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Abstract. The pairwise orthogonal transform (POT) is an attractive alternative to the Kahrunen–
Loève transform for spectral decorrelation in on-board multispectral and hyperspectral image
compression due to its reduced complexity. This work validates that the low complexity of
the POT makes it feasible for a space-qualified field-programmable gate array (FPGA) imple-
mentation. A register transfer level description of the arithmetic elements of the POT is provided
with the aim of achieving a low occupancy of resources and making it possible to synthesize the
design on a space-qualified RTAX2000S and RTAX2000S-DSP. In order to accomplish these
goals, the operations of the POT are fine-tuned such that their implementation footprint is mini-
mized while providing equivalent coding performance. The most computationally demanding
operations are solved by means of a lookup table. An additional contribution of this paper is a
bit-exact description of the mathematical equations that are part of the transform, defined in such
a way that they can be solved with integer arithmetic and implementations that can be easily
cross-validated. Experimental results are presented, showing that it is feasible to implement the
components of the POTon the mentioned FPGA. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.9.097496]
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1 Introduction

While the resolution of the sensors in the remote sensing space missions tends to increase, the
bandwidth of the communication channel remains comparatively stable. As a consequence, the
reduction of the captured data volume on-board satellites by means of compression is becoming
ever more important, and becomes almost imperative for multispectral and hyperspectral sen-
sors, since the amount of data captured is substantial.

When selecting or designing an algorithm for on-board data compression, we have to con-
sider both, its coding efficiency and if the algorithm is suitable to be efficiently executed on the
hardware that is available on a satellite. Among the possible hardware technologies that can be
used for on-board data compression, field-programmable gate arrays (FPGAs) stand out, yield-
ing a good compromise between performance and cost, as they present multiple advantages, such
as the ability to apply parallel processing to increase throughput, provide flexibility, scalability,
and data integrity features. However, space-qualified FPGAs, which are tolerant to solar radi-
ation, are more difficult to manufacture, increasing their cost and reducing their performance. As
a consequence, the requirement of low complexity for an on-board compression algorithm
becomes even more important.
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The Consultative Committee for Space Data Systems (CCSDS) offers currently a solution for
lossless multispectral and hyperspectral image compression (CCSDS 123).1 This solution has
been proven to take a reduced amount of hardware resources,2 fitting in a small space-qualified
FPGA.3 Nevertheless, although lossless compression has been traditionally preferred to preserve
all the information in the image, the current bandwidth and on-board storage restrictions make it
necessary in some scenarios to resort to lossy compression in order to reduce the data volume
appropriately. As a consequence, the CCSDS is currently working toward the definition of a
lossy standard as an extension of the existing CCSDS 122 standard for image compression.4

The latter defines a two-dimensional (2-D) image coder that combines a wavelet transform
with a bitplane encoder and that, if coupled with a spectral transform, would take advantage
of the spectral correlation present in multispectral and hyperpectral data.

Transform-based methods for compression are known to be well-suited for lossy compres-
sion. However, they are also known to be usually computationally complex in terms of the num-
ber of operations and memory requirements. In particular, in Ref. 5, several three-dimensional
(3-D) transform coding techniques for lossy hyperspectral image compression are compared,
showing increased rate-distortion performance when a spectral Kahrunen–Loève transform
(KLT) is employed, especially in the low bit-rate region. However, the KLT presents important
disadvantages when its implementation on hardware is considered: it has a high computational
cost and has high memory requirements. All these factors lead to a higher implementation dif-
ficulty, and often become insuperable obstacles when considering an implementation on space-
qualified FPGAs.

A divide and conquer strategy was proposed in Ref. 6, in which the pairwise orthogonal
transform (POT) is presented. The POT is a simple adaptive transform that only requires a
small amount of side information, which, in turn allows a line-based application of the transform
not previously available to other divide-and-conquer approaches (or the KLT). In most cases, it
has a better coding performance than wavelet transforms and, at the same time, it overcomes the
inconveniences of the KLT, achieving a notably lower computational cost and better component
scalability, with very low memory requirements (a few orders of magnitude less than a full KLT).
The POT has a better performance than the wavelets, although it does not reach the coding
performance of a full KLT.

This work aims at validating that the low complexity of the POTmakes it suitable for a space-
qualified FPGA implementation. A register transfer level (RTL) description of the main arith-
metic stages of the POT, namely the mean subtraction, the training of balanced and unbalanced
pairwise operations, and the lifting network are provided and optimized in order to of achieve a
low occupancy of the hardware resources, making it possible to synthesize the design on a space-
qualified RTAX2000S or on an RTAX2000S-DSP, which contains additional dedicated digital
signal processor (DSP) blocks. In order to limit the dynamic range expansion of the transform,
the variant of the POT introduced in Ref. 7 is the one being implemented.

Despite the POT being significantly less demanding in terms of hardware resources than the
KLT, in this paper we make it even more amenable for an implementation on a space-qualified
FPGA. In particular, a description of the mathematical operations in the transform is provided, in
such a way that they can be solved with integer arithmetic, making the transform fully reversible
and bit-exact (i.e., output values are unambiguous down to the bit level), which enables
progressive lossy-to-lossless and makes implementations much easier to validate. Moreover,
the most computationally demanding operations of the transform are solved by means of lookup
tables (LUTs).

We note that, despite the POT being proposed to be included by the CCSDS in the upcoming
standard for lossy multispectral and hyperspectral compression, the final standard may be differ-
ent from the description of the operations in the POT presented in this paper. Moreover, the POT
is only a part of the whole compression engine, which is being designed such that existing imple-
mentations of CCSDS-122.0, such as the ASICs described in Refs. 8 and 9, can be leveraged to
create a complete compression engine.

This paper is structured as follows: Section 2 provides an overview of the arithmetic elements
in the POT in a bit-accurate way, the subsequent Sec. 3 reports the hardware design consider-
ations, explaining the methodology followed to create an RTL description of the latter opera-
tions, Sec. 4 shows the implementation results and finally, Sec. 5 presents the conclusions.
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2 The Pairwise Orthogonal Transform: A Bit-Exact Definition

The POT is an approximation of the KLT at a fraction of its computational cost. It is a compo-
sition of three kinds of operations that, when combined into a multilevel structure, are employed
to obtain the transformed image. Namely, these operations are the mean-subtraction operation,
the balanced pairwise operation, and the unbalanced pairwise operation. For conciseness, this
paper does not include a detailed description of the POTor the implemented variant; descriptions
which are already available in Refs. 6 and 7.

In the following subsections we present a definition of the arithmetic operations of the trans-
form, which makes it amenable for an implementation on the hardware available on a satellite.
Specifically, the operations are described in a bit-exact way, utilizing only integer arithmetic. This
will facilitate significantly the subsequent physical implementation of the POT. In this paper, the
implementation target is an FPGA of the Microsemi RTAX family, which is currently space-quali-
fied and is flown in current space missions. Reducing the complexity of the arithmetic operations
becomes even more important due to the limited computational power of these devices, when
compared with other nonqualified FPGA models that can be found nowadays in the market.

2.1 Mean-Subtraction Operation

The mean-subtraction operation maps an input sequence of integer values fx0; x1; : : : ; xN−1g of
size N ≥ 1 to an output sequence fy0; y1; : : : ; yN−1g, modifying the original values such that the
output sequence has an arithmetic mean of approximately zero; see Fig. 1.

For a given input sequence, the value m is an approximation of the arithmetic mean of xi,
obtained as

m ¼
�
1

N

XN−1

i¼0

xi

�
: (1)

Given m, the result of the mean-subtraction operation is yi ¼ xi −m for i ¼ 0; : : : ; N − 1.

2.2 Pairwise Operation

The pairwise operation is defined in such a way that the output of the operation produces sequen-
ces that share virtually no correlation among each other.

Let fx0; x1; : : : ; xN−1g and fy0; y1; : : : ; yN−1g be two one-dimensional input sequences con-
sisting of N integer samples each, and with an arithmetic mean of approximately zero. Given
these sequences, the pairwise operation produces two output sequences, fχ0; χ1; : : : ; χN−1g and
fϕ0;ϕ1; : : : ;ϕN−1g, consisting of N samples each, and with an arithmetic mean also of approx-
imately zero, as shown in Fig. 2

The pairwise operation changes in function of its current inputs. Two training parameters B
and C are first derived from the inputs and then used to specialize the operation. These param-
eters are required to invert the operation and are stored as side information.

Fig. 1 Mean-subtraction operation.

Fig. 2 The pairwise operation.

Santos et al.: On the hardware implementation of the arithmetic elements. . .

Journal of Applied Remote Sensing 097496-3 Vol. 9, 2015



Additionally, the pairwise operation has a Boolean input, named flip, which changes the sign
of all the elements of both output sequences.

The integer constantΩ indicates the precision of pairwise operations. It must be set within the
interval [9, 16] and it is constant for the whole compression process of an input image. This
constant can be used to regulate the complexity of the implementation at the expense of
minor coding performance penalties.

As a prerequisite to calculate the training parameters, B and C the scaled-up variances and
covariance of xi and yi should be calculated as follows:

fσ2x ¼ XN−1

i¼0

x2i − N ·

�XN−1

i¼0

xi

�2

; (2)

fσ2y ¼ XN−1

i¼0

y2i − N ·

�
1

N

XN−1

i¼0

yi

�2

; (3)

gσx;y ¼ XN−1

i¼0

ðxi · yiÞ − N ·

�
1

N

XN−1

i¼0

xi

�
·

�
1

N

XN−1

i¼0

yi

�
: (4)

The training parameters B and C are then calculated as follows. When gσx;y ≠ 0,

B ¼ gσx;y
jgσx;yj and C ¼ min

�
max

��
2Ω−4 ·

fσ2x −fσ2y
2 · jgσx;yj

�
;−2Ω−2

�
; 2Ω−2 − 1

�
: (5)

Otherwise, when gσx;y ¼ 0,

B ¼ −1 and C ¼
�
2Ω−2 − 1 if fσ2x ≥ fσ2y;
−2Ω−2 otherwise

: (6)

After obtaining B and C, the decorrelated output sequences can be obtained through a lifting
network. The lifting network, requires computing the weights w̃1, w̃2, and ~w3, and two flags: one
to indicate whether the result shall be sign-changed (flag s) and the another to signal whether the
outputs χi and ϕi shall be permuted. Hence, the result of the pairwise operation (the values χi and
ϕi) is produced by the lifting network shown in Fig. 3, where the values xi and yi are affected by
three lifting steps (with weights w̃1, ~w2, and ~w3), and the result is conditionally sign-changed and
conditionally permuted.

Fig. 3 Lifting network of the pairwise operation.
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Weights w̃1, ~w2, and ~w3 are obtained from B and C as follows. Let

t̃ ¼

8>>><>>>:
0 if C ¼ 2Ω−2 − 1

B · 2Ω−1 if C ¼ −2Ω−2

B ·

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22Ω−3 −

�
22Ωþ1·C

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
28·C2þ22Ω

p
þ0.5c

þ 0.5

�s
þ 0.5

�
otherwise

; (7)

p̃ ¼
�
ð2Ωþ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
t̃

2Ω−1

�
2

s
þ 0.5

�
; (8)

and fffiffiffi
2

p
¼ bð2Ωþ2Þ

ffiffiffi
2

p
þ 0.5c: (9)

If C < 0, then

w̃1 ¼
�
ð2Ω−4Þ 2p̃ − fffiffiffi

2
p

t̃
þ 0.5

�
; w̃2 ¼

�fffiffiffi
2

p
· t̃

2Ωþ3
þ 0.5

�
; w̃3 ¼

�
ð2Ω−4Þ 4p̃ − fffiffiffi

2
p

t̃
þ 0.5

�
; (10)

and the output shall not be permuted; otherwise, when C ≥ 0,

w̃1 ¼
�
ð2Ω−3Þ

fffiffiffi
2

p
− 16t̃
p̃

þ 0.5

�
; w̃2 ¼

�
−

fffiffiffi
2

p
· p̃

2Ωþ4
þ 0.5

�
; w̃3 ¼

�
ð2Ω−3Þ

fffiffiffi
2

p
− 8t̃
p̃

þ 0.5

�
;

(11)

and the output shall be permuted. The sign change is determined by

s ¼

8>><>>:
1 if ðC ≥ 0 orB ≥ 0Þ and flip is false

−1 if ðC ≥ 0 orB ≥ 0Þ and flip is true

−1 if C < 0 and B < 0 and flip is false

1 if C < 0 and B < 0 and flip is true

: (12)

Output values χi shall be sign-changed when s is −1. Output values ϕi shall be sign-changed
when C < 0 and s is −1, or when C ≥ 0 and s is 1.

2.3 Unbalanced Pairwise Operation

When the POT is applied to images with a number of spectral bands that is not a multiple of two,
some pairwise operations need to be slightly modified, yielding the unbalanced pairwise oper-
ation described next (Fig. 4).

An unbalanced pairwise operation is a pairwise operation, as described previously, except for
the following two variations.

The training parameters B and C are calculated as follows. When gσx;y ≠ 0,

B ¼ gσx;y
jgσx;yj and C ¼ min

�
max

��
2Ω−4 ·

2fσ2x −fσ2y
b1448
1024

· jgσx;yjc
�
;−2Ω−2

�
; 2Ω−2 − 1

�
: (13)

Otherwise, when gσx;y ¼ 0,

B ¼ −1 and C ¼
�
2Ω−2 − 1 if 2fσ2x ≥ fσ2y;
−2Ω−2 otherwise

: (14)
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The weights ~w1, ~w2, and ~w3 are defined as follows: if C < 0, then

w̃1 ¼
�
ð2Ω−3Þ b

effiffi
2

p
·p̃

2Ωþ2 þ 0.5c − 2Ωþ2

t̃
þ 0.5

�
; w̃2 ¼

�
t̃
2
þ 0.5

�
; w̃3

¼
�
ð2Ω−5Þ

� effiffi
2

p
·p̃

2Ω−1
þ 0.5

�
− 2Ωþ4

t̃
þ 0.5

�
;

and the output is not permuted; otherwise, when C ≥ 0,

w̃1 ¼
�
ð2Ω−1Þ

� effiffi
2

p ð2Ω−2−t̃Þ
2Ω

þ 0.5

�
p̃

þ 0.5

�
; w̃2 ¼

�
−

fffiffiffi
2

p
· p̃

2Ωþ4
þ 0.5

�
; w̃3

¼
�
ð2Ω−1Þ

� effiffi
2

p ð2Ω−t̃Þ
2Ωþ2 þ 0.5

�
p̃

þ 0.5

�
;

and the output is permuted.

3 Hardware Implementation of the Arithmetic Elements of the Pairwise
Orthogonal Transform

We present in the following sections the implementation of the operations in the POT in order to
estimate its complexity in terms of utilization of hardware resources and assess the feasibility for
an implementation on a space-qualified FPGA. More specifically, the following operations are
described at RTL: mean-subtraction; computation of the variance and covariance; computation
of the training parameters, B and C; the computation of the weights; and the lifting network. A
flowchart showing the relationship between the aforementioned operations in the POT is dis-
played in Fig. 5.

3.1 Main Design Considerations

The main objective of the presented hardware implementation is to optimize the amount of
FPGA resources taken by the design; hence, we focus on reducing as much as possible the
complexity of the operations, scheduling them sequentially when possible. For instance, the
integer division operations which are needed to compute the mean values and to obtain the train-
ing parameter C are solved by means of serial divisors in order to reduce the amount of hardware
resources.

It is decided to split the design in several modules, which are described in VHDL. We
designed a module that implements the mean subtraction, variance and covariance calculation,
and the necessary operations to obtain the training parameters B and C, as it was described in
Sec. 2. Once B and C are available, it is necessary to calculate the weights. From the equations
presented in Sec. 2, we can infer that these operations are rather complex and might become

Fig. 4 The unbalanced pairwise operation.
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computationally expensive for an FPGA. We have observed, however, that it is possible reduce
the complexity and computational load of the overall design by utilizing a LUT that, given the
parameters B, C, flip, and a flag that indicates is the transform is balanced or unbalanced, will
produce the desired weights ( ~w1, ~w2, and ~w3); the sign change; and the flag indicating that the
output shall be permuted. Finally, a module which implements the lifting network is also
described in VHDL. The basic block diagram of the design is shown in Fig. 6.

In order to find out which is the best implementation solution for the LUT, from which the
weights are obtained, we perform an estimation of the amount of resources needed to implement
it only with combinatorial logic. The results are presented in Table 1, where it can be observed
that the number of combinatorial cells needed to implement such LUT is highly dependant onΩ.
Given that the combinatorial cells required for such LUT rise considerably as Ω grows—with,
for example, a 14% of the RTAX2000S resources employed for Ω ¼ 11—an alternative solution
is proposed in order to reduce the area occupancy, which is to store the necessary LUT values in
the internal RAM of the FPGA. The values can be stored in an external electrically erasable/
programmable read-only memory (EEPROM), that would be loaded to RAM upon system
start-up.

3.2 Register Transfer Level Description

We present the RTL description of the module that performs the POT. This module will receive
the input sequences and produce the decorrelated sequences, as specified in Sec. 2.

The designed module, shown in Fig. 7, contains an input interface to a memory where the
necessary samples are stored. A memory controller is implemented to access this memory. The
decorrelated sequences (detail and principal) are obtained at the output, together with the nec-
essary side information. A valid signal is included to validate the results. First, the input samples
are subtracted their average and the variance and covariance values are calculated, and then the
training parameters are obtained. From the training parameters B and C, it is possible to obtain
the weights, using a LUT. As it was mentioned in Sec. 4, we assume the values in the LUT are in
an external EEPROM, that is loaded to the FPGA internal RAM upon system start up. The
internal RAM blocks are protected with an error detection and correction scheme able to correct
single bit errors and detect double bit errors in the memory content. Finally, the decorrelated
values are finally obtained from the weights using the lifting network module.

The following parameters are set as generics in the VHDL code, in such a way that it is
possible to estimate how the occupancy of the design varies with them.

Fig. 5 Flowchart of the different operations in the pairwise orthogonal transform (POT), which are
implemented in a field-programmable gate array.

Fig. 6 Block diagram of the implemented elements of the POT: mean-subtraction, computation of
training parameters, production of the weights with a lookup table, and lifting network.
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• Number of samples in the input sequences (N).
• Bit width of the input samples.

Additionally, we include a parameter to indicate if the number of input samples is a power-of-
two. In the case the parameter is set, the implemented divisors, which are used to calculate the
mean values, are avoided and the division is performed with bit shifts instead.

4 Implementation Results

The synthesis of the previously described module has been performed on an RTAX2000S and an
RTAX2000S-DSP, which are manufactured by Microsemi and are space-qualified. The main
difference between them is that the RTAX2000S-DSP contains dedicated DSP blocks. Several
different configurations of the top module are synthesized, varying the parameter that indicates if
the number of input samples is a power-of-two (P2), varying the number of input samples (N), or
varying the number of bits per pixel (bpp). In all cases Ω is set to 16. The different combinations
of parameters can be observed in Fig. 8. We note that, even when N is a power-of-two, if we do
not inform explicitly the core with the corresponding parameter, the value will be interpreted as a
nonpower-of-two value, i.e., the integer divisors will be used, they will not be replaced with bit
shifts. This is the case of configurations C5 to C8.

Table 2 shows the hardware occupancy and maximum frequency of the implemented module
obtained for the different configurations in both target FPGAs. The occupancy results are pre-
sented in terms of the percentage of combinatorial cells, sequential cells, and blocks of RAM
(BRAM) utilized. For RTAX2000S-DSP device the percentage of used DSP blocks is also
displayed.

In order to facilitate the comparison of the presented results, the occupancy values are also
displayed in the graphs of Figs. 9 and 10. We can observe that the complete module

Table 1 Combinatorial cells needed to implement the LUTs.

Ω Combinatorial cells

9 917

10 1685

11 3010

12 5446

Fig. 7 Architecture of the mean-subtraction, balanced, and unbalanced operations.
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implementing the POT can be synthesized on an RTAX2000S for any of the presented configu-
rations. The most demanded resource are the combinatorial cells in the RTAX2000S and the
internal BRAM in the RTAX2000S-DSP. Comparing both FPGA models, we can see that
the number of combinatorial cells occupied is reduced for the RTAX2000S-DSP, which has
taken advantage of the DSP blocks that it contains to perform specific computations that, oth-
erwise, would be performed with combinatorial logic. We can also observe that the occupancy of
resources is significantly higher when the input samples are represented with 16 bpp. However,
there is not a significant increase in the number of resources utilized when we change the number
of input samples from 256 to 512.

The frequency results can be observed and compared in Fig. 11. It can be seen that the
frequency increases significantly with the RTAX2000S-DSP. The maximum and minimum
frequencies for the RTAX2000S are 37.58 and 29.92 MHz, respectively. For the
RTAX2000S-DSP the maximum frequency is 73.50 MHz and the minimum frequency is
53.83 MHz. The frequency values decrease as the bit-width of the input samples increases.
No significant differences in the frequencies are found when the number of samples increases.

The intent of this paper is to show the feasibility of an FPGA implementation of the POT, and
as such the implementation has not been optimized for throughput. Anyhow, a brief discussion
follows to illustrate on which could be the throughput of the whole compression engine. The
proposed implementation is able to produce a transformed sample every four clock cycles, which

Fig. 8 Structure for parameter setting and resulting configurations.

Table 2 Synthesis results on a RTAX2000S and on an RTAX2000-DSP for different
configurations.

P2 N bpp ID

RTAX2000S RTAX2000S-DSP

COMB
(%)

SEQ
(%)

BRAM
(%)

Frequency
(MHz)

COMB
(%)

SEQ
(%)

BRAM
(%)

DSP
blocks
(%)

Frequency
(MHz)

Y 512 16 C1 64.82 24.96 48.75 29.92 21.73 18.48 48.75 33.75 53.83

Y 512 8 C2 25.25 13.67 28.13 37.00 14.07 12.74 28.13 22.50 72.00

Y 256 16 C3 63.84 24.48 45.00 30.92 21.07 18.01 45.00 33.75 54.67

Y 256 8 C4 24.13 13.05 28.13 37.58 13.51 12.07 28.13 22.50 73.50

N 512 16 C5 73.04 29.65 48.75 29.92 21.73 18.48 48.75 33.75 53.83

N 512 8 C6 30.81 17.01 28.13 37.00 18.80 15.46 28.13 22.50 72.00

N 256 16 C7 70.60 29.14 45.00 36.08 27.80 22.05 45.00 33.75 54.67

N 256 8 C8 29.22 15.98 28.13 37.58 17.89 14.78 28.13 22.50 73.50
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yields a minimum throughput of 12.5 MSamples∕s for configuration C1 and a maximum of
18.4 MSamples∕s for configuration C8.

To complete the whole 3-D compression engine, a 2-D compressor implementing the
CCSDS-122.0, such as the CCSDS wavelet image compression (CWICOM) ASIC, is utilized
after the POT. The CWICOM is able to operate at up to 60 MSamples∕s.8 While the throughput
of both elements is of similar magnitude, future optimizations of the POT implementation will be
focused on improving its throughput, in such a way that it can yield one transformed sample per
clock cycle.

Fig. 9 Occupancy of the different configurations on an RTAX2000S.

Fig. 10 Occupancy of the different configurations on an RTAX2000S-DSP.

Fig. 11 Maximum frequency of the different configurations on an RTAX2000S and an
RTAX2000S-DSP.
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5 Conclusions

This paper examines the hardware complexity of the arithmetic elements of the POT, namely the
mean-subtraction operation, the training of the transform, and the lifting network. A bit-exact
description of the operations is provided and utilized to create a hardware implementation with
reduced complexity that only utilizes integer arithmetic. A LUT is used to eliminate the most
computationally demanding operations of the POT. We perform the synthesis of the described
hardware on two space-qualified FPGA, namely the RTAX2000S, and the RTAX2000S-DSP
with a different number of input samples represented with different bit depths. We observed
that for any of the studied configurations, the complete design fits in the target FPGAs. The
worst-case in terms of occupancy shows a 74% of combinatorial cell usage in the RTAX2000S.
The best-case for the same FPGA has a maximum occupancy of 24.13% of the combinatorial
cells. Furthermore, we observed that the RTAX2000S-DSP offers the possibility of reducing
substantially the amount of combinatorial cells used, by utilizing dedicated DSP blocks.
This FPGA also yields higher frequency values, displaying a maximum frequency of 73 MHz.

These results show that the POT, which is only a part of a whole compression engine for
multispectral and hyperspectral images, presents a low hardware complexity, making it a good
candidate for an on-board hardware implementation.
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