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Abstract. For imaging faint exoplanets and disks, a coronagraph-equipped observatory needs focal plane
wavefront correction to recover high contrast. The most efficient correction methods iteratively estimate the stel-
lar electric field and suppress it with active optics. The estimation requires several images from the science
camera per iteration. To maximize the science yield, it is desirable both to have fast wavefront correction
and to utilize all the correction images for science target detection. Exoplanets and disks are incoherent
with their stars, so a nonlinear estimator is required to estimate both the incoherent intensity and the stellar
electric field. Such techniques assume a high level of stability found only on space-based observatories and
possibly ground-based telescopes with extreme adaptive optics. In this paper, we implement a nonlinear esti-
mator, the iterated extended Kalman filter (IEKF), to enable fast wavefront correction and a recursive, nearly-
optimal estimate of the incoherent light. In Princeton’s High Contrast Imaging Laboratory, we demonstrate that
the IEKF allows wavefront correction at least as fast as with a Kalman filter and provides the most accurate
detection of a faint companion. The nonlinear IEKF formalism allows us to pursue other strategies such as
parameter estimation to improve wavefront correction. © The Authors. Published by SPIE under a Creative Commons
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1 Introduction
Radial velocity and transit surveys have transformed our under-
standing of the universe by detecting thousands of planets out-
side our solar system. Dozens of these known exoplanets are
close enough to image directly, which would allow us to obtain
their spectra and fully determine their orbital parameters. Direct
imaging requires high contrast in the image, factors of 1010 or
more for Earth-size planets or 109 for Neptune and Jupiter
analogs. Atmospheric turbulence precludes obtaining such high
contrast from the ground, so a space-based observatory is nec-
essary. The proposed Coronagraph Instrument (CGI) on the
Wide-Field Infrared Survey Telescope-Astrophysics Focused
Telescope Asset (WFIRST-AFTA) is expected to image about
16 known cool gas-giant exoplanets and spectrally characterize
about six of them.1

A coronagraph uses a series of apodizers, masks, and stops in
the optical train to modify or remove the point spread function
(PSF) of the telescope and create image plane regions of high
contrast where an exoplanet can be seen. The optics for a
coronagraph cannot be manufactured to the smoothness and
reflectivity requirements to obtain 10−9 or better planet-to-star
contrast passively.2 A set of deformable mirrors (DMs) is nec-
essary to mitigate these aberrations and recover a high-contrast
region called a dark hole. The CGI on WFIRST-AFTA will be
equipped with two coronagraph types and two DMs, making
it the first high-contrast coronagraphic mission in space with
high-actuator-count wavefront control.

Wavefront correction for high-contrast coronagraphy differs
from the method regularly used in astronomy. In traditional
adaptive optics, the wavefront phase is measured at a pupil
and conjugated by a DM. That approach is inadequate for gen-
erating high contrast; a nonflat pupil phase is acceptable as long
as the starlight destructively interferes in the image. In addition,
uncontrollable, high-spatial frequencies in the pupil phase can
mix and move light into the dark hole, even if all correctable
spatial frequencies are eliminated by the DMs. Finally, ampli-
tude aberrations degrade contrast and cannot be mitigated
with just phase conjugation. As a result, the wavefront control
approach being planned for extreme high contrast in space
relies on correction in the focal plane. This requires forming
an estimate of the focal plane electric field and then finding
a DM command to improve the contrast.

The main challenge of focal plane wavefront correction with
a high-contrast coronagraph is to quickly sense the wavefront.
The most efficient correction routines need an estimate of the
stellar electric field. A wavefront sensor cannot be used (alone)
because it estimates only the phase and introduces noncommon-
path aberrations. The science camera is the only common-path
sensor available, but exposure times can become very long as
the contrast gets higher and the signal becomes fainter.

Several techniques, all of which require one or more extra
images for the estimator, exist for creating focal plane intensity
diversity to calculate the electric field. The self-coherent camera
(SCC)3 is an estimation technique for coronagraphs with focal
plane phase masks. Pinholes outside the nominal beam radius at
the Lyot stop produce an interference pattern in the image that
is used to calculate the electric field. Another technique is
coronagraphic focal-plane wave-front estimation for exoplanet
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detection (COFFEE),4 which utilizes a maximum a posteriori
approach to estimate pupil plane aberrations and the bias signal.
COFFEE introduces large phase aberrations at the DM to create
diversity in the image plane. In this paper, we use the most tested
and widely applicable estimation technique in which small,
pair-wise probes are actuated on the DM to create image plane
diversity.5

High-contrast wavefront correction is an iterative process.
With each electric field estimate, the controller suppresses as
much starlight as possible in the dark hole. The contrast is
then remeasured and more correction iterations are used until
sufficiently high contrast is reached. Our prior work utilized
a Kalman filter (KF) to estimate the stellar electric field recur-
sively during wavefront correction. In this paper, we explore the
use of a nonlinear filter, the extended Kalman filter (EKF), to
estimate recursively both the stellar electric field and the inten-
sity bias during wavefront correction. Science targets such as
exoplanets and disks will be incoherent with a star, so they
will appear in the bias estimate. Therefore, nonlinear, recursive
wavefront correction lets us build the best possible real-time
estimate of our potential science targets while recovering high
contrast. The KF and EKF formalisms used in this paper are
equally applicable to the SCC, and COFFEE could be easily
modified to allow recursive estimation.

The recursive estimation techniques in this paper are dis-
cussed in the context of space-based observatories but may
also apply to some ground telescopes, in particular, those
with extreme adaptive optics. If an observatory and the wave-
front are stable enough for focal plane wavefront correction to
function, then Kalman filtering should still be able to improve
wavefront estimation by accounting for the model uncertainty of
the system. Nonlinear estimation of the wavefront and bias is
less robust to large uncertainties, however, and is most likely
better suited for ultrastable space telescopes.

2 Review of Focal Plane Wavefront
Correction

In this section, we describe the current progress in focal plane
wavefront estimation and control. A longer discussion can be
found in the paper by Groff et al.6 in this issue. We rederive
important results to pose the problem and to establish the math-
ematical framework for the EKF derivation in Sec. 3.

2.1 Linear Focal Plane Wavefront Control

The first successful controller for focal plane wavefront correc-
tion was speckle nulling.7 In this estimation-free scheme, sinus-
oids with different phases are applied to the DM to suppress
stellar speckles at the targeted spatial frequency. Speckle nulling
requires many hundreds or thousands of correction iterations,
too many for use in a space mission.

Model-based estimation and control enables faster correc-
tion. The first model-based controller was Electric Field
Conjugation (EFC).5 EFC minimizes energy in the dark hole
and uses Tikhonov regularization to prevent too large of a com-
mand from being sent to the DMs. Because the electric field
varies with wavelength, field estimates at several wavelengths
within a larger bandpass are required to achieve broadband
correction. An alternative model-based controller, stroke mini-
mization,8 minimizes DM actuation subject to a constraint on
contrast. Stroke minimization has the same mathematical
formula as EFC but provides a logical means of choosing the
actuator regularization value at each correction iteration.6

Here, we derive the linearized electric field at the DM for use
with the controller and estimator. Let Ẽ0ðx; yÞ be the initial com-
plex electric field at the DM including the incident field and
the nominal complex aberrations on the DM, where ðx; yÞ are
coordinates in the plane of the DM. Let ϕk−1ðx; yÞ be the total
phase contribution of the DM at correction iteration k − 1, and
let Δϕkðx; yÞ be the perturbation of the DM phase at correction
iteration k such that

EQ-TARGET;temp:intralink-;e001;326;664ϕk−1ðx; yÞ ¼
Xk−1
j¼1

Δϕjðx; yÞ: (1)

The phase at the DM is twice the surface height of the DM and
scales inversely with wavelength λ (in meters). Since for small
deformations we can approximate the DM surface as the sum of
the normalized actuator influence function fðx; yÞ times the
displacement command Δuk;q (in meters) at each actuator q‘s
center location ðxq; yqÞ, the perturbation phase at the DM is
given by

EQ-TARGET;temp:intralink-;e002;326;542Δϕkðx; yÞ ¼
2

λ

XNact

q

Δuk;qfðx − xq; y − yqÞ; (2)

where Nact is the number of DM actuators.
Assuming small perturbation commands to the DM, we can

approximate the electric field leaving the DM, Ẽkðx; yÞ, with
a first order Taylor series expansion about the most recent
DM perturbation

EQ-TARGET;temp:intralink-;e003;326;438Ẽkðx; yÞ ¼ Ẽ0ðx; yÞei½ϕk−1ðx;yÞþΔϕkðx;yÞ�; (3)

EQ-TARGET;temp:intralink-;e004;326;406 ≈Ẽ0ðx; yÞeiϕk−1ðx;yÞ½1þ iΔϕkðx; yÞ�: (4)

Nearly all coronagraphs can be modeled as a series of linear
operators such as Fourier transforms, Fresnel propagations,
and mask multiplications. Since the control and estimation
methods presented here are general to all coronagraphs, we re-
present the propagation from the DM to the science camera by
the linear operator Cf·g to obtain the focal plane electric field
Ekðξ; ηÞ
EQ-TARGET;temp:intralink-;e005;326;302

Ekðξ; ηÞ ¼ CfẼkðx; yÞg
≈ CfẼ0ðx; yÞeiϕk−1ðx;yÞg

þ CfiẼ0ðx; yÞeiϕk−1ðx;yÞΔϕkðx; yÞg

¼ Ek−1ðξ; ηÞ þ
XNact

q

Δuk;qCfiẼ0ðx; yÞ

× eiϕk−1ðx;yÞfðx − xq; y − yqÞg

¼ Ek−1ðξ; ηÞ þ
XNact

q

Δuk;qBk−1;qðξ; ηÞ; (5)

where ðξ; ηÞ are coordinates in the image. The aberrated focal
plane electric field before the new command at correction
iteration k is

EQ-TARGET;temp:intralink-;e006;326;116Ek−1ðξ; ηÞ ¼ CfẼ0ðx; yÞeiϕk−1ðx;yÞg; (6)

and the Jacobian of each actuator at the image is given by the
function
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EQ-TARGET;temp:intralink-;e007;63;752Bk−1;qðξ; ηÞ ¼ CfiẼ0ðx; yÞeiϕk−1ðx;yÞfðx − xq; y − yqÞg: (7)

Detectors measure the intensity in finite-sized pixels, so the
focal plane field is converted from the continuous coordinates
ðξ; ηÞ to the discrete indices ðm; nÞ. The detector integrates the
intensity over the whole pixel whereas the model just samples
discretely at each pixel. With greater than Nyquist discretization
(≥2 pixels per λ∕D) of the PSF already required for wavefront
correction, the effect of sampling the PSF at each pixel instead
of integrating over that area is small. The discretized focal plane
electric field is thus

EQ-TARGET;temp:intralink-;e008;63;629Ek;m;n ¼ Ek−1;m;n þ
XNact

q

Δuk;qBk−1;q;m;n; (8)

where we have implicitly defined the region as being only within
the dark hole. To perform matrix operations on the discretized
field, it is convenient to reshape the field into a vector of length
Npix, the number of dark hole pixels, such that

EQ-TARGET;temp:intralink-;e009;63;534Ek ¼ Ek−1 þ Gk−1Δuk: (9)

Both Ek and Ek−1 have dimensions Npix × 1, the control
Jacobian Gk−1 has dimension Npix × Nact, and the vector of
control commands Δuk has dimension Nact × 1.

Setting Eq. (9) equal to zero and solving for Δuk, we obtain
the command to minimize the dark hole electric field,

EQ-TARGET;temp:intralink-;e010;63;448Δuk ¼ −RfGL
k−1Ek−1g; (10)

where the superscript L gives the left pseudoinverse and Rf·g
returns the real part. In both EFC and stroke minimization, the
actuator command is damped to avoid singularities and becomes

EQ-TARGET;temp:intralink-;e011;63;383Δuk ¼ −ðG�
k−1Gk−1 þ αIÞ−1RfG�

k−1Ek−1g; (11)

where * gives the conjugate transpose, α is the damping (i.e.,
regularization) value, and I is the identity matrix. The control
Jacobian Gk−1 is usually not updated (G0 is used instead) to
save computation time at the expense of somewhat slower cor-
rection. From here on we will use the notation G instead of G0

and uk instead ofΔuk for convenience. The errors in the estimate
and model, ignored nonlinearities of the DM phase contribution,
and the use of regularization cause the new, corrected field to
have only a slight improvement in contrast after each control
step. The correction is thus iterative, with a new DM command
calculated and applied after each new estimate of the electric
field.

2.2 Batch Process Pair-Wise Estimation

The model-based control techniques in the previous section
require knowledge of the electric field in the dark hole. An esti-
mation approach is thus needed to determine the field from
intensity measurements in the science camera. Currently, the
baseline estimation method for a coronagraphic space mission
is pair-wise difference imaging as developed by Give’on et al.,5

which probes the image via small DM perturbations. It is the
only model-based estimation scheme that has attained better
than 10−8 contrast in laboratory experiments,9–13 all of which
have been in the High Contrast Imaging Testbed (HCIT) at
the Jet Propulsion Laboratory (JPL). Pair-wise estimation is

characterized by two notable features: it can be used with
any coronagraph and it is fairly robust to model uncertainty.
This method is described in detail in several papers,5,6,14 but
we revisit the derivation to provide the mathematical foundation
for our new work.

In this paper, we focus on monochromatic wavefront estima-
tion. At both Princeton’s High Contrast Imaging Laboratory
(HCIL) and JPL’s HCIT, broadband wavefront correction is
accomplished by taking images at several smaller bandpasses
within the whole bandpass, creating separate electric field esti-
mates for each one, and then weighting the bandpasses equally
within the controller.

In pair-wise estimation, shapes are actuated on the DM to
probe the electric field in the dark hole. Give’on et al.14 explain
one such method for choosing probe sets to modulate suffi-
ciently the real and imaginary parts of the field. A separate
image is taken for the positive and negative of each probe
shape applied on the DM. Let ui be the differential control signal
for the i’th positive probe shape. Then, the change in the focal
plane electric field from a positive or negative probe is defined
as pi� ¼ �Gui. For convenience we will not explicitly write the
dark hole pixel index for the probe field p, the electric field E,
and the intensity I. The focal plane intensity at each dark hole
for a given positive or negative probe shape is then
EQ-TARGET;temp:intralink-;e012;326;488

Ik;i� ¼ jEk þ pk;i�j2 þ nk;i�
¼ jEkj2 þ jpk;ij2 � 2RfE�

kpk;ig þ nk;i�; (12)

where nk;i� is the zero-mean, Gaussian measurement noise. The
difference of the positive and negative probed images is equal to
twice the cross term,

EQ-TARGET;temp:intralink-;e013;326;405ΔIk;i ¼ Ik;iþ − Ik;i− ¼ 4RfE�
kpk;ig þ nk;i; (13)

where nk;i ¼ nk;iþ − nk;i− is the total noise having twice the
variance of a single probed image. For a set of measurements
from Npp probe pairs, the measurement equation is

EQ-TARGET;temp:intralink-;e014;326;3412
664

ΔIk;1

..

.

ΔIk;Npp

3
775 ¼ 4

2
6664

Rfpk;1g Ifpk;1g
..
. ..

.

Rfpk;Npp
g Ifpk;Npp

g

3
7775
�
RfEkg
IfEkg

�

þ

2
664

nk;1

..

.

nk;Npp

3
775; (14)

where If·g takes the imaginary part of the complex value.
We rewrite Eq. (14) as

EQ-TARGET;temp:intralink-;e015;326;189zk ¼ Hkxk þ nk; (15)

where the set of measurements is
EQ-TARGET;temp:intralink-;e016;326;147

zk ¼

2
664

ΔIk;1

..

.

ΔIk;Npp

3
775; (16)

the linear observation matrix is
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EQ-TARGET;temp:intralink-;e017;63;752

Hk ¼ 4

2
6664

Rfpk;1g Ifpk;1g
..
. ..

.

Rfpk;Npp
g Ifpk;Npp

g

3
7775; (17)

the state vector is
EQ-TARGET;temp:intralink-;e018;63;676

xk ¼
�
RfEkg
IfEkg

�
; (18)

and the measurement noise vector is
EQ-TARGET;temp:intralink-;e019;63;618

nk ¼

2
664

nk;1

..

.

nk;Npp

3
775: (19)

The best estimate x̂k of the field’s real and imaginary parts is
found by taking the left pseudoinverse of Hk

EQ-TARGET;temp:intralink-;e020;63;530x̂k ¼ HL
k zk; (20)

which requires two probe pairs to be invertible and at least three
probe pairs for a least-squares estimate to reduce error from
measurement noise.

In addition to the pairs of probed images, we always take an
unprobed image Ik to measure the current contrast level. The
more critical role of the unprobed image is in the empirically-
based estimate of the probe amplitude

EQ-TARGET;temp:intralink-;e021;63;421

djpk;ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ik;iþ þ Ik;i−

2
− Ik

r
: (21)

As described by Give’on et al.,14 this technique mitigates several
types of model error to enable faster and deeper correction. Even
with a good model of the laboratory, the measured and modeled
probe amplitudes can have different morphologies and differ by
several times in magnitude. The phase of the probe is still
calculated using the model.

In this batch process estimation, there is an implicit
assumption that the wavefront is static. The estimator and con-
troller can still create a dark hole as long as the electric field is
static at the level of the contrast target over the course of a few
correction iterations.

2.3 Recursive Pair-Wise Estimation with
a Kalman Filter

Groff and Kasdin15 incorporated pair-wise estimation into a KF
for better accuracy and robustness. The KF optimally utilizes the
previous estimate, the expected model uncertainty, the control
signal, and new measurements in the estimate calculation.
Since the KF knows the previous estimate, it does not require
a full, invertible set of new measurements. Therefore, the wave-
front estimate can be updated with just three new images: one
unprobed image and one pair of probed images. If the estimate
can be as accurate with fewer images of the same exposure time,
this technique can further increase the speed of wavefront
correction.13,15,16 The KF formulation also permits a dynamic
state, so the KF can correct a dynamic wavefront faster and
more robustly than a batch process estimator.

2.4 Batch Estimation of Incoherent Light

Both formulations of pair-wise estimation (batch and recursive)
can yield a batch estimate of the incoherent light intensity at
each correction iteration k. The incoherent intensity estimate
Îinco;k at each pixel is

EQ-TARGET;temp:intralink-;e022;326;690Îinco;k ¼ Ik − jÊkj2; (22)

where Êk is the estimated stellar electric field. We will not derive
the variance for the starlight intensity here, but from Eq. (22) we
can see that the incoherent intensity batch estimate has a higher
variance than a single image. Both terms in Eq. (22) are suscep-
tible to noise sources (shot, readout, and dark current noise), and
the estimated starlight intensity is susceptible to model errors.
To mitigate both model errors and measurement noise, it would
be better to estimate the incoherent light recursively with a filter
that can use previous data and appropriate weights on the error
sources.

3 Recursive Estimation of Both Incoherent
Light and the Stellar Wavefront

The batch and recursive pair-wise estimators in Secs. 2.2 and 2.3
have been tested and proven to work at high contrast for sup-
pressing coherent, on-axis light in JPL’s HCIT.13,14 The ultimate
goal of wavefront correction, however, is to image faint sources
that are incoherent with a star such as exoplanets and disks.
During wavefront correction, the starlight speckles change as
they are suppressed while the exoplanets and disks remain
unchanged, so a recursive filter can form a better estimate of
the incoherent light with each new set of images. By implement-
ing Bayesian techniques to locate any exoplanets or disks in the
incoherent image,17 we can better detect and characterize our
science targets with just the correction images.

One possible approach to recursive incoherent estimation is
to use another KF on the batch incoherent estimates from
Eq. (22). While this method would let us use two linear estima-
tors, it is inefficient because the estimates of the incoherent light
and starlight are interdependent. To produce the best estimate of
the incoherent light with all available data, we need to estimate
the stellar electric field and incoherent intensity simultaneously
in a nonlinear estimator.

With a nonlinear filter, one could attempt to utilize the true
nonlinear phase dependence of the electric field on the DM
surface,

EQ-TARGET;temp:intralink-;e023;326;264Ekðξ; ηÞ ¼ CfẼ0ðx; yÞeiϕk−1ðx;yÞeiΔϕkðx;yÞg; (23)

in the modeled propagation of the electric field, but we do not.
Because opaque coronagraphic masks and field stops between
the DM and camera block light, we cannot directly back-propa-
gate our electric field estimate from the focal plane to the DM-
plane. Maximum a posteriorimethods such as COFFEE exist to
solve this problem, but they are currently too slow computation-
ally to implement in real time. The other reason for not utilizing
the full nonlinear model and for not including more terms in the
Taylor expansion in Eq. (4) is that the errors in our knowledge of
Cf·g, Ẽ0ðx; yÞ, ϕk−1ðx; yÞ, and Δϕkðx; yÞ might outweigh the
better accuracy from a higher-order model.

As a first step into nonlinear focal plane wavefront estima-
tors, we derive an EKF as first shown by Riggs et al.18 In this
paper, the EKF utilizes the same probing strategy as the KF does
for easier performance comparison. The EKF has the advantage
that it can utilize the unprobed image recursively as well.
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3.1 Constructing the Extended Kalman Filter

We augment the original state vector in Eq. (18) to include the
incoherent intensity at each pixel, Iinco;k,

EQ-TARGET;temp:intralink-;e024;63;712xk ¼
2
4RfEkg
IfEkg
Iinco;k

3
5: (24)

The most general EKF measurement vector is the actual set
of images taken. This formulation allows the use of unpaired
probes or multi-DM probes, which we leave for future work.
Here we use the same set of images as in pair-wise estimation
such that z at each dark hole pixel consists of the unprobed
image Ik and the 2 × Npp probe images,

EQ-TARGET;temp:intralink-;e025;63;594zk ¼

2
66666664

Ik
Ik;1þ
Ik;1−
..
.

Ik;Nppþ
Ik;Npp−

3
77777775

¼ hðxkÞ þ nk þOfΔϕ2
kg; (25)

where hðxkÞ is the nonlinear measurement function and
OfΔϕ2

kg is the model error from ignored higher-order terms of
the DM-phase Taylor series. The additive measurement noise
vector nk consists of readout noise, photon shot noise, and
dark current. By not performing pair-wise differencing of the
probed images, the terms of order Δϕ2

k ignored in Eq. (4) no
longer cancel and appear in the measurement. The quadratic,
approximate measurement function is
EQ-TARGET;temp:intralink-;e026;63;410

hðxkÞ¼

2
666666666664

jEkj2þ Iinco;k

jEkþGu1j2þ Iinco;k

jEk−Gu1j2þ Iinco;k

..

.

jEkþGuNpp
j2þ Iinco;k

jEk−GuNpp
j2þ Iinco;k

3
777777777775

¼

2
666666666664

ðRfEkgÞ2þðIfEkgÞ2þ Iinco;k

ðRfEkþGu1gÞ2þðIfEkþGu1gÞ2þ Iinco;k

ðRfEk−Gu1gÞ2þðIfEk−Gu1gÞ2þ Iinco;k

..

.

ðRfEkþGuNpp
gÞ2þðIfEkþGuNpp

gÞ2þ Iinco;k

ðRfEk−GuNpp
gÞ2þðIfEk−GuNpp

gÞ2þ Iinco;k

3
777777777775

¼

2
666666666664

ðxk½1�Þ2þðxk½2�Þ2þxk½3�
ðxk½1�þRfGgu1Þ2þðxk½2�þIfGgu1Þ2þxk½3�
ðxk½1�−RfGgu1Þ2þðxk½2�−IfGgu1Þ2þxk½3�

..

.

ðxk½1�þRfGguNpp
Þ2þðxk½2�þIfGguNpp

Þ2þxk½3�
ðxk½1�−RfGguNpp

Þ2þðxk½2�−IfGguNpp
Þ2þxk½3�

3
777777777775
;

(26)

where xk½m� represents the m’th element of vector xk, and ui is
the additive DM control signal for the positive probe shape i.

To derive the EKF, we first redefine the true dynamic state
equation at each image plane pixel as

EQ-TARGET;temp:intralink-;e027;326;708xk ¼ Φxk−1 þ Γuk−1 þ Λwk−1; (27)

whereΦ is the state transition matrix, Γ is the real-valued control
Jacobian, andΛ is the disturbance Jacobian. The variable wk−1 is
random process noise; it is included in the model to accommo-
date model errors and random, unknown disturbances. We treat
our system as static, so Φ is just the identity matrix. The only
source of change is from the DMs, which means the only source
of model error is in our knowledge of the DM response. Thus,
Λ ¼ Γtrue − Γmodel and wk−1 ¼ uk−1. From here on Γ will mean
Γmodel. The third row of Γ is zeroes because the incoherent light
is not modulated by the DMs. (Only the PSF core is observable
for faint incoherent sources, and high-order wavefront correc-
tion primarily changes the wings of the PSF.)

The EKF minimizes both the error of the state estimate and
the state covariance estimate. The state covariance P is defined
as the expectation value E½·� of the outer product of the error in
the state estimate,

EQ-TARGET;temp:intralink-;e028;326;501Pk ¼ E½ðxk − x̂kÞðxk − x̂kÞT �: (28)

In the first two equations of the EKF, the dynamics of the
system are used to propagate the previous estimates of the
state and state covariance to the current time step. Following
the derivation and notation by Stengel,19 the state estimate
time update is

EQ-TARGET;temp:intralink-;e029;326;415x̂kð−Þ ¼ Φx̂k−1ðþÞ þ Γuk−1; (29)

and the covariance estimate time update is

EQ-TARGET;temp:intralink-;e030;326;373Pkð−Þ ¼ ΦPk−1ðþÞΦT þQk−1; (30)

where Qk−1 is the process noise matrix. The signifier ð−Þ means
x̂k or Pk is the model-based time update, and the signifier ðþÞ
means it is the measurement-updated estimate for that correction
iteration. We assume that the unknown disturbance Λwk−1 is
Gaussian and zero mean so it should not change the expected
value x̂k. The process noise covariance matrix is given by

EQ-TARGET;temp:intralink-;e031;326;280Qk−1 ¼ ΛE½wk−1wT
k−1�ΛT: (31)

The last stage of the EKF is to improve the estimates with
new data in the measurement update equations,

EQ-TARGET;temp:intralink-;e032;326;227x̂kðþÞ ¼ x̂kð−Þ þ Kkfzk − h½x̂kð−Þ�g; (32)

EQ-TARGET;temp:intralink-;e033;326;195PkðþÞ ¼ ½I − KkHk�Pkð−Þ; (33)

where the Kalman gain Kk optimally balances the weighting of
the model error and old data versus the new measurements. The
Kalman gain is defined as

EQ-TARGET;temp:intralink-;e034;326;136Kk ¼ Pkð−ÞHT
k ½HkPkð−ÞHT

k þ Rk�−1; (34)

where Rk is the measurement noise covariance matrix, which we
discuss in more detail in Sec. 3.2. Hk is the observation matrix
linearized about the state time update,
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EQ-TARGET;temp:intralink-;e035;63;579

Hk¼
∂hðxÞ
∂x

����
x¼x̂kð−Þ

¼

2
666664

2x½1� 2x½2� 1

2ðx½1�þRfGgu1Þ 2ðx½2�þIfGgu1Þ 1

..

. ..
. ..

.

2ðx½1�−RfGguNpp
Þ 2ðx½2�−IfGguNpp

Þ 1

3
777775

�����������
x¼x̂kð−Þ

:

(35)

In summary, the five EKF equations for our formulation are

EQ-TARGET;temp:intralink-;e036;63;440x̂kð−Þ ¼ x̂k−1ðþÞ þ Γuk−1; (36)

EQ-TARGET;temp:intralink-;e037;63;408Pkð−Þ ¼ Pk−1ðþÞ þQk−1; (37)

EQ-TARGET;temp:intralink-;e038;63;381Kk ¼ Pkð−ÞHT
k ½HkPkð−ÞHT

k þ Rk�−1; (38)

EQ-TARGET;temp:intralink-;e039;326;741x̂kðþÞ ¼ x̂kð−Þ þ Kkfzk − h½x̂kð−Þ�g; (39)

EQ-TARGET;temp:intralink-;e040;326;729PkðþÞ ¼ ½I − KkHk�Pkð−Þ: (40)

We summarize the variables used in these equations in Table 1,
and we list the matrices and their definitions in Table 2. The
estimate is performed separately at each dark hole pixel to
avoid the use of extremely large matrices.

3.2 Sensor and Process Noise

In any KF, Rk and Qk−1 are the tuning parameters. The sensor
noise matrix is defined as the expectation value of the outer
product of the measurement noise vector,

EQ-TARGET;temp:intralink-;e041;326;596Rk ¼ E½nknTk �: (41)

We can calculate the value of Rk based on camera measure-
ments, so only Qk needs to be tuned. The main sources of
measurement noise are dark current, readout noise, and photon
shot noise. The total variance in analog-digital units (ADU, or
counts) expected at each pixel is

EQ-TARGET;temp:intralink-;e042;326;510σ2total ¼ ½ckfstartexp þ σ2ron þ ðsdarktexpÞ�∕ðgnexpÞ; (42)

where g is the gain of the detector in photoelectrons/ADU, ck is
the average measured contrast in the dark hole, fstar is the peak
flux of the starlight in photoelectrons/second, texp is the expo-
sure time per frame, σ2ron is the variance of the readout noise in
photoelectrons, sdark is the dark current rate in photoelectrons/
second, and nexp is the number of exposures averaged to make
an image. The contrast across the dark hole in either the probed
or unprobed images are relatively uniform, so we use the same
matrix Rk at each pixel. We still use separate values for probed
or unprobed images since the probed images have more light.

Table 1 Dimensions of variables for the EKF. Nz ¼ 1þ 2Npp .

Variable Representation Dimension

State estimate
x̂ k ¼

2
4RfEkg
IfEkg
I inco;k

3
5 3 × 1

Intensity measurements zk Nz × 1

Sensor noise nk Nz × 1

DM commands uk ðNDMs × NactÞ × 1

Process noise wk ðNDMs × NactÞ × 1

Table 2 Dimensions of matrices for the EKF.

Matrix Representation Dimension

Linearized state response Φ ¼ I 3 × 3

Nonlinear observation hðxÞ Nz × 1

Linearized observation Hk ¼ ∂hðxÞ
∂x

����
x¼x̂ k ð−Þ

Nz × 3

Linearized complex response of probing DM G 1 × Nact

Linearized response of probing DM

Γ ¼

2
664
RefG½1�g · · · RefG½Nact�g
ImfG½1�g · · · ImfG½Nact�g

0 · · · 0

3
775

3 × Nact

Disturbance response Λ ¼ Γ 3 × Nact

State covariance (time update) Pk ð−Þ ¼ Ef½xk − x̂ k ð−Þ�½xk − x̂ k ð−Þ�T g 3 × 3

State covariance (measurement update) Pk ðþÞ ¼ Ef½xk − x̂ k ðþÞ�½xk − x̂ k ðþÞ�T g 3 × 3

Process noise Qk ¼ ΛE ½wkwT
k �ΛT 3 × 3

Sensor noise Rk ¼ E ½nknT
k � Nz × Nz

Kalman gain Kk is computed 3 × Nz
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The noise from image to image is uncorrelated, so Rk is a diago-
nal matrix. This means that each diagonal entry rk in Rk is
simply the variance in units of contrast

EQ-TARGET;temp:intralink-;e043;63;719rk ¼ σ2k;total∕ðfstartexpÞ: (43)

The sensor noise matrix is then

EQ-TARGET;temp:intralink-;e044;63;676Rk ¼

2
6664
rk;unpr 0

rk;pr
. .
.

0 rk;pr

3
7775; (44)

where rk;unpr is for the unprobed image and rk;pr is for the probed
images.

We must include a nonzero process noise Qk−1 in the covari-
ance estimate extrapolation because of the uncertainty in the
control step. Although we assume that the DM does not modu-
late the incoherent light, we must still include process noise to
prevent the filter from converging quickly to an incorrect value.
We scale the process noise for the third state with the average
incoherent intensity estimate. Without location-specific infor-
mation of the process noise, we assign the same Qk−1 matrix
to each image plane pixel. Similarly, we have no way of distin-
guishing if the real or imaginary parts of the starlight should
have more or less model error, so we set those covariance values
as equal. For each pixel at correction iteration k, we thus use
the process noise matrix
EQ-TARGET;temp:intralink-;e045;63;440

Qk−1 ¼

2
6664
q0jÊk−1j2avg 0 0

0 q0jÊk−1j2avg 0

0 0 q3ðÎinco;k−1Þ2avg

3
7775;

(45)

where q0 and q3 are constants used to tune the relative values.
There should also be off-diagonal elements in Qk since the
model errors of the states are cross-correlated and there is
unmodeled interactuator coupling, but we nevertheless keep
Qk−1 diagonal to avoid dropping rank before the inversion in
the Kalman gain calculation. With good tuning, the values of
PkðþÞ tend to show no cross-correlation (zero values) among
the electric field and incoherent states but a slight cross-corre-
lation (about 10% of the diagonal values) between the real and
imaginary parts of the field. Including this nonzero off-diagonal
term in Qk−1 did not change performance of the EKF, and was
therefore not included for all the tests reported in Sec. 5.

3.3 Iterated Extended Kalman Filter

When using pair-wise differencing for the starlight measure-
ments, the linear observation matrix Hk is correct to third
order in the DM-phase Taylor series expansion. In our EKF
formulation without differencing, the quadratic terms no longer
cancel. The linearization of the observation hðxÞ in Eq. (35) thus
depends on the current state, so it is necessary to use the initial,
inaccurate time update x̂kð−Þ as the linearization point.

A large body of research already exists to address nonlinear
errors when implementing an EKF. Here we try the simplest
improvement, which is to iterate the EKF (known as an
IEKF) to mitigate nonlinearities. The main error in Hk (and

subsequently in Kk, x̂kðþÞ, and PkðþÞ) comes from the lineari-
zation about the model-based time update x̂kð−Þ, but after
running the EKF [Eqs. (36) to (40)] we have a more accurate
estimate of the state available. Using x̂kðþÞ as the new lineari-
zation point for an updatedHk, the IEKF recomputesKk, x̂kðþÞ,
and PkðþÞ. There is now an even better estimate of the state, and
this process of iterating the EKF can be repeated until the state
estimate converges on a solution. Defining the subscripts for the
EKF iterations as j ¼ 0;1; 2; : : : ; Nit, we follow the notation of
Gelb20 and Simon21 and write the IEKF equations as

EQ-TARGET;temp:intralink-;e046;326;642Hk;j ¼
∂hðxÞ
∂x

����
x¼x̂k;jðþÞ

; (46)

EQ-TARGET;temp:intralink-;e047;326;596Kk;j ¼ Pkð−ÞHT
k;j½Hk;jPkð−ÞHT

k;j þ Rk�−1; (47)

EQ-TARGET;temp:intralink-;e048;326;568

x̂k;jþ1ðþÞ ¼ x̂kð−Þ þ Kk;jfzk − h½x̂k;jðþÞ�
−Hk;j½x̂kð−Þ − x̂k;jðþÞ�g; (48)

EQ-TARGET;temp:intralink-;e049;326;523Pk;jþ1ðþÞ ¼ ½I − Kk;jHk;j�Pkð−Þ: (49)

We initialize the IEKF with

EQ-TARGET;temp:intralink-;e050;326;485x̂k;j¼0ðþÞ ¼ x̂kð−Þ; (50)

EQ-TARGET;temp:intralink-;e051;326;453Pk;j¼0ðþÞ ¼ Pkð−Þ; (51)

and then iterate the filter by updating Eqs. (46) to (49) to con-
verge on a better state estimate at the k’th control step. If
Nit ¼ 0, the IEKF simplifies back to the EKF. In Sec. 5.3.2,
we test several values of Nit and determine the minimum
value to converge on an estimate.

4 Computational Complexity
Space-based observatories have limited computing power, so it
is important to compare the computational complexity of the
estimators proposed. In pair-wise estimation, the state can be
estimated separately at each image-plane pixel, which means
that only small matrices are required but the calculations
must be repeated thousands of times. Here, we derive estimates
of the complexity for each estimator based on the number of
matrix multiplications (and divisions) required per pixel.
Because there are many possible methodological (such as taking
another image during calculations) or algorithmic (such as using
alternate forms of equations) approaches to reduce the effective
complexity of the estimators, we perform just a simple analysis
as a starting point for comparison. We leave out the recalculation
of the observation matrix, Hk, for each estimator because cal-
culating the new values of RfGguk;i and IfGguk;i is common
to all the estimators and requires the square root calculation in
Eq. (21). It should also be noted that the recursive estimators
require more memory, but that is a separate issue from the
processing speed considered here.

Table 3 shows the relative complexity of each estimator in
terms of floating point multiplications required per pixel. The
batch process calculation is based on Eq. (20) assuming that
the minimum of two probe pairs is used. The total number of
multiplications is 26.

The KF equations have the same form as Eqs. (36) to (40)
except the state estimate update has a linear observation
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EQ-TARGET;temp:intralink-;e052;63;532x̂kðþÞ ¼ x̂kð−Þ þ Kk½zk −Hkx̂kð−Þ�: (52)

The KF has only two states, so the dimensions of the KF matri-
ces are the same as for the EKF in Table 2 except each 3 should
be a 2. The most computationally expensive calculation in the
KF is the multiplication of Γuk−1 in the time update of the state
estimate, which requires 2Nact multiplications. For WFIRST-
AFTA, this would be about three thousand. The controller
should already have performed this calculation to choose the
optimal DM command, so we assume that it adds no complexity
to the estimator. We find that the 1-pair KF requires 19 multi-
plications, so it is slightly less computationally expensive than
the batch process. The 2-pair KF, requiring 46 multiplications,
needs fewer than twice the number of computations in the 2-pair
batch process.

The EKF as listed in Eqs. (36) to (40) requires many more
calculations than the KF because of the longer state and meas-
urement vectors. We find that the 1-pair EKF requires 150 multi-
plications and the 2-pair EKF requires 360. These numbers
could be reduced by exploiting the sparsity of the matrices and
not performing a brute force matrix inversion in the Kalman gain
calculation. Iterating the filter requires several more calculations
per EKF iteration because of the extra multiplication in Eq. (48).
The IEKF requires on the order of a thousand multiplications at
each of the few thousand pixels. Since the inversion in Eq. (11)
of the controller can be precomputed, the IEKF and controller
would each require on the order of a million calculations per
correction iteration. We conclude that the IEKF should still be
feasible for the limited computing power available on a space
observatory.

5 Experimental Results
In this section, we present experimental validation of our EKF
and IEKF formulations in the HCIL at Princeton. We use the
stroke minimization controller with fixed settings, so that any
variation in performance should arise from estimator. We com-
pare the EKF and IEKF results to those for the batch process
estimator and KF with and without incoherent sources present.
Finally, we identify the limitations in our lab to be addressed in
future work.

5.1 High Contrast Imaging Laboratory at Princeton

In the HCIL, we utilize shaped pupil (SP) coronagraphs to gen-
erate high contrast. Our layout, as shown in Fig. 1, uses as few
optics as possible to enable easier alignment and introduce fewer
optical aberrations. We inject monochromatic, 635-nm laser
light directly from a fiber (launch 1) as the simulated stellar
point source in the nominal experimental configuration. The
60-in. focal length of the off-axis parabola (OAP) allows us
to approximate the central part of the beam as uniform. The col-
limated beam reflects off two Boston Micromachines Kilo-DMs
and a fold mirror in series before reaching a transmissive, 10-
mm diameter SP. The SP used in this paper is the freestanding
Ripple3 design described by Belikov et al.9 and Kasdin et al.22

and shown in Fig. 2(a). The apodized PSF has a theoretical con-
trast of 3 × 10−10 from 4 − 40λ∕D over symmetric 90° sectors as
shown in Fig. 2(b), and the empirical, uncorrected PSF in the
HCIL is shown in Fig. 2(c). The second and final OAP focuses
the beam onto a focal plane mask (FPM), which is used only
as a field stop for better dynamic range on the detector. Two
achromatic lenses then reimage the stopped-down PSF onto
a CCD camera.

To test our estimators in the presence of incoherent sources,
we inject additional laser light at either of two locations on our
bench as shown in the dashed boxes in Fig. 1. To create an exo-
planet, we insert a beamsplitter in front of the original fiber
source and place fiber launch 2 to reflect into the same beam
path. To eliminate any dispersion or path difference errors for
the star, launch 1 becomes the planet and launch 2 becomes
the star. This is the simplest configuration to add an off-axis
source, but the beamsplitter creates additional aberrations and
strong polarization dependence. We adjust the planet intensity
by using a separate laser source, and we can reposition the planet
and star by translating the fiber heads. To approximate a flat
zodiacal signal, we place another fiber tip (launch 3) approxi-
mately half a meter from the camera. The core of the expanding
Gaussian beam is approximately uniform over the detector from
this distance.

We block most of the stellar PSF with a field stop and per-
form wavefront correction in a subset of the transmitted region.
The FPM passes light in symmetric areas from a radius of

Table 3 Number of scalar multiplications (and divisions) required per
image-plane pixel for each estimator. The number of probe pairs used
is shown in parentheses. BP stands for batch process, and N it is the
number of EKF iterations.

Estimator Number of multiplications

BP (2p) 26

KF (1p) 19

KF (2p) 46

EKF (1p) 150

EKF (2p) 360

IEKF (1p) 150þ 159N it

IEKF (2p) 360þ 375N it

Fig. 1 Diagram of the HCIL configuration. Dashed boxes show the
modified configurations with additional fiber launches to introduce
incoherent sources. The beamsplitter and fiber launch 2 are used
to inject an off-axis, planet-like source. Fiber launch 3 adds a zodi-
like, flat background in the focal plane.
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5 − 11λ∕D over 90 deg sectors as shown in Fig. 3(a). The nomi-
nal aberrations set an average starting contrast of 6.51 × 10−5 as
shown in Fig. 3(b), in which correction quickly gets the contrast
below 10−6 and then slowly approaches the final achievable
contrast of about 10−7. In these experiments, we corrected
only small, rectangular dark holes in the image plane with
ξ ∈ ½−10;−7; 7;10�λ∕D and η ∈ ½−2;2�λ∕D as shown in the
corrected PSF of Fig. 3(c). When we correct a larger region,
we cannot reach as high of a contrast value.

To compare the relative performance of different estimators,
we need to distinguish testbed fluctuations from algorithmic per-
formance. If we perform separate correction runs in our testbed
on the same day, we can safely compare them. Otherwise, the
optics can drift out of alignment and degrade the correction
performance. Because each correction run takes approximately
half an hour, we have time for only one or two trials with each
estimator when performing comparisons.

Groff et al.6 derive the dependence of the electric field esti-
mate variance on the different sources of noise, and we summa-
rize that result here. If the pair-wise probe amplitudes, jpk;ij, are

much greater than the nominal field amplitude, then the photon
shot noise from the starlight can be eliminated. Large probe
amplitudes also reduce, but do not eliminate, the variance in
the E-field estimate from readout noise and incoherent-light
shot noise. If the probe amplitudes are too large, estimate
error is introduced from ignored nonlinearities and model error.
We manually tuned the probe amplitudes to be as large as pos-
sible without slowing correction or limiting the achievable con-
trast, which gave a probe intensity of about 10−6 for measured
contrast values around 10−7.

5.2 Experimental Goals

We sought to determine the accuracy of the EKF and IEKF
estimates in several scenarios. Because the true stellar electric
field is unobtainable in experiment, we compared the different
estimators with contrast correction speed, defined as measured
starlight contrast versus total exposure time. We assumed that a
better estimate enables a larger correction step. Since the inco-
herent signal is directly measurable, we quantified the accuracy

−5 0 5
−5

0

5

(a)

 

 

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

−10

−8

−6

−4

−2

0

(b)

 

 

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

(c)

Fig. 2 (a) The Ripple3 shaped pupil used in the HCIL along with (b) its normalized design PSF on a log
scale. The ideal average contrast is 3 × 10−10 from 4 − 40λ∕D over symmetric 90 deg sectors. (c) The
uncorrected PSF as measured in the HCIL is shown with the same spatial scaling but a shorter log
stretch.
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Fig. 3 An example of a typical correction run, in this case with 2 probe pairs and the IEKF. (a) The
stopped-down, uncorrected initial image, shown on a log scale, had a contrast of 6.51 × 10−5 in the
correction region. (c) The final, corrected image had a measured average contrast of 1.2 × 10−7 in
the rectangular dark holes. (b) The contrast correction curve started fast before gradually approaching
the highest achievable contrast. The average values are plotted for the measured contrast, estimated
starlight contrast, and estimated incoherent contrast in the dark hole, as well as the average standard
deviation from readout noise at each pixel, σron∕pixel.
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of the incoherent estimate with the PSF correlation and esti-
mated contrast of an injected exoplanet. Our goals were thus to:

1. Compare contrast correction speed and achievable
contrast for the IEKF, EKF, KF, and batch process
estimator.

2. Determine the minimum number of EKF iterations
needed to get the IEKF state estimate to converge.

3. Compare the estimators’ performance in the presence
of zodi-like, incoherent light.

4. Determine the accuracy of the incoherent estimate by
retrieving an injected planet signal.

5.3 Experiments without Additional Incoherent
Sources

5.3.1 Correction speed comparisons

In this experiment, we compared the contrast correction curves
for the various estimators as shown in Fig. 4. The 2-pair estima-
tors used five images per correction iteration (1 unprobed and
2 pairs of probed images) and the 1-pair estimators used three
images per correction iteration (1 unprobed and 1 pair of probed
images). The same probe shapes were applied every correction
iteration for the 2-pair estimators; for the 1-pair estimators the
probes alternated after every correction iteration to modulate the
field sufficiently. The IEKF performed five EKF iterations.

We measured correction speed as the total number of images
since all exposures had equal length. The exposure time was the
longest possible without saturating any pixels on the detector
and gave a contrast resolution of 1.8 × 10−8 per count. The
batch estimator provided the slowest overall correction. It
achieved the worst final contrast and took more correction iter-
ations to reach it. The 1-pair KF was second slowest but did
eventually reach as high a contrast as the other recursive estima-
tors. The 2-pair KF and EKF performed equally well, and the
2-pair IEKF performed slightly better than those two after 100
total images. The 1-pair EKF and IEKF started off slightly faster
than the others and reached their best achievable contrast in less
than 80% the number of images required for the 2-pair recursive
estimators, thereby showing some benefit from fewer probes

per correction iteration. Without repeated trials to average out
variability, it is important not to draw too many conclusions
from these results. In another run (not shown), for example,
the 2-pair IEKF performed the same as the 2-pair KF and EKF.
Nevertheless, we have observed that the batch process and
1-pair KF are always slower than the other methods and that
the 1-pair EKF and IEKF are always slightly faster than all
the 2-pair versions. The higher computational complexity of the
recursive estimators is partially offset since they require fewer
correction iterations to reach a given contrast level. We have
also demonstrated the viability of EKF and IEKF formulations
that do not require image differencing.

After reaching the best achievable contrast, each correction
curve started to worsen slightly (but did stay at or below about
2 × 10−7 contrast). This might have been from the controller
being too aggressive or from the modeled control Jacobian not
matching the true system well. In a space mission, the system
would be better characterized and the controller could be
made less aggressive near the ultimate contrast value to prevent
divergence.

Although the 1-pair EKF and IEKF slightly outperformed the
2-pair recursive estimators, in later tests we used the 2-pair ver-
sions of the estimators. We found in various trials (not shown)
that the 2-pair estimates were slightly less sensitive to optical
misalignments than the 1-pair estimates. A space-based corona-
graph would not suffer from the same problem because of
sturdier mounts, better initial alignment, and greater stability.

5.3.2 Relative accuracy of the estimators

Here, we compare the average contrast of the estimated starlight
or incoherent light for each estimator. This approach can reveal a
net bias but averages out the Gaussian noise of individual pixels.
To eliminate variations in images between different correction
runs, we ran the estimators on a set of saved images from a
2-pair IEKF correction run. There was no intentionally injected
incoherent source. The only difference from using stored data
instead of real-time data to feed the estimator is that the control
signal was predetermined, but this did not change the accuracy
of the estimator. By using the same images for all estimators, we
decoupled correction speed from estimator accuracy. While
we cannot know the true state values, we infer that if most of
the estimators are close to a value, then it is most likely the
true value.

All the estimators except the EKF gave almost exactly the
same average starlight contrast values in Fig. 5(a). The EKF
exhibited a large bias and mistook much of the starlight for inco-
herent light, as shown in Fig. 5(b). The IEKF eliminated the
starlight estimate bias with just one EKF iteration. The batch
estimate started to exhibit more fluctuations than the other esti-
mates during the last half of the correction, probably because
the batch estimator did not utilize previous estimates to average
out read noise.

The EKF estimates in Fig. 5 were significantly biased, and
yet the contrast correction speed in Fig. 4 clearly shows that the
EKF was no slower or less robust at wavefront correction than
the IEKF or KF. Somehow a net bias of the estimate at all the
pixels did not degrade performance, whereas random errors
from noise on batch estimates do slow the correction. This result
contradicts our premise that a more accurate estimate yields
faster wavefront correction.

The starlight intensity estimate in Fig. 5(a) was approximately
1 × 10−7 below the measured contrast, and the incoherent
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Fig. 4 Comparison of contrast correction speed for several estimators
without an intentionally injected incoherent source. Exposure time for
each image was constant.
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estimate converged to this level in Fig. 5(b). The incoherent
estimate’s structure in Fig. 6(b) matched neither that of the
coherent estimate in Fig. 6(a) nor that of the nearly flat probe
signal, so it was not an artifact of pair-wise estimation. The
incoherent signal was also not random, meaning it was not
attributable to read noise. We conclude that the incoherent esti-
mate was a true signal composed of stray light.

For the incoherent estimates shown in Fig. 5(b), the batch
process and KF initially gave more accurate values when the
measured contrast was still several times above the true
value. In later correction iterations as the contrast curve started
to level off, the recursive estimate of the IEKF was much less
variable and ended up lower than for the batch process and KF.
This suggests that the IEKF adequately filters out read noise. We
see in Fig. 5(b) that the first EKF iteration helped the most in
improving the IEKF incoherent estimate, a second EKF iteration
helped a little more in the early iterations, and more than two
EKF iterations produced no discernible change. It appears that
two EKF iterations are sufficient for convergence of the IEKF
estimates. From here on, we stop testing the un-iterated EKF in
comparisons because of its heavily biased estimates.

5.4 Experiments in the Presence of a Flat,
Incoherent Background

In this experiment, we compared the 2-pair batch process, KF,
and IEKF estimators in the presence of a bright, zodi-like

background as shown in Fig. 7(a). We chose a bright incoherent
background at 2.45 × 10−5 contrast to give a noise floor worse
than the previously achievable contrast floor. The average
standard deviation at each pixel was 5.2 × 10−7 contrast from
readout noise and incoherent-light shot noise, with readout
noise alone giving a standard deviation of 8 × 10−8. To verify
the estimated starlight intensity, we acquired another image with
the incoherent source turned off after each correction iteration,
as in Fig. 7(b).

We compared the contrast correction speed for the batch
process, KF, and IEKF in the presence of the flat background.
The nominal incoherent signal at about 1 × 10−7 was still
present with the zodi turned off, so the estimated starlight inten-
sity should have been below the measured, background-off
intensity by that amount. We define the nominal incoherent
signal as the stray light when only the starlight laser is on.
The KF and IEKF starlight estimates in Figs. 8(b) and 8(c),
respectively, were indeed about 1 × 10−7 below the measured,
zodi-less intensities, while the batch starlight intensity estimate
in Fig. 8(a) was too bright by about 1 × 10−7. Directly compar-
ing the measured, zodi-less contrast curves in Fig. 8(d), we did
not observe any definitive differences in correction speed or
achievable contrast because of the large fluctuations between
iterations.

Compared with the contrast correction curves without zodi in
Fig. 4, the curves with bright background in Fig. 8 were much
more erratic in their convergence. One possible explanation is
that the much larger standard deviation in each measurement
was corrupting the estimate quality. Another possibility is that
the drifting laser power of the bright background was invali-
dating the assumption of a static state. Over the course of a
correction run, we observed the laser power drift by 1.5%, cor-
responding to about 4 × 10−7 in contrast. Such a large drift in
the allocation of intensity could explain the nonsmooth correc-
tion curves and the reduced achievable contrast for the bright
background case.

5.5 Experiments to Recover a Faint Companion

In this set of experiments, we injected a faint, off-axis point
source to mimic an exoplanet, and then we attempted to recover
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Fig. 5 (a) Comparison of the average starlight intensity estimate for each 2-pair estimator.
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EKF iterations performed in the IEKF. All estimators in this case used the same saved set of correction
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its signal. We inserted the star-planet simulator (the beamsplitter
and fiber launch 2) into the testbed and used the 2-pair IEKF for
each correction run. We first ran wavefront correction without
injecting a planet to determine the differences in nominal per-
formance. The initial PSF is shown in Fig. 9(a), and the final,
corrected PSF is shown in Fig. 9(c). The estimated starlight cor-
rection curve in Fig. 9(b) was approximately as fast as the case

without the star-planet simulator in Fig. 3(b), and the final star-
light estimate in Fig. 9(d) was comparable to the one in Fig. 6(a).
The beamsplitter introduced a much larger nominal incoherent
signal at 3.6 × 10−7 average contrast as shown in Fig. 9(e).

Next, we performed wavefront correction trials with an
injected planet at four contrast levels, starting below the average
incoherent background level and ending slightly above it. The
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Fig. 8 Correction runs with different estimators in the presence of 2.45 × 10−5 incoherent background
light. The mean standard deviation per pixel from zodi shot noise and readout noise was at 5.2 × 10−7

contrast. In all measurements, there was always also an incoherent signal from scattered light at about
1 × 10−7 average contrast. (a) The batch estimator did well until reaching the noise floor. (b) The KF had
slower initial correction speed but allowed correction below the noise floor. (c) The IEKF allowed the
fastest correction to the noise floor and below. (d) A direct comparison of the measured intensity
with the incoherent background temporarily turned off.
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injected planet used a separate laser channel and was centered at
approximately ðξ; ηÞ ¼ ð8.0;−0.6Þ. We used the IEKF during
real-time correction, saved those images, and reused them for
the KF trials for a more direct estimator comparison. This strat-
egy eliminated variations between trials from noise, hardware,
or the controller.

We compared three different techniques to recover the planet
signal from the images. The first was simple PSF subtraction
(PS). After a correction run, we took one image with the planet
laser on and another with it off. Subtracting these two images
yielded the PS estimate. The second technique defined the
planet signal as the batch process incoherent estimate (BPIE)
from Eq. (22), where the KF supplied the estimated starlight
intensity, jEkj2. We included the BPIE because it utilized the
concept of coherence diversity (i.e., modulating the stellar elec-
tric field to distinguish the incoherent signal) without requiring
the IEKF developed in this paper. The final method used the
recursive incoherent estimate (RIE) from the IEKF as the planet
signal. To isolate the planet signal for this analysis, we sub-
tracted the IEKF’s best estimate of the nominal incoherent sig-
nal, as shown in Fig. 9(e), from the BPIEs and RIEs. Because
the incoherent background is unlikely to be fully subtractable in
this manner during a space mission, the analysis in this section
represents only a best-case scenario. Any nonuniformities or
asymmetries in the zodiacal or exozodiacal light would make
the background more difficult to subtract.

We quantified the quality of the planet signal with two
metrics: the accuracy of the planet’s contrast estimate and the
two-dimensional (2-D) correlation of the planet signal to the
expected PSF. The contrast estimate was calculated by translat-
ing the normalized, on-axis PSF from Fig. 2(c) to the planet’s
location, as shown in Fig. 10, and then scaling the template

PSF’s contrast to fit the planet signal. The 2-D correlation, C,
which quantitatively compares the morphology of the signals,
was calculated by correlating the template PSF, Itemp, to the
extracted planet signal, Îplanet

EQ-TARGET;temp:intralink-;e053;326;370C ¼
PNFWHM

s¼1 ½ItempðsÞÎplanetðsÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihPNFWHM

s¼1 ItempðsÞ2
ihPNFWHM

s¼1 ÎplanetðsÞ2
ir : (53)

To avoid fitting to noise for both of these metrics, we used only
the NFWHM pixels located within the full width at half maximum
(FWHM) of the template PSF.
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Fig. 9 Results from a 2-probe-pair IEKF correction run with the star-planet simulator installed but no
planet injected. (a) The stopped-down, uncorrected initial image, shown on a log scale, had a contrast
of 5.87 × 10−5 in the correction region. (c) The final, corrected image had a measured average contrast of
4.4 × 10−7 in the rectangular dark holes (3.1 × 10−7 in just the right-side dark hole). (b) The measured and
estimated contrast correction curves. (d) The estimated coherent light after correction. (e) The final esti-
mated incoherent signal, larger from the beamsplitter being placed in the system.
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Fig. 10 Normalized, on-axis PSF shifted to the planet location for use
as a PSF template for the planet. Only the region within the full-width
at half maximum (shown as the dotted line) was used to avoid fitting to
noise.
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Figure 11 shows the planet signal from each routine at each
contrast level. The first row displays the planet-only images,
which are the averages of 10 exposures with the star laser off.
The contrast values reported above this row yielded the least-
squares fit of the normalized template PSF to the given signal.
The average readout noise per pixel in these averaged images
was 2.8 × 10−8 contrast, so the contrast values of 8 × 10−8,
2.0 × 10−7, 3.8 × 10−7, and 6.6 × 10−7 had signal-to-noise ratios
(SNRs) of approximately 2.9, 7.3, 13.9, and 24.1, respectively.
The second, third, and fourth rows show the planet signals

obtained from the PS, BPIE, and RIE methods, respectively.
Upon visual inspection, the RIE produced the least noisy planet
signals and the best chance of a detection for the faintest planet
setting.

For the planet signals in Fig. 11, we show the corresponding
planet contrast estimates in Fig. 12(a) and correlation values in
Fig. 12(b). There were not enough data points to determine if PS
or the BPIE was more accurate than the other for either metric.
The RIE was the only method to be within 5% of the measured
contrast for each planet brightness; higher noise in the other
methods yielded much higher error. The correlation of the RIE
was always higher than for the other methods at a given planet
contrast. The RIE performed well at isolating the incoherent
signal, averaging out noise over many iterations, and producing
an un-biased contrast estimate.

The previous analysis used only the final estimates and
images from the correction runs. That is the optimal strategy
for PSF subtraction, which needs a dimmer dark hole to reduce
stellar shot noise in the planet signal, but it might be unnecessary
for the BPIE and RIE. Therefore, we calculated the BPIE and
RIE after each correction iteration to determine how early they
could estimate the planet accurately. We did not take an extra
image with the planet laser turned off after each correction
iteration, so PS was not included in this comparison.

Figures 13(a) and 13(b) show the BPIE and RIE correlation
values, respectively. Both methods reached their final values by
about the fifth correction iteration, which corresponded to the
dark hole reaching approximately 2 × 10−6 contrast. The excep-
tion was for the faintest planet intensity, for which the correla-
tion values showed much higher variability. For each of the four
planet settings, the average RIE correlation was significantly
higher and had less variability over time. The faintest two plan-
ets merited the most attention as the most difficult ones to detect
in a space mission. For the 2.0 × 10−7 contrast planet in correc-
tion iterations 5–50, the mean correlation was 77% for the BPIE
and 92% for the RIE. Similarly for the faintest planet, the mean
correlation was 37% for the BPIE and 70% for the RIE. The RIE
was thus a much better tool for detecting faint planets than
the BPIE.

Figures 14(a) and 14(b) show the BPIE and RIE planet
contrast values, respectively. The measured contrast levels are

6.6×10−73.8×10−72.0×10−78×10−8

−8 −7 −6
log10(contrast)

Batch process
incoherent estimate

(BPIE)

6.6×10−73.8×10−72.0×10−78×10−8

Recursive
incoherent estimate

(RIE)

Measured contrast

PSF subtraction
(PS)

Measured PSF
(average of 10)

Fig. 11 Planet signals obtained from the different techniques at the
end of correction. Only the right dark hole region is shown. Each col-
umn is for a different planet contrast level. The first row is the planet
PSF measured by averaging 10 images with the starlight laser off.
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shown as dotted lines to reveal biases in the estimates. The val-
ues settled in about five correction iterations, and the RIE con-
trast values showed much less variability among correction
iterations compared to the BPIE values. At each planet bright-
ness, the BPIE contrast values started near the measured value
but settled with a slightly negative bias. The RIE contrast values
started positively biased then settled at the measured contrast.
The initial positive bias in the RIE estimates likely arose from
starting the IEKF at poor contrast levels, where nonlinearities in
the model and observation are large. We previously observed
this early-iteration estimate error in Fig. 5(b). It may therefore
be beneficial to start running the IEKF at moderate contrast
levels to avoid the large initial bias in the incoherent estimate.

We have demonstrated that the incoherent light estimate can
be utilized for planet detection during wavefront correction.
Because the RIE utilizes the whole history of images to average
out noise, it gives the best planet contrast estimate and best

PSF correlation compared to PS and the BPIE. These results
hold when the other background light can be fully subtracted
or is nonexistent, neither of which is safe to assume for
a space mission. Nonuniform background light makes planet
detection harder for all three of these methods, but these results
indicate that the RIE is best at separating starlight from incoher-
ent light. PS may still be the best option if the dark hole speckles
are stable long enough to image two different stars. However, if
the dark hole does change significantly from slewing the tele-
scope, then coherence diversity via the RIE should be the best
option for detecting a companion and estimating its contrast.

5.6 Limitations in the High Contrast Imaging
Laboratory

While we have demonstrated the use of an IEKF for generating
a dark hole and simultaneously detecting a planet, there are

(a) (b)

0 10 20 30 40 50
40

50

60

70

80

90

100
RIE correlation

Correction iteration

%
 C

o
rr

el
a
ti
o
n

6.6×10−7

3.8×10−7

2.0×10−7

8×10−8

0 10 20 30 40 50
40

50

60

70

80

90

100
BPIE correlation

Correction iteration

%
 C

o
rr

el
a
ti
o
n

6.6×10−7

3.8×10−7

2.0×10−7

8×10−8

Fig. 13 Correlation between the planet signal and the template PSF after each correction iteration for
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several error sources limiting our attainable contrast and dark
hole size. Scattered light, particularly from the DM mounts,
is contributing to a larger than desired background floor. Our
final achievable contrast and the speed at which we reach it
are also heavily dependent on our model accuracy. This is cur-
rently limited by our knowledge of the unactuated DM surface,
the influence function shapes, and the nominal DM gains.
Current work is directed at improving the lab characterization.
Finally, the ultimate contrast we can measure is determined by
the read noise in the camera, which is high at 4.9 ADU rms for a
40,000 ADU linear range. Future experiments will be performed
with a near photon-counting detector. With these changes we
expect to reach contrasts close to 10−8, significantly improving
our ability to characterize these algorithms for space missions.

6 Future Work
As we demonstrated by augmenting the state with the incoherent
signal, the IEKF also allows the estimation of other system
parameters by adding them to the state vector. This is known
as parameter adaptive filtering, and it could improve the perfor-
mance of both the estimator and the controller since both rely on
the model. Because the IEKF is suboptimal from using a lineari-
zation of the nonlinear observation, we would like to implement
other nonlinear filters such as the unscented KF to obtain less
biased estimates.

In our HCIL wavefront correction trials, we showed that the
recursive incoherent estimate provides a higher detection prob-
ability and better planet contrast estimate than PSF subtraction.
We plan to investigate scenarios that are more representative of
a space mission and to quantify the conditions for which either
PSF subtraction or the recursive incoherent estimate is better
suited. In particular, we would like to simulate trials at higher
contrast, with expected levels of speckle dynamics, and at differ-
ent SNRs. Comparisons assuming a dynamic optical system
should also include advanced PSF subtraction techniques such
as the locally optimized combination of images (LOCI)23 and
Karhuenen–Loève image projection (KLIP);24 Ygouf et al.25

have already begun this analysis of reference differential imag-
ing for WFIRST-AFTA.

Up to this point, we have used the same set of one unprobed
image and Npp probed image pairs per correction iteration
because it provides sufficient diversity for wavefront correction.
The original purpose of using pairs of probed images was to
yield a linear relationship between the electric field and the
field change from the probes, but we have just shown that
the nonlinear measurement in Eq. (26) along with the IEKF
works at least as well if not better. We can therefore modify
our measurement equation zk from Eq. (25) to a more general
one comprised of any set of images. For example, this formu-
lation allows the use of any unpaired probes or even probes on
more than a single DM simultaneously. We plan to test other
probe combinations in our recursive, nonlinear estimation
scheme to further reduce the number of exposures.

7 Summary
With the prospect of the WFIRST-AFTA CGI flying in less than
a decade, progress in efficient wavefront correction and exopla-
net detection algorithms is critical for maximizing the science
output of the mission. In our experiments in Princeton’s HCIL,
we demonstrated the effectiveness of the EKF for coronagraphic
focal plane wavefront and bias estimation. We found that the
EKF and IEKF provide faster wavefront correction by requiring

fewer images, and that the IEKF provides a better estimate of
the incoherent signal by estimating it recursively along with
the starlight. This provides an alternative methodology for sepa-
rating exoplanet light from the stellar speckles and enables
faster, more accurate planet detection. As the simplest nonlinear
filters, the EKF and IEKF should be manageable for the com-
putational limits of a space telescope’s computer. By proving the
viability of using a nonlinear, recursive estimator for focal plane
wavefront sensing, we have enabled several possible paths for
improvement such as different probe choices and parameter
estimation. We found that the IEKF eliminates most of the
bias error of the EKF, and we plan to implement more advanced
filters for further improvement.
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