoring the ocean in near
real time. GOCI consists of 16 (4 × 4) slot images covering 2500×2500 km2 around the Korean
Peninsula centered at 36°N and 130°E with a roughly 500-m spatial resolution.1,2 The sensor also
has a very high signal-to-noise ratio (over 1000:1), which is necessary for detection of very low
ocean radiances.1,2 GOCI has six visible bands centered at 412, 443, 490, 555, 660, and 680 nm,
and two NIR bands centered at 745 and 865 nm.1,2 The expected operational life expectancy of
the GOCI mission is about 7 years.1,2

Polar-orbiting satellite sensors such as the Moderate Resolution Imaging Spectroradiometer
(MODIS) and the Medium Resolution Imaging Spectrometer (MERIS) have been widely used
for ocean color studies.3,4 However, those sensors have limitations in monitoring dynamic varia-
tion such as daily or hourly variations of the ocean surface. These sensors typically collect one
image per day at about 1 km resolution. While these sensors provide an enormous advantage in
terms of spatial coverage, cloud coverage is a serious restriction. Daily revisit time is another
limitation for these sensors, particularly in optically complex coastal waters with high temporal
variability due to tides, wind-driven advection, resuspension, and so on. For these reasons,
geostationary sensors with high temporal frequency observations are critical for studying
and quantifying biological and physical processes within the coastal ocean. Unlike polar-orbiting
satellites which provide only one or two images of the same geographic area per day, GOCI
collects images every hour from 00:00 GMT to 07:00 GMT (totaling eight images per day).
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This high frequency image acquisition makes it possible to study more detailed time series
analyses and movements of red tide blooms, sediment and colored dissolved organic matter
(CDOM) plumes and can aid in the prediction of biophysical phenomena.

Phytoplankton blooms develop over the course of a few days to a week and the complete
dynamics of the blooms are not always captured by individual polar-orbiting satellite sensors.
The physiology of phytoplankton cells (chlorophyll content, nutrient uptake, and so on) varies
with diel cycles, and this has a significant impact on their growth rate and hence, their primary
production.5 Thus, multiple observations per day over several days would permit more robust
satellite-based estimates of primary production. However, for such estimations, we need more
reliable atmospheric correction, particularly for the coastal ocean where standard NIR atmos-
pheric correction6 often fails due to higher turbidity and significantly higher radiance contribu-
tions to the NIR bands. Since the water-leaving radiance at NIR can no longer be considered
negligible for the use of atmospheric correction over turbid waters,7 negative readings may result
in the blue–green bands due to atmospheric overcorrection.8,9 Algorithms that use blue–green
bands10–12 usually perform poorly in coastal waters due to increased absorption of CDOM,
increased particle scattering, inaccurate atmospheric correction, and shallow bottom reflec-
tance.13–16 Because of these uncertainties, it is often very challenging to accurately identify
optical and bio-optical features using these algorithms. Thus, algorithms less sensitive to atmos-
pheric correction are desirable.

Although GOCI is the first geostationary ocean color sensor, the geostationary Spinning
Enhanced Visible and InfraRed Imager meteorological sensor has been used to map suspended
particulate matter (SPM) in turbid coastal waters.17 This sensor is limited, however, with just a
single broad red band and an NIR band used for SPM estimation. GOCI also has been used to
map turbidity around the coastal region of the Korean Peninsula.1,18 Unlike other studies,1,17,18

we use the red band difference (RBD) and fluorescence line height (FLH) algorithms, which are
less sensitive to atmospheric corrections and CDOM absorption, to reduce uncertainties.

The objective of this study was to test the feasibility of separating algal and nonalgal com-
ponents using GOCI imagery, and to determine whether high frequency dynamics can be
detected. We also attempted to track the features using hourly GOCI imagery and assess their
movement through comparisons with predicted ocean currents derived from the navy coastal
ocean model (NCOM). Since MODIS RBD and FLH results have been validated,3,4 we used
MODIS to validate GOCI results and then assess the high frequency dynamics from the hourly
imageries in the coastal waters of the Korean Peninsula.

2 Materials and Methods

2.1 Satellite Data

We acquired all eight GOCI L1B hourly data for April 5, 2011, through the Naval Oceanographic
Office and the corresponding MODIS-aqua L1B data from NASA LAADS Web.19 To reduce
uncertainties from the illumination and viewing geometries, we excluded first (at 00:16 GMT)
and last (at 07:00 GMT) GOCI imageries from our analysis. We used the standard GOCI data
processing software system that consists of both the image processing system (IMPS) and the
GOCI data processing system (GDPS).2,20 The IMPS is used to generate level 1B data from the
raw data, whereas the GDPS is used with level 1B data to generate processed level 2 data. Level 2
data are generated with cloud and land masking, atmospheric correction, bidirectional correction,
and ocean color product retrievals. GOCI level 2 data consist of water-leaving radiance (Lw),
normalized water-leaving radiance (nLw), chlorophyll concentration, total suspended sediment
concentration, and many other ocean color products. GDPS also generates level 3 data which
consist of fishery information, primary productivity, water quality level, and water current vec-
tors.21 However, in this study, we only used the standard GDPS2,20 (version 1.2) processed GOCI
nLw in the red and NIR regions since FLH and RBD use radiance/reflectance in these bands.

We processed MODIS-aqua data through the automated processing system (APS)22 that
used the standard NASA atmospheric correction algorithm.6 APS was developed by the Naval
Research Laboratory (NRL) at Stennis Space Center (NRL/SSC) which produces daily ocean
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color products from real time or archived data from sensors such as the visible infrared imag-
ing radiometer suite (VIIRS), MODIS, MERIS, and GOCI.22 It is a powerful, extendable,
image-processing tool which is a complete end-to-end system including sensor calibration,
atmospheric correction and bio-optical inversion. APS incorporates, and is consistent with,
the latest NASA SeaWiFS Data Analysis System (SeaDAS) code and enables us to produce
the NASA standard MODIS products as well as navy-specific products using NRL algorithms.22

APS operates in a stand-alone batch processing mode, which facilitates testing and validation of
new products and algorithms, and reprocessing of many data files (dozens of scenes/day).
Furthermore, APS can automatically extract image data from regions-of-interest to facilitate
time series analyses and also match-ups with in situ data for a specific location. NRL/SSC is
one of only a few institutions that has digested and implemented complete MODIS, VIIRS,
and GOCI processing codes while maintaining compatibility with NASA/Goddard SeaDAS
products.

2.2 Navy Coastal Ocean Model

The NCOM model is a primitive-equation, three-dimensional (3-D), hydrostatic model. It uses
the Mellor–Yamada level 2.5 turbulence closure scheme and the Smagorinsky formulation for
horizontal mixing.23 The model is set up at 3-km horizontal resolution and 50 vertical layers
around the Korean Peninsula. The model was initialized on 00 GMT April 1, 2011, with
sea surface height, temperature, salinity, and velocities data derived from the 1/8 deg horizontal
resolution NCOM global model.24,25 The model was forced with surface fluxes from the navy
global atmospheric prediction system (NOGAPS).26 Open boundary conditions for the NCOM
model are derived from the NCOM global model. Tidal forcing is introduced by using tidal sea
surface height and velocities at the model open boundaries from the Oregon State University
tidal model.27 Eight tidal constituents (M2, S2, N2, K2, K1, O1, P1, and Q1) were used. For the
assimilation of physical observations (temperature and salinity), the NCOM ICON model uses
the navy coupled ocean data assimilation (NCODA) system.28,29 The NCODA is a fully 3-D
multivariate optimum interpolation system. Assimilation of temperature and salinity data is per-
formed every 12 hours (assimilation cycle). The NCODA assimilates satellite altimeter obser-
vations and satellite surface temperature, as well as available in situ vertical temperature and
salinity profiles from expendable bathythermographs, ARGO floats, moored buoys, and gliders
from the global ocean data assimilation experiment dataset. The datasets, processing and quality
control procedures are described in Refs. 28 and 29. Results of glider, ship and satellite data
assimilation into the NCOM model for the Monterey Bay area are described in Refs. 30 and 31.

2.3 Algorithms

The RBD algorithm was developed for relatively low backscattering blooms such as dinoflag-
ellates3,4 by taking advantage of the chlorophyll fluorescence emission centered on 685 nm.
Since there is nothing else in the water that fluoresces in the red region, the RBD easily identifies
and separates chlorophyll rich regions from false chlorophyll-like features generated by CDOM
plumes, sediment plumes and bottom reflectance. CDOM and sediments absorb light at blue
wavelengths and bottom reflectance is typically observed at green wavelengths in optically shal-
low waters; therefore, the standard ocean color chlorophyll algorithms (such as OC310) that are
based on the blue/green radiance ratio can lead to erroneous chlorophyll estimates in coastal
waters. On the other hand, the RBD algorithm is not affected by these water constituents.
The RBD algorithm is expressed as follows:

EQ-TARGET;temp:intralink-;e001;116;158RBD ¼ nLwðλ2Þ − nLwðλ1Þ; (1)

where nLwðλÞ is the normalized water-leaving radiance which is defined as the upwelling radi-
ance just above the sea surface in the absence of an atmosphere and with the sun directly over-
head. The λ1 is band 13 (667 nm) for MODIS and band 5 (660 nm) for GOCI, while the λ2 is
band 14 (678 nm) for MODIS and band 6 (680 nm) for GOCI. The RBD approach has been
used to detect low backscattering algal blooms, particularly dinoflagellates, using MODIS and
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MERIS imagery.3,4,32–34 In this study, the RBD approach was applied to GOCI imagery for the
first time to detect relatively low backscattering blooms such as dinoflagellates, which are known
to occur in the studied region.35–37 Since FLH cannot discriminate between bloom and sediment
rich waters, we used FLH and RBD together to separate the two types of waters. The FLH
products from GOCI were estimated using nLw at GOCI bands 5 (660 nm), 6 (680 nm),
and 7 (745 nm) in a similar fashion as the MODIS FLH.38

3 Physical and Bio-Optical Conditions During Geostationary Ocean
Color Imager Surveys

The western coast of Korea, particularly around the urban estuary Gyeonggi Bay (Fig. 1), under-
goes coastal erosion and geomorphologic changes near the tidal flats.39 This sedimentary envi-
ronment is influenced by the inland river systems and by the circulation of seawater due to tidal
cycles.40–42 Gyeonggi Bay is a shallow (<40 m) semi-enclosed region located on the eastern part
of the Yellow Sea.39 This area has a large tidal range (4–8 m), strong tidal currents (1–2 m∕s),
and a large sediment supply (12.42×106 t∕year) provided by the Han River.43 We used the
NCOM model currents to illustrate the dynamics in this region during the GOCI surveys.
Figure 2 shows hourly current maps for April 5, 2011, from 01:00 GMT to 06:00 GMT.
According to the model, around 01:00 GMT [Fig. 2(a)], 02:00 GMT [Fig. 2(b)], and 03:00
GMT [Fig. 2(c)], the current flows offshore, while around 04:00 GMT [Fig. 2(d)], the current
appears to be reversing direction and starts flowing toward the coast [Fig. 2(e) at 05:00 GMT;
Fig. 2(f) at 06:00 GMT]. Figure 2(g) shows the recorded tidal range for April 5, 2011, at Incheon
(in Gyeonggi Bay at 37.4667° N and 126.5833° E) acquired from Ref. 44, where high tide was
8.89 m at 6:08 am local time (sunrise at 6:14 am), low tide was 1.14 m at 12:17 pm local time,
and high tide was 8.47 m at 6:17 pm local time (sunset at 6:59 pm). Like the NCOM current,
the tidal current changes direction around 03:00 GMT (noon local time) [Fig. 2(g)]. Based on
the NCOM results and the tidal data (Fig. 2), we can see that the current was flowing offshore in

Fig. 1 The navy coastal ocean model (NCOM) model domain. The subdomain around the
Gyeonggi Bay is the area where the analysis of Geostationary Ocean Color Imager (GOCI)
images and the NCOM model currents was conducted.
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the morning hours while in the afternoon hours it was flowing toward the coast. These tide-
dominated waters usually carry significant amounts of SPM, which plays a major role in
ocean health, particularly in coastal waters. SPM in the coastal waters of Korean Peninsula
is relatively high (>20 mg∕m3) and during winter it is particularly high (>100 mg∕m3).45

In situ measurements have shown that SPM can vary by a factor of 2 or more during the
day due to horizontal advection and/or vertical resuspension forced by tides or wind events.46,47

Temporal frequency afforded by GOCI for the first time allows us to study these high temporal
frequency variations in the water surface.

4 Results and Discussion

MODIS-aqua standard chlorophyll image for April 5, 2011, over the Korean Peninsula is shown
in Fig. 3(a) while the corresponding standard GOCI chlorophyll image retrieved through the
GDPS is shown in Fig. 3(d). In Figs. 3(a) and 3(d), the observed chlorophyll concentration
is higher in the coastal regions, particularly along the western and southern parts of the
Korean Peninsula. Yet this higher chlorophyll concentration may not represent true chlorophyll
because chlorophyll-like features may arise from CDOM plumes, sediments plumes and bottom
reflectance when using blue–green band ratio algorithms.13–16 Thus, in turbid waters, chlorophyll
product is not adequate to identify bio-optical features. Instead, we used the FLH and the RBD

Fig. 2 NCOM predicted current around Gyeonggi Bay on April 5, 2011, at (a) 01:00 GMT,
(b) 02:00 GMT, (c) 03:00 GMT, (d) 04:00 GMT, (e) 05:00 GMT and (f) 06:00 GMT. (g) The
tidal data at Incheon (37.4667° N and 126.5833° E) acquired from, where high tide was
8.89 m at 6:08 am local time (sunrise at 6:14 am), low tide was 1.14 m at 12:17 pm local
time, and high tide was 8.47 m at 6:17 pm local time (sunset at 6:59 pm).
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for the surface features detection. Since FLH gives positive readings in both algae rich and sedi-
ment rich waters, while the RBD gives positive readings only in the algae rich waters,3 we can
distinguish sediment rich waters from the algae rich waters by combining these approaches. An
example is shown in Fig. 3, where Figs. 3(b) and 3(e) show the FLH images from MODIS and
GOCI, respectively, while Figs. 3(c) and 3(f) show the RBD images from MODIS and GOCI,
respectively. The features in the FLH images [Figs. 3(b) and 3(e)] are different from their respec-
tive chlorophyll images [Figs. 3(a) and 3(d)], particularly in the region shown with the green box.
These false chlorophyll features are due to the aforementioned uncertainties associated with
blue–green band ratio algorithms. Agreement between the features in MODIS and GOCI FLH
images is much better than the corresponding chlorophyll images (Fig. 3). Uncertainties from
imperfect atmospheric correction (which affects the blue/green wavelengths more strongly than
the red/NIR wavelengths9), CDOM absorption, sediment absorption and bottom reflectance all
explain why chlorophyll images have different features compared with FLH images. On the
other hand, FLH overcomes most of these issues and provides more precise feature information
from algal and nonalgal particles in the water surface. Since the water absorption is much
stronger in the red-NIR regions, algorithms based on these spectral regions can only see the
first few meters of the surface waters. However, for surface feature detection and monitoring
purposes, this could be beneficial because interference from bottom reflectance will be reduced,
unlike with blue–green algorithms. Even though the FLH has many advantages over the blue–
green band ratio algorithms, it breaks down in highly scattering waters, where high red peak
values in the reflectance are primarily due to contributions from elastic scattering modulated
by chlorophyll absorption rather than the fluorescence, thus falsely indicating possible chloro-
phyll rich areas.48–50 In contrast, the RBD technique easily differentiates between the two effects,
giving positive values under true bloom conditions and negative values in highly scattering
waters.3 The RBD approach is for high chlorophyll concentration (>1 mg∕m3) waters and it
depends on the chlorophyll fluorescence quantum yield and the backscattering properties of
the particles in the water.3,32 Corresponding RBD images are shown in Figs. 3(c) and 3(f)
for MODIS and GOCI, respectively, where the agreement between the features in both images
is very reasonable. Additionally, the sediment rich regions in the FLH images (brown box in
Fig. 3) are no longer present in the RBD images. This is not surprising since FLH cannot

Fig. 3 MODIS ocean color products from April 5, 2011, acquired at 04:00 GMT: (a) chlorophyll
image, (b) fluorescence line height (FLH) image, and (c) red band difference (RBD) image. GOCI
ocean color products (data processed with GOCI data processing system GDPS) from April 5,
2011, acquired at 04:16 GMT, (d) chlorophyll image, (e) FLH image and (f) RBD image.
Sediment rich region (red box), false high chlorophyll region (green box), and the algal bloom
region (red circle).

Amin and Shulman: Hourly turbidity monitoring using Geostationary Ocean Color Imager. . .

Journal of Applied Remote Sensing 096024-6 Vol. 9, 2015



differentiate between sediment rich waters and chlorophyll rich waters, while the RBD only
detects chlorophyll rich waters (red circle in Fig. 3). The RBD and FLH results (Fig. 3) are
also consistent with our previous study based on the west coast of Florida.3 Since MODIS
RBD and FLH results have been validated, we used MODIS to validate GOCI results. The
GOCI image shown in Fig. 3 was acquired on April 5, 2011, at 04:16 GMT, which was approx-
imately 16 min after the MODIS acquisition [Figs. 3(a)–3(c)]. Considering that data are from
two different sensors and that they are processed through two different processing systems, the
agreement between GOCI and MODIS results is very good for both FLH and RBD products.
Note that the MODIS and GOCI scales differ slightly because MODIS and GOCI red bands are
situated at slightly different wavelengths. MODIS red bands are about 11 nm apart (centered at
667 and 678 nm) while GOCI red bands are located about 20 nm apart (centered at 660 and
680 nm). Thus, GOCI values are slightly higher than the MODIS values.

To track sediment movement from the GOCI hourly images, we created hourly FLH images.
Figure 4 shows the hourly (01:16 GMT to 06:16 GMT) GOCI FLH images where the area with
warm colors (reds) indicates highly turbid water regions, while the cool colors (blues) indicate
relatively clear water regions. Land, clouds, and invalid pixels are shown in white. The red line in
the figure helps to visualize the movement of the sediment plumes, where the movement is more
prominent in Fig. 4(f). This is because the tide was highest in this image [see Fig. 2(g)] compared
with rest of the GOCI images shown in Fig. 4. During the acquisition of other GOCI images
[Figs. 4(a)–4(d)], tidal transition was taking place, thus it was difficult to see the movement on
still images. However, our careful examination of the FLH images (Fig. 4) and corresponding
NCOM currents (Fig. 2) shows that they are consistent in terms of the features’ movements,
which suggest that the optical and bio-optical features’ movements in this region are tide driven.

5 Conclusion

We show that the temporal frequency afforded by the GOCI sensor can be effectively used to
detect and monitor temporal dynamics of the turbidity due to algal and nonalgal particles in

Fig. 4 GOCI FLH images around Gyeonggi Bay acquired on April 5, 2011, at (a) 01:16 GMT,
(b) 02:16 GMT, (c) 03:16 GMT, (d) 04:16 GMT, (e) 05:16 GMT and (f) 06:16 GMT.
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the surface waters. We successfully separate the regions with high algal and nonalgal particles
from GOCI and validate the results with MODIS imagery. Good agreement between GOCI and
MODIS also suggests that the GOCI sensor is capable of producing quality ocean color products.
Additionally, sediment movement shown by hourly GOCI FLH images agrees well with the
dynamics predicted by the NCOM model and with tidal data, demonstrating the importance
of geostationary ocean color satellites.
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