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Abstract. This study analyzed the predictability of leaf area index (LAI) to the variation of
vegetation type, observation angle, and vegetation index (VI). The analysis was conducted
by using the R2 of the LAI-VI models between in situ measured LAIs and VIs derived
from CHRIS/PROBA data. The results show that the discrepancy of vegetation type mostly
influences the LAI-VI models. The predictability of LAI to the variation of both vegetation
type and index demonstrates the differences of oblique/vertical and backward/forward observa-
tions, and backward series are greater than the forward. The predictabilities of LAI to the varia-
tion of observation angle are greatest for the soil-adjusted VIs and least for the traditional
ratio-based indices. Multivariable linear modeling with all VIs from all five angles yields accept-
able accuracy except for the sparse shrub. The backward less-oblique observation (−36 deg) is
the only angle chosen in the modeling for grass, shrub, and broad leaf forest, while the nadir view
performs best for forests with coniferous trees. These results provide a reference to multiangular
LAI estimation for different vegetation communities. VIs accounting for angular soil effects
require further investigation in the future. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in
part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.9.096085]

Keywords: grass; shrub; coniferous forest; coniferous and broad leaf forest; broad leaf forest.

Paper 14422 received Jul. 15, 2014; accepted for publication Jan. 7, 2015; published online Feb.
9, 2015.

1 Introduction

Leaf area index (LAI), defined as the one-sided green leaf area per unit ground surface area,1 is
used as one key parameter for surface modeling of hydrological processes, ecological develop-
ment, and global change.2–4 Remote sensing uses physical and empirical models to estimate
LAI;5–7 however, the physical models are usually complex and the parameter inversions do
not always converge. The simpler empirical models are usually adopted for various applica-
tions,8,9 but empirical models are site-specific and vary with sensor configuration. This variation
is because the reflectance of forest canopy is affected by many factors such as soil and atmos-
pheric conditions, sensor viewing geometry, and vegetation type,10 and differences in understory
structure and percent canopy cover are also important factors on canopy reflectance.11,12

Therefore, it is important to understand the effects of these factors on the precision of the
LAI estimation.

LAI has been successfully estimated from remote sensing data for different species such as
wheat (Triticum),13 oats (Avena sativa),14 corn (Zea mays),15 and cotton (Gossypium hirsutum).16

Other communities like grass,17 shrub,18 and forest19 have also appeared frequently in literature.
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The spatial homogeneity of crops and shrub-grasses allows the empirical models (linear or non-
linear) to yield higher accuracy in LAI estimation when compared with forests, characterized by
complicated structures.20 Biochemical characteristics of different species also play an important
role in LAI-VI response.21,22 Colombo et al.8 concluded that the LAI-VI models were better for
vineyard, soybean, corn, and poplar plantations (R2 > 0.6) than for native forests (R2 < 0.2). Gu
et al.23 found that the LAI-VI models were more accurate for planted trees than for native forests
with increased biodiversity and complex structures.

Traditional LAI estimation was mostly conducted using data acquired from a near nadir posi-
tion, such as the Landsat24 and the Systeme Probatoire d’Observation de la Terre,25 on both local
and regional areas worldwide. Differences in viewing geometry (both view and illumination
angles) have been ignored in most of these studies. Some studies treated it as a source of uncer-
tainty, and methods were devised to correct the angle effect using either a simple empirically
derived cosine technique26 or the bidirectional reflectance distribution function models.27 Others
tried to use the angle to derive information of the anisotropic characteristics of the target. Diner
et al.28 and Yao et al.29 confirmed that compared with the monoangular observation, the use of
the multiangular data can improve the potentials of VIs in LAI estimation. The multiangular
observation contains more information about the anisotropic characteristics of the vegetation
structures and influences of canopy shadows.

Many traditional VIs like normalized difference vegetation index (NDVI), soil adjusted
vegetation index (SAVI), and global environmental monitoring index (GEMI) were shown to
perform differently at various observation angles.26,30,31 Verrelst et al.32 used the Compact
High-Resolution Imaging Spectrometer onboard the Project for On-board Autonomy
(CHRIS/PROBA) imagery to derive several VIs for evergreen coniferous forests and mead-
ows. The influence of observation angles on the equations for most of the indices was found to
differ with vegetation type, which provides an additional means for the inversion of vegetation
structures. VIs have been designed as a proxy to quantify the vegetation33 and reduce the
effects of nonvegetation factors.34 Earlier VIs were usually linear combinations (subtraction
or summation) in addition to ratios of primary bands such as NDVI35 and simple ratio index.36

Many studies have demonstrated a strong correlation between such indices and LAI;37 how-
ever, the correlation was influenced by the soil background, especially on sparsely vegetated
areas. To reduce the soil background effect, Richardson and Wiegand38 proposed the
perpendicular vegetation index (PVI) using the concept of soil line. Huete39 suggested, instead,
that the PVI is still affected by the optical properties of the soil background. Following this
suggestion, the SAVI was analyzed by Purevdorj et al.40 using the soil adjustment factor L
determined by soil background variations. For example, L ¼ 0.5 was found to perform
well for moderately dense vegetation. Furthermore, Baret et al.41 proposed the transformed
SAVI (TSAVI) by taking into account the soil line slope and intercept. Qi et al.42 used the
modified SAVI (MSAVI), which replaces the constant L with a dynamic L, making the adjust-
ment of the soil background effect more scene specific. The atmospheric effects have consis-
tently been a concern in the calculation of VIs. The atmospherically resistant vegetation index
(ARVI),43 using the radiation of the blue channel to correct the atmospheric effects, improved
LAI estimation accuracy.23 Given that the soil and atmosphere affect the radiation simultane-
ously, Huete et al.44 proposed the enhanced vegetation index, integrating SAVI and ARVI in
the index. In hyperspectral and thermal infrared remote sensing, narrow-band VIs were widely
experimented with. Brantley et al.45 concluded that the red edge indices performed LAI esti-
mation more accurately than broadband indices, such as NDVI and ratio vegetation index
(RVI), when LAI is greater than 4.

In brief, vegetation type, data acquisition geometry, and index design may inherently influ-
ence the reliability of LAI estimation; however, the systematic analysis of these influences was
rarely documented. The objective of this study is to analyze the predictability of LAI-VI model-
ing to variations in three factors: vegetation type, the observation angle, and the VI. To achieve
this: (1) LAIs were measured in situ for different vegetation communities, and related VIs were
derived from different observation angles from CHRIS/PROBA imagery data; and (2) LAI-VI
models were established for each vegetation-angle-index combination followed by an assess-
ment of the performance of the models for each of the three factors.
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2 Materials and Methods

2.1 Study Area and Data Source

The study area (Fig. 1) is located in Yugan County in Jiangxi Province, China (E116°29′46′′–
116°33′24′′, N28°42′52′′–28°49′19′′). A subtropical humid monsoon climate dominates
the area, with a mean annual temperature of 17.8°C and a mean annual precipitation of
1586.4 mm. The majority of rainfall occurs from April to June. Landforms primarily include
rolling hills and lakeside plains, with an altitude of about 150 to 250 m above sea level. Forest
coverage is about 20.5% and the remaining landscape consists mainly of shrub and grasslands.
Sample sites are located in hilly regions with a slope of less than 15 deg.

Remotely sensed images were retrieved from the CHRIS/PROBA data. The CHRIS sensor
provides coregistered images with a spatial resolution of 17 m (pixel size) over the spectral range
415 to 1050 nm. PROBA is an experimental platform which enables the sensor to capture images
from five viewing angles, nominally �55 deg, �36 deg, and 0 deg.46 CHRIS Mode 332,47 data
were acquired over the study area on May 11, 2008, under nearly cloud-free conditions (Table 1).
Solar position was assumed to be constant given that the time difference between the images
sequences was less than 2 min. For convenience, the image sequences before the nadir (þ55 deg

and þ36 deg) and after the nadir (−36 deg and −55 deg) are also referred to as forward and
backward series, respectively.

Fig. 1 Location of the study area (a) and false color composition (b) of the CHRIS/PROBA data
acquired on May 11, 2008. The composition was produced with red ¼ 895 nm, green ¼ 672 nm,
and blue ¼ 551 nm. The white circles on (b) mean the sampling sites.

Table 1 CHRIS image acquisition and illumination geometry from May 11, 2008. Acquisition time
is the Universal Time Coordinated (UTC) on the image acquisition day in the format of HH:MM:SS.

Image
label

Image
sequence

Nominal
observation
zenith angle

(deg)

Observation
zenith angle

(deg)

Observation
azimuth

angle (deg)
Solar zenith
angle (deg)

Solar
azimuth

angle (deg)
Acquisition

time

9CA2 1 þ55 50.60 13.24 23.49 112.44 02:39:06

9CA0 2 þ36 28.63 15.17 23.33 112.70 02:39:55

9C9F 3 0 3.84 160.54 23.16 112.96 02:40:44

9CA1 4 −36 33.77 188.81 23.00 113.22 02:41:33

9CA3 5 −55 53.50 190.34 22.83 113.48 02:42:22
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2.2 Leaf Area Index Field Measurement

Twenty-five field sampling sites were deployed in locations with undisturbed natural vegetation
over the sampling period,48 taking the typical vegetation types and accessibility into consider-
ation. Four plots (20 m × 20 m sized) were located within each site. A total of 100 plots were
sampled: 26, 21, 30, 12, and 11 for grass (GR), shrub (SH), coniferous forest (CF), coniferous
and broad leaf forest (CB), and broad leaf forest (BF), respectively. The main vegetation species
are: GR—Zephyranthes grandiflora, Zephyranthes candida, and Fatsia japonica; SH—Rosa
chinensis Jacq, Camellia japonica L., Photinia glabra, and Thevetia peruviana; CF—Pinus
thunbergii Parl., Podocarpus macrophyllus, and Pinus massoniana; and BF—Schima superba,
Cinnamomum camphora, Elaeocarpus apiculatus Mast, and Sapium discolor. All plots were
configured more than 30 m far away from each other to avoid overlap of the corresponding
image pixels. The characteristics of vegetation on field measured sites are shown in Table 2.
Tree heights were obtained by calculating the horizontal viewer-trunk distance and the viewer’s
elevation angle of the tree top as measured with a tree height gauge. Tree canopy height means
tree height minus canopy bottom height measured in the same way as the tree height. Radii of the
tree canopy crown were measured with a laser distance detector by randomly choosing four
points along the vertically projected “column” of the canopy and measuring and averaging
their horizontal distances to the trunk. The fractional cover of vegetation (VFC) was measured
using the photography method suggested by Gu et al.49 The precise locations of the plots were
determined within an error of 1 m using a Starlink Invicta™ 210 Global Positioning System
(GPS) receiver (RAVEN Industries, Inc., USA). LAI measurements were taken in early May
2010 under diffuse radiation conditions of overcast sky. The two-year difference between
field and satellite data was addressed by carefully selecting plots with no change to vegetation
type and coverage within that period. Two LAI-2000 Plant Canopy Analyzers (Li-COR, Lincoln,
Nebraska) were operated in remote data acquisition mode, one used for reference readings (sky)
and positioned in an open area proximal to the sampling site, and the other used in each plot to
measure light transmission through the canopy. The under-canopy measurements were taken at
about a 1 m height for forests and on the ground for shrubs and grasses. Both LAI analyzers were
covered with a 270-deg view cap. About 5 to 8 below-canopy measurements were taken every
2 to 3 m along two parallel transects spaced by 10 m. The below-canopy measurements were
compared with the above-canopy readings and the LAI was calculated and averaged for
each plot.

2.3 Image Preprocessing and Vegetation Index Derivation

CHRIS products were provided with the radiometrically calibrated top of the atmosphere (TOA)
radiance, and they were affected by both random and partially deterministic disturbances.32 The
multiangular CHRIS observations introduce strong perspective distortions, especially for larger
observation angles (�55 deg). Consequently, the noise reduction, cloud screening, atmospheric

Table 2 Characteristics of vegetation on field measured site.a

Vegetation
typeb

Tree
height (m)

Tree canopy
height (m)

Radius of tree
canopy crown (m)

Vegetation fractional
coverage (VFC)

Leaf area
index (LAI)

GR —c — — 0.62 (0.19) 3.13 (1.04)

SH — — — 0.42 (0.26) 1.93 (1.34)

CF 6.17 (3.37) 3.46 (2.56) 1.29 (0.74) 0.62 (0.16) 2.01 (1.33)

CB 3.45 (1.19) 2.18 (1.61) 1.15 (0.57) 0.63 (0.25) 3.91 (2.26)

BF 5.32 (1.45) 2.83 (1.48) 1.53 (0.28) 0.68 (0.17) 4.61 (2.32)

aClass mean (standard deviation).
bGR = grass, SH = shrub, CF = coniferous forest, CB = coniferous and broadleaf forest, and BF = broadleaf
forest.

cNot applicable.
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correction, and geometric correction were carried out for image preprocessing using the software
BEAM, a toolbox distributed by the European Space Agency (ESA). The noise reduction tool
was used to correct dropouts and vertical striping on the image. Cloudy pixels were masked
using the cloud screening tool. The TOA radiance was then converted to at-surface reflectance
via the atmospheric correction tool using the water vapor data provided by ESA for CHRIS
acquisition mode 3. Compared with the digital numbers, the corrected spectra of three typical
land covers indicated that the atmospheric correction improves the differentiation of typical land
covers, but still overperforms for the last four bands (863 to 1035 nm), a known issue of CHRIS
data processing using BEAM;50 therefore, these bands were removed from the analysis of this
study. Lastly, image georectification was completed through a coordinate map, aided by 15 field
acquired ground control points. All the CHRIS bands were rectified to the WGS-84 coordinate
system.

To derive VIs for each in situmeasurement from CHRIS data, a 20-m buffer around each plot
center was used under the WGS-84 coordinate system. The average value of each band within
the buffer was used for further analysis and VI calculation. Correlation coefficients between
measured LAI and reflectance of each band were computed and compared. Reflectance values
of three bands, band 3 (green, 530 nm), 8 (red, 672 nm), and 14 (near-infrared, 781 nm), have a
strong correlation with LAI and typical spectral characteristics of corresponding visible/near-
infrared ranges, so these were selected for VI derivation. Five commonly used VIs were calcu-
lated including NDVI,35 RVI,51 PVI,38 MSAVI,42 and modified chlorophyll absorption ratio
index (MCARI2).52 These VIs represent three groups: traditional ratio-based (NDVI and
RVI), soil-adjusted (PVI and MSAVI), and other visible light band besides red and near-infrared
bands involved (MCARI2, referred to as multiple bands involved VI hereafter for easy descrip-
tion). The VIs are calculated by Eqs. (1)–(5), respectively:

NDVI ¼ NIR − RED

NIRþ RED
; (1)

RVI ¼ NIR

RED
; (2)

PVI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:355NIR − 0.149REDÞ2 þ ð0.852NIR − 0.355REDÞ2

q
; (3)

MSAVI ¼ 2NIRþ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2NIRþ 1Þ2 − 8ðNIR − REDÞ

p

2
; (4)

MCARI2 ¼ 1.5½2.5ðNIR − REDÞ − 1.3ðNIR − GREENÞ�
ð2NIRþ 1Þ2 −

�
6NIR − 5

ffiffiffiffiffiffiffiffiffiffi
RED

p �
− 0.5

; (5)

where NIR, RED, and GREEN are the reflectances of the near-infrared (781 nm), red (672 nm),
and green (530 nm) bands, respectively. The soil line included in the above equations was from
the references, but not from our data, because only marginal variations were found among
the parameters shown above after plotting the soil line with some limited (and possibly not
so typical) bare soil pixels from the image. The VIs were derived for five observation angles,
which are hereafter referred to as 0 deg NDVI, 36 deg NDVI, and so on.

2.4 LAI-VI Modeling and Predictability Analysis

LAI-VI models were first established with modeling data. After sorting plot LAIs of each
vegetation type in ascending order, plot data were first divided into two independent subsets:
modeling (M) and validation (V), in “MVMVM” cycling sequence, yielding in total 60 and
40 plots for modeling and validation, respectively. Quadratic polynomial regression models,
for their simple and nonlinear performance, were established between LAIs and VIs for
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each vegetation type. Model performance was assessed through the determination coefficient
(R2) and mean relative error (MRE). The MRE was calculated using

MRE ¼ 1

N

XN
i¼1

absðEi −MiÞ
Mi

× 100%; (6)

where Ei,Mi, and N are the model estimated LAI, field measured LAI of plot i, and the number
of validation samples, respectively.

Many predictability (or sensitivity in some literature) analysis methods in LAI estimation
were used in literature, such as direct comparison of LAI-VI linear models,53 calculating the
noise equivalent parameter22,54 and averaging VIs from different observation angles.55 The stan-
dard deviation of the variables (e.g., VI or model R2) was also used in predictability studies.56 Gu
et al.57 analyzed the influence of the radiometric correction level, VI, and polynomial power
choice on VFC-VI modeling using the standard deviation of model R2 values. Similarly in
this paper, to evaluate the predictability of LAI-VI models to variations in vegetation type, obser-
vation angle, and VI, the standard deviation of R2 for each of the three factors was calculated
when the other two factors were fixed. For example, in the estimation of grass LAI using nadir
observation data, the standard deviation of R2 for five models established between LAI and five
VIs indicates the model predictability to the variation of VIs in such GR 0 deg combination. An
increased standard deviation indicates an increase in the predictability. They were hereafter
called predictability to the variation of vegetation type (PVGT), observation angle (PANG),
and VI (P-VI, to be different from the VI of PVI), respectively. To further compare the predict-
ability and applicability of angle-index combinations in LAI estimation, multivariable-based
linear regression models were established using the stepwise regression method with 25 vari-
ables (5 angles × 5 indices) for each vegetation type. Statistical analyses of the predictability
were performed using the software Statistical Product and Service Solutions (SPSS), version
19.0 (SPSS Inc., USA).

3 Results and Discussion

3.1 LAI-VI Relationship Models

The determination coefficients (R2) of the quadratic polynomial regression models for CB, BF,
and GR were generally high and clustered (Fig. 2), but were relatively low and scattered for CF
and SH, indicating that the soil background due to low LAI of these two vegetation types
(Table 2) greatly influenced the modeling. There is an overall strong negative correlation
between MREs and R2 (r ¼ −0.797, p < 0.001) of all LAI-VI models, but interestingly,

Fig. 2 Determination coefficient (R2) and its relationship with mean relative error (MRE) of the leaf
area index-vegetation index (LAI-VI) quadratic polynomial regression models for vegetation types
of grass (GR), shrub (SH), coniferous forest (CF), coniferous and broad leaf forest (CB), and broad
leaf forest (BF).
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only coniferous forest shows a significant correlation (r ¼ 0.719, p < 0.001). The R2 values
seem to differentiate the vegetation communities much better than MRE, so this section will
deal exclusively with R2 values.

The comparison of the model determination coefficients suggested that LAI-VI models for
forests with broad leaf trees are better than for relatively sparse vegetation including CF and SH
(Table 2). The reliability of the models demonstrated by both R2 and MRE values indicates that
the LAI-VI models perform quite differently for different vegetation-angle-index combinations,
which inspires the predictability analysis for better variable selection in the modeling.

3.2 Predictability Analysis of the Model

The predictabilities are generally ranked as PVGT ð0.309� 0.027Þ > PANG ð0.051� 0.046Þ >
P-VI ð0.035� 0.018Þ (Fig. 3). Model predictabilities to each of the three factors (vegetation,
angle, and index) are analyzed and compared in the following sections.

3.2.1 Vegetation type

PVGT differs greatly with the combination of observation angle and VI [Fig. 3(a)]. The greatest
PVGT is found at −36 deg PVI (0.365) and the smallest at 0 deg NDVI (0.248). This suggests
that the extreme PVGTs occur on the two less oblique observation angles.

For each observation angle, the average PVGT of models shows −55 deg ð0.342Þ >
−36 deg ð0.317Þ > þ55 deg ð0.303Þ > 36 deg ð0.302Þ > 0 deg ð0.283Þ, indicating that the
models based on all oblique observation angles are more predictable to the variation of vegeta-
tion type than the traditional nadir observation, especially on the backward series (−55 deg and
−36 deg). For each VI, the average PVGT of the models shows MCARI2 ð0.323Þ>
PVI ð0.321Þ>MSAVI ð0.314Þ> RVI ð0.303Þ> NDVI ð0.285Þ, indicating that VIs considering
the green band besides conventional red and near-infrared bands (MCARI2) or indices account-
ing for soil background effects (PVI and MSAVI) are more predictable to the variation of
vegetation types in LAI estimation.

3.2.2 Observation angle

The greatest PANG is found for CF PVI (0.195), and the least, CB MCARI2 (0.004), indicating
that the extreme PANGs occur only for forests with coniferous trees [Fig. 3(b)].

For each vegetation type, the average PANG (in order) is CF ð0.121Þ > SH ð0.062Þ >
BF ð0.030Þ > GR ð0.029Þ > CB ð0.011Þ. This demonstrates that both vegetation density and
architecture influence such predictability: the sparse CF and SH yield the greatest angular pre-
dictability, while the CB characterized by smallest tree height and canopy among the forest types
(Table 2) is the least predictable to the angular variation. For each VI, the average PANG of
the models shows PVI ð0.078Þ > MSAVI ð0.053Þ > MCARI2 ð0.044Þ > NDVI ð0.039Þ >
RVI ð0.038Þ, indicating similarly to the PVGT that VIs taking into account soil background
effects (PVI and MSAVI) or involving the additional green band (MCARI2) are more predictable
to the variation of observation angles in LAI estimation.

Fig. 3 The predictability of LAI-VI quadratic polynomial regression models over three factors:
(a) vegetation type (PVGT), (b) observation angle (PANG), and (c) vegetation index (P-VI).
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3.2.3 Vegetation index

The greatest P-VI is from CF −36 deg (0.082) and the least from CB −55 deg (0.005).
This means that the extreme P-VIs occur only for forests with coniferous trees at backward
observation angles [Fig. 3(c)].

For each vegetation type, the average P-VIs are greatest for SH (0.047) and CF (0.045), least
for CB (0.018), and moderate for GR (0.032) and BF (0.031). This is similar to the rank of
the average PANG for each vegetation type, showing again that both vegetation density and
architecture influence the predictability of LAI-VI models to VI variation. For each observation
angle, the average P-VIs of models are greatest for −36 deg (0.046), least for þ55 deg (0.025),
and moderate and similar for −55 deg (0.035), 0 deg (0.035), and þ36 deg (0.032), implying
that the models are most predictable to the choice of VI at a backward and less oblique obser-
vation angle (−36 deg), but less predictable at the forward series, especially for the most oblique
forward angle (þ55 deg).

3.3 Influencing Factors of LAI-VI Models

LAI estimation is influenced by various factors including vegetation biophysics, sun-object-sen-
sor geometry, and information retrieval method of images. The three “variables” in our paper,
i.e., vegetation type, observation angle, and VI represent the above factors individually. As
shown in Fig. 3, in general, the discrepancy of vegetation type mostly influences the LAI-
VI models. The PVGT is about 6 and 10 times of that to the PANG and P-VI, respectively.
This indicates the causal and degrading influence of the three factors on LAI-VI relations.
In other words, vegetation types are characterized by different radiation transform properties,
due to variations of community differences like vertical structures, leaf area angle distribution,
and biochemical states under certain conditions of illumination, terrain, and soil.56,58,59 Such
differences originally determined the qualitative and quantitative discrepancies of the signals
available to sensors. The observation angles re-allocate the signals, from which the VIs retrieve
possible information. For some extremely heterogeneous communities, it has been proven hard
or even impossible to estimate LAI with VIs.60 Consequently, the model for LAI estimation may
perform quite differently for different vegetation types. We can infer that the comparisons of
LAIs estimated from angle-index parameters need to be based on the same vegetation types,
otherwise the primary influence of vegetation may be neglected, and then the effects from remote
sensing methods (e.g., angle, index, and model) be exaggerated.

Models PANG [Fig. 3(b)] and P-VI [Fig. 3(c)] were obtained for each vegetation type. Both
PANGs and P-VIs are greatest for CF and SH, least for CB, and moderate for BF and GR. This
implies that LAI and tree (and canopy) height determine mainly if not entirely the two predict-
abilities (Table 2). The models are most predictable to angle and index variations when LAI < 3

(meanþ std:, CF and SH), and least/moderate predictable for communities with least/moderate
tree and canopy height when LAI > 3 (CB/BF). It is notable that the two predictabilities for GR
are similar to those of BF, which is beyond our expectation as reported in literature that relatively
homogeneous grass yielded least reflectance anisotropy.58 This reveals that the LAI-VI model
reliability of grass is less stable than that of forest (CB) in our study, using VIs from multiple
observation angles. That is to say, homogeneous grass does not mean more similar LAI-VI
responses at different observation angles compared with forests. Such a result is consistent
with that of Verrelst et al.,32 who found less anisotropy of VIs from forest than from grass.
This is partly due to the specular reflectance under certain observation angles,61 or the
decrease/increase of visible/near-infrared reflectance with the increase of observation zenith
angle on grasslands with lower LAIs, because when LAI is lower than 3, soil background
could affect satellite observed reflectance significantly and raise or low observed reflectance
depending on soil background (organic matter, moisture, or mineral composition). The VIs per-
form differently in showing such a kind of anisotropy. Figure 4 is the scatterplot of MSAVI and
PVI versus LAI of grass and coniferous forest (other plots of vegetation-index combinations are
similar to this and are omitted). As shown in the figure, when LAI < 3, MSAVI scatters much
more for grass compared with coniferous forest [Figs. 4(a) and 4(b)], while in contrast, PVI
clusters much more for grass than coniferous forest [Figs. 4(c) and 4(d)].
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Both PVGT and P-VI indicate the differences of oblique/vertical and backward/forward
observation angles. The least PVGT occurs at nadir (0 deg), demonstrating that the traditional
“vertical” observation smooths the structural variations of vegetation types thanks to its mono-
angularly projected sampling. Though such smoothing to some degree results in better suitability
to different vegetation types in LAI estimation, the information loss caused by the monoangle
view is inevitable when we are interested in the differences of vegetation types. Thus, multi-
angular remote sensing compensates the loss by describing surface anisotropy of reflectance62

to better the estimation of true vegetation structures like LAI. The PVGTs from the backward
series are greater than those from forward, and from more oblique angles greater than from less
oblique, showing further the value of angular information in LAI estimation. This is mainly
because of the less background potentially viewed in the oblique observation and more shad-
owing effects in the forward series. One of the general conclusions of off-nadir research is that it
performs better than the mononadir in ecological monitoring;63 meanwhile, the land surface
classification with backward data is better than with the forward.62–64 So, the anisotropy proper-
ties of vegetation reflectance have been increasingly investigated to improve the performance of
VI in LAI estimation.65 The P-VIs from the backward series are also greater than from the
forward. But different from PVGTs, P-VIs from less oblique angles are greater than from more
oblique ones, and those from the nadir are the moderate. These results suggest that the nadir and
forward observations do not perform differently when using various VIs in LAI estimation;
on the contrary, choosing VIs from a backward less oblique angle (−36 deg) may benefit
the estimation. Walter-Shea et al.66 also confirmed the advantage of a backward less oblique
angle in the inversion of fraction of absorbed photosynthetically active radiation.

Both PVGTand PANG are least for two traditional ratio-based VIs (NDVI and RVI), greatest
PVGT for the multiband based (MCARI2), and greatest PANG for the soil adjusted (MSAVI and
PVI). This implies the discrepancy of the applicability and discrimination of VIs to vegetation
types and observation angles in LAI estimation. The two ratio-based indices perform most sim-
ilarly in the estimation with the variations of either vegetation or angles, which is in accord with
the findings by Kuusk.67 Similar to the applicability of nadir observation to different vegetation
types, the cost of the “wider” suitability is the decreased discrimination of the vegetation and
angle information of such VIs in the estimation. The MCARI2, the only VI involving three bands

Fig. 4 The scatterplot of leaf area index (LAI) versus: (a) modified soil-adjusted vegetation index
(MSAVI) of grass (GR), (b) MSAVI of coniferous forest (CF), (c) perpendicular vegetation index
(PVI) of GR, and (d) PVI of CF.
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in our study, is most predictable to the variation of vegetation type, revealing that to account for
the reflectance of the green band along with red and near-infrared bands in VI can improve its
capability of describing vegetation structures.62 The PANGs are greatest for the two SAVIs, partly
due to the fact that the soil-adjusted parameters were uniform in this study at all observation angles
which contained different proportions of soil and the anisotropy of its reflectance within the field of
view. The indistinctive adjustment of the soil effects possibly led to more a unstable LAI-VI
response. We believe that integrating angular-oriented parameters to current SAVIs may potentially
improve their performance in LAI estimation, which deserves further investigation.

3.4 Optimal Angle-Index Variables for Leaf Area Index Estimation

To sum up, the adaptability of the LAI-VI model is affected interactively by the variations in
vegetation types, observation angles, and VIs. For each vegetation type, there is likely a suitable
angle-index combination for LAI estimation. Using the method described in Sec. 2.4, multivari-
able linear regression models were established for each vegetation type. The results are shown in
Table 3.

Except shrub, the determination coefficients (R2) of the multivariable-based LAI-VI models
for all vegetation types reach 0.7 to 0.9 and MREs range between 10% and 25%, showing anac-
ceptable accuracy for most routine applications. The obvious less reliable model was established
for shrub, which possibly resulted from its most sparse density (least LAI and VFC, Table 2).
The background soil dominated the reflectance, leading to relatively poor LAI-VI relationships.
Though the VIs selected in the model are adjusted to the soil effect, the adjustment requires
further improvement according to the illuminate-viewing geometry.

It is interesting to note the angle-index combinations selected in the linear models. Only two
angles (−36 deg and 0 deg) and two indices (MSAVI and PVI) were selected in the modeling for
all vegetation types, demonstrating the advantages of less oblique observation and soil-adjusted
indices in multiangular LAI estimation. The nadir angle performs best for the two forest types
with coniferous trees, suggesting the special potentials of the traditional “vertical” observation in
LAI estimation for such forests. Rautiainen et al.58 found more significant anisotropy at 37 deg
than at 57 deg of red and red-edge reflectances on coniferous forest. This seems not to provide
valuable information in our study. One of the possible reasons is the difference of the structure,
distribution, and optical properties of the studied vegetation. The backward less oblique angle
(−36 deg) is the only one selected for the other three vegetation types. This is close to the find-
ings of Goel and Qin,60 who argued that a less than 30 deg observation zenith angle was optimal
for LAI estimation. The efficient viewing angle for the estimation is dependent upon both veg-
etation density and canopy anisotropy. The observation zenith angles suggested in the literature
vary greatly, including �14 deg,66 �25 deg,68 þ55 deg,62,69 and so on. Therefore, choosing
a suitable observation angle is critical and requires more investigation in multiangular LAI
estimation.

Table 3 Multivariable-based LAI-VI models for each vegetation type (LAI¼cþb1×x1þb2×x2).

Vegetation
type

Nominal
observation
angle (deg)

Vegetation
index (VI)

c b1 b2 R2a
MRE
(%) sig.x1 x2

GR −36 deg MSAVI PVI −2.869 −27.735 73.386 0.863 12.78 0.000

SH −36 deg MSAVI PVI −0.304 −48.005 96.906 0.376 31.50 0.014

CF 0 deg MSAVI — −1.701 19.211 — 0.706 24.41 0.000

CB 0 deg MSAVI — −0.982 24.448 — 0.906 10.13 0.000

BF −36 deg MSAVI — −6.201 51.484 — 0.897 16.30 0.000

aDetermination coefficients of multivariable-based models for GR and SH are adjusted R2. GR = grass, SH =
shrub, CF = coniferous forest, CB = coniferous and broadleaf forest, BF = broadleaf forest. MRE = mean
relative error (MRE) calculated using Eq. (6).
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The MSAVI was selected for all vegetations in the modeling, with the PVI for two dwarf
vegetations (GR and SH). The advantages of less background soil effects and later saturation at
high LAI regions9,21 were confirmed in our study. This indicated the importance of soil effects’
correction in multiangular LAI estimation, especially for dwarf or/and sparse vegetation com-
munities. Increasing types of VIs were reported in literature62 using different angle-band com-
binations, pushing forward the exploitation of suitable VI for LAI estimation. The explicit
suitability of VIs is difficult to concretely demonstrate; however, these results provide a reference
to improve the estimation of vegetation structures using multiangular imagery.

4 Conclusions

The predictability analysis of LAI-VI models was conducted in this study, using LAIs of five
vegetation types: grass (GR), shrub (SH), coniferous forest (CF), coniferous and broad leaf forest
(CB), and broad leaf forest (BF), and VIs from five observation angles of CHRIS/PROBA data.
We calculated and compared three kinds of predictabilities, i.e., LAI-VI models to the variation
of vegetation type (PVGT), observation angle (PANG), and VI (P-VI). Finally, we tested the
chosen angle-index combination using the multivariable linear regression method. The following
conclusions can be drawn:

1. The discrepancy of vegetation type mostly influences the LAI-VI models. The PVGTs
are about 6 and 10 times of PANGs and P-VIs, respectively. The models are most pre-
dictable for angle and index variations when LAI < 3 (CF and SH), and least predictable
for communities with least/moderate tree and canopy height when LAI > 3 (CB/BF).
Greater PANGs and P-VIs of GR than those of CB imply less stable LAI-VI models for
grass compared with such forest in our study.

2. Both PVGT and P-VI demonstrate the differences of oblique/vertical and backward/
forward observations, and those of the backward series are greater than the forward,
suggesting the valuable angular information in LAI estimation. The least PVGT occurs
at nadir (0 deg), and from more oblique angles greater than to those from the less oblique.
The nadir P-VI is moderate, while P-VIs from less oblique angles greater than from more
oblique ones.

3. The PANGs are greatest for the two SAVIs (MSAVI and PVI). Integrating the reflectance
of the green band into VI (MCARI2) may improve its capability of describing vegetation
structures. Least PVGTs and PANGs of the two ratio-based indices (NDVI and RVI)
indicate their most similar performance in LAI estimation with the variations of either
vegetation type or observation angle.

4. Using all VIs from the whole five angles, multivariable linear modeling yields acceptable
accuracy (R2 ¼ 0.7 to 0.9, MRE ¼ 10% to 25%) in LAI estimation for all vegetation
types except shrub (R2 < 0.4, MRE > 30%) due to its sparse density. The nadir angle
performs best for the two forest types with coniferous trees (CF and CB), and the back-
ward less oblique observation (−36 deg) is the only angle chosen for the rest of the three
vegetation types. The MSAVI is selected for all vegetation in the modeling, along with
the PVI for the two dwarf vegetation types (GR and SH).

5. Vegetation dominates the LAI estimation, and multiangular observations improve the
potentials of remote sensing by obtaining valuable off-nadir information. This study pro-
vided a reference to multiangular LAI estimation for different vegetation communities.
The VIs taking into account angular soil effects deserve further investigation.
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