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ABSTRACT
We present a formal, microscopic, solution of the wave propagation problem for an inhomogeneity embed-
ded in an isotropically disordered, multiple scattering, homogeneous background. The inhomogeneity is
described by a local change in the complex, dielectric autocorrelation function B(r,r8) [v4/c4^e* (r)e(r8)&ensemble
for a wave of frequency w and velocity c . For the homogeneous background, we consider a dielectric
autocorrelation function Bh(r−r8) arising from a colloidal suspension of small dielectric spheres. This autocor-
relation function can be determined using a newly developed technique called phase space tomography for
optical phase retrieval. This technique measures the optical Wigner distribution function I(R,k) defined as the
Fourier transform, with respect to r, of the electric field mutual coherence function ^E* (R+r/2)E(R
−r/2)&ensemble . The Wigner distribution function is the wave analog of the specific light intensity, Ic(R,k̂), in
radiative transfer theory which describes the number of photons in the vicinity of R propagating in direction
k̂ . The Wigner function describes coherence properties of the electromagnetic field which can propagate much
longer than the transport mean-free-path l* and which are not included in radiative transfer theory. Given the
nature of the homogeneous background, repeated light intensity measurements, which determine the optical
phase structure at different points along the tissue surface, may be used to determine the size, shape, and
internal structure of the inhomogeneity. In principle, this method improves the resolution of optical tomog-
raphy to the scale of several optical wavelengths in contrast to methods based on diffusion approximation
which have a resolution on the scale of several transport mean-free-paths. Our theory, which describes
microscopically the wave characteristics of the light, is more fundamental than conventional radiative transfer
theory, which treats photons as classical particles. This distinction remains important on scales longer than l* .
Multiple light scattering tomography based on the propagation and measurement of the Wigner distribution
function may be useful for the characterization of near-surface tumors.

Keywords multiple light scattering; inhomogeneity; optical tomography.
1 INTRODUCTION

Near-infrared optical tomography has recently
emerged as a potentially powerful tool in diagnos-
tic medical imaging.1–9 Unlike well-established x
ray imaging and magnetic resonance imaging,
which utilize very short wavelength or very long
wavelength radiation respectively, the optical
method probes an intermediate frequency regime.
As emphasized by Chance,1 this intermediate fre-
quency window facilitates the detection of abnor-
mal metabolic processes leading to tumor forma-
tion. This distinguishes the optical method as an
early diagnostic tool, from its more established
counterparts that respond to structural damage re-
sulting from abnormal metabolism. The description
of near-infrared electromagnetic wave propagation
in biological tissue is, however, much more com-
plex than for x rays or radio waves. Light exhibits
multiple scattering in tissues with a scattering
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mean-free-path, l , on the scale of 10−2 to 10−1 mm
and a transport mean-free-path, l * , on the scale of
a millimeter. In conventional radiative transfer
theory,9,10 it is convenient to define a specific light
intensity, Ic(R,k̂), for the number of photons at the
point R travelling in a direction k̂ . This is analogous
to a classical phase space distribution function. It
satisfies a phenomenological Boltzmann transport
equation. In this model, photons are treated as clas-
sical particles that undergo random multiple scat-
tering. It is assumed that the coherent wave nature
of the electromagnetic field is lost on the scale of
many scattering mean-free-paths l , and from this
assumption it follows that on the scale of the trans-
port mean-free-path l * , photons exhibit classical
diffusion.
From a microscopic point of view, the electro-

magnetic field satisfies a wave equation. In this pic-
ture, the classical phase space distribution function
(specific intensity) Ic(R,k̂) is not well defined.
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OPTICAL COHERENCE IMAGING
Wave-particle duality suggests that if the wave vec-
tor k of the photon is specified, its position is un-
certain and likewise knowledge of the particle po-
sition R leads to uncertainty in its momentum \k.
The nonexistence of a true phase space density mo-
tivated Wigner to define the first-order coherence
function:11,12

I~R,k![E d3r exp@ ik•r#^E0~R1r/2!

3E~R2r/2!&ensemble . (1)

Here, E is the complex electric field amplitude of
the propagating radiation field and ^ &ensemble de-
notes a statistical averaging over all possible real-
izations of the dielectric microstructure. In this pa-
per we use the terms specific intensity and Wigner
coherence function interchangeably. It must be borne
in mind, however, that I(R,k) defined in (1) is not
positive definite and that the analogy with conven-
tional Boltzmann transport theory is not exact. It is
shown in the appendix that a coarse-grained ver-
sion of the Wigner function is in fact positive defi-
nite and may be identified as a true specific inten-
sity.
It is our aim in this paper to describe the precise

integro-differential equation satisfied by the propa-
gator G(R−R8;k,k8) of first-order coherence, which
is defined as

I~R,k!5E d3R8d3k8G~R2R8;k,k8!I0~R8,k8!,

where I0(R8,k8) is the source coherence function.
This G(R−R8;k,k8) is equal to an ensemble average
of a product of two Green’s functions [see Eq. (9)
below). It is the Wigner function detected at R aris-
ing from a source at R8 with specified coherence
properties. The transport equation satisfied by G
turns out to be similar to the classical Boltzmann
equation except with nonlocal interactions arising
from wave coherence. This result suggests that fun-
damental distinctions exist between optical tomog-
raphy based on conventional radiative transfer
theory and coherence propagation theory. We find,
very remarkably, that for a simple model of
multiple-light scattering in a colloidal suspension of
polystyrene spheres in water, certain features of the
Wigner function propagate coherently on length
scales which are on an order of magnitude longer
than the transport mean-free-path l * . This is in
contrast to a purely particlelike picture of photons
in which purely ballistic propagation is attenuated
on the scale of the scattering length l !l * . This
suggests that measurement of the Wigner function
(optical coherence imaging) may provide a higher
degree of sensitivity to properties of the dielectric
microstructure than measurement of the total dif-
fuse intensity. Coherence tomography also offers
the possibility of higher resolution imaging.
Classical diffusion theory requires coarse grain-
ing of the electric field amplitude on sufficiently
large length scales that the true wave characteristics
of transport are no longer apparent. The Wigner
function, however, allows resolution on the scale of
the optical wavelength. These features of coherence
tomography are of value to both time- and
frequency-domain studies5,7 of biological tissue. In
the case of multiple light scattering from an inho-
mogeneity (tumor) in an otherwise homogeneously
disordered medium, the Wigner function behaves
like a quantum mechanical wave function which
scatters from the effective potential presented by
the inhomogeneity. This facilitates a description of
transport which in many respects resembles that of
scattering of a quantum particle in a uniform back-
ground by a fixed impurity.
The possibility of measuring the Wigner coher-

ence function using purely intensity measurements
and refractive optics (lenses) has been demon-
strated by Raymer, Beck, and McAlister.13 The
method uses a series of measurements of the light
intensity at a point on the sample surface imaged
by a pair of lenses to reconstruct uniquely, by to-
mographic reconstruction, the full Wigner coher-
ence function at that point. Passage of the light
through a pair of lenses effects a Fresnel integral
transformation of the wave amplitude on the
sample surface. This is equivalent to a projection
integral of the Wigner coherence function. By vary-
ing the position of the lenses, a variety of different
tomographic projections may be obtained, leading
to reconstruction of the Wigner function by inverse
Radon transform. This method can be repeated at a
variety of different points along the sample surface,
thereby yielding a detailed map of optical absorp-
tion and dielectric microstructure within the
sample.
Light scattering from an inhomogeneity in an

otherwise nonscattering background medium
readily yields valuable information about the loca-
tion and nature of the inhomogeneity. In the case of
a weak inhomogeneity, the single scattering differ-
ential cross-section is related to Fourier components
of the dielectric inhomogeneity evaluated at the
photon wave-vector transfer q=kf−ki . For a dielec-
tric fluctuation described by the function efluct(r),
the light intensity scattered from the incident wave
vector ki to the final wave vector kf is given by (in
Dirac notation) u^kfuefluct(r)uki&u

2 in the first Born ap-
proximation.
A similar situation is encountered in the scatter-

ing of an electron from a central potential V(uru).14
The scattering of the coherent de Broglie wave of
the electron can be characterized by a series of
phase shifts, dl , for each of the angular momentum
partial waves of an incident plane wave. As a func-
tion of the electron energy, the set of phase shifts
provides a fingerprint of the scattering potential
V(uru). This is based on the decomposition of the
181JOURNAL OF BIOMEDICAL OPTICS d APRIL 1996 d VOL. 1 NO. 2
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incident coherent wave of wave vector ki[kẑ into
angular momentum components:

exp@ ikz#5 (
l 50

`

~2l 11 !i l j l ~kr !P l ~ k̂ i• r̂ !. (2)

This is independent of the strength of the potential,
and the scattering is usually dominated by a finite
number l <l max of partial waves.
The simplicity of the scattering problem when the

background medium is uniform (and nonscatter-
ing) arises from the fact that Green’s function for
the amplitude of a coherent wave of frequency v=ck
is given by14

G0
6~r,r8!52

1
4p

exp@6ikur2r8#

ur2r8u
(3)

and that this is in turn has a straightforward partial
wave expansion. If the background is itself a scat-
tering medium, the propagation of energy in the
wave field may be described in a statistical sense.
This follows from multiple scattering theory and
ensemble averaging over the possible configura-
tions of the dielectric disorder eh(r) with an appro-
priate statistical weight. The statistical properties of
the background are given by the translationally in-
variant, ensemble-averaged autocorrelation func-
tion:

Bh~r2r8![
v4

c4 ^eh
0~r!eh~r8!&ensemble . (4)

Green’s function of wave intensity I(R)
[^uE(R)u2&ensemble can then be derived using the
methods of multiple scattering theory. Here E(R) is
the electric field amplitude of the electromagnetic
wave point R. For a source at point R8 and a source
to detector separation L[uR−R8u@l * , where l * is
the transport mean-free-path, the total light inten-
sity detected at R is given by Green’s function of
the diffusion equation:

I~R!5
1

4pD0uR2R8u
. (5)

Here D0 is the optical diffusion coefficient. In this
description, the coherent wave properties of the un-
derlying electromagnetic field have been integrated
over. The intensity (5) described by the diffusion
model is the wave-vector integral of the Wigner co-
herence function11 I(R,k):

I~R![E d3k
~2p!3

I~R,k!. (6)

Here k is a wave vector describing local wave
propagation in the direction k̂ and R describes a
coarse-grained region with linear dimensions
greater than the optical wavelength, l, but smaller
than a few transport mean-free-paths, l * . As
shown in the appendix, a generalized coarse-
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graining procedure applied to I(R,k), which imple-
ments the fundamental uncertainty relation
DRDk>1, leads to the conventional specific intensity
Ic(R,k).
It is our aim to generalize the diffusion Green’s

function (5) for the total light intensity, I(R), to the
Wigner distribution function, I(R,k) and to eluci-
date the relationship of Green’s function for the
Wigner coherence to the autocorrelation function
Bh(r−r8). To the extent that I(R,k) can be measured
experimentally, the nature of the homogeneous
scattering medium can be determined with a reso-
lution scale given by the wavelength of light l. This
can be several orders of magnitude better than the
resolution scale (*l * ) afforded by the diffusion
model.
A tumor in biological tissue can be described as a

localized statistical inhomogeneity:

B~r1 ,r2![
v4

c4 ^e0~r1!e~r2!&ensemble

5Bh~r!1V~R!Bi~r!, (7)

where

r5r12r2 , R5~r11r2!/2.

Here V(R) is a function that vanishes outside of the
region of the tumor and describes its shape and
strength. Bi(r) describes the change in scattering
and absorption within the tumor region from their
values in the background. In this paper, we demon-
strate that multiple light scattering from a statistical
inhomogeneity of the form (7) can be reduced to a
quantum scattering problem and can be described
in terms of a series of partial waves and scattering
amplitudes. Given the nature of the homoge-
neously disordered background Bh(r), it is possible
to relate the scattering amplitudes to the overall tu-
mor profile V(R) as well as its internal characteristic
function Bi(r). This leads to a much more detailed
characterization cell structure within the tumor
than is possible using either a diffusion model or
radiative transfer theory. The functions Bi(r) and
Bh(r) describe in detail absorption and cell struc-
ture, inside and outside the tumor region.

2 WAVE PROPAGATION
IN A HOMOGENEOUSLY DISORDERED
BACKGROUND TISSUE
We first review the multiple scattering theory of
light in an isotropic, homogeneously disordered di-
electric material.15,16 This is a microscopic wave
propagation theory which is more fundamental
than radiative transfer theory or Boltzmann trans-
port theory.10 It directly relates Green’s function for
Wigner coherence, Gh(R−R8,k,k8), to the micro-
scopic correlation function Bh(r). Here Gh is the cor-
relation function of Wigner coherence for light
emitted with wave vector k8 from a source at R8
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and the light detected at point R, with wave vector
k. This provides much greater information than the
diffusion theory that relates the total light intensity
correlations to the transport mean-free-path l * . Ac-
cordingly, multiple scattering theory requires the
measurement of the two-point electric field auto-
correlation function ^E* (r1)E(r2)&ensemble rather than
the one-point intensity ^uE(r)u2&ensemble where the
two-point separation ur1−r2u is small compared to a
few transport mean-free-paths. This autocorrelation
function ^E* (r1)E(r2)&ensemble can be measured ex-
perimentally by phase space tomography and the
technique of fractional-order Fourier trans-
forms.11–13

We consider a model dielectric medium consist-
ing of a random liquidlike arrangement of identical
dielectric spheres in water.17 The Fourier transform
of Bh(r) is given by

B̃h~q!5
v4

c4
ub~q!u2S~q!. (8)

Here ub(q)u2 is the form factor (sometimes referred
to as the phase function) describing scattering from
the individual dielectric spheres and S(q) is the
structure factor describing the statistical arrange-
ment of the collection of spheres in the medium.
We employ a Percus-Yevick approximation17 to de-
scribe S(q). The position and height of various
peaks in S(q) as a function of q[uqu are sensitively
determined by the volume-filling fraction, f, of
spheres. For a dilute (f&0.25) collection of spheres
with refractive index n.1.5, and diameter compa-
rable to the optical wavelength, the function B̃h(q)
contains detailed microscopic information about
the dielectric medium on scales small compared to
l * . The diffusion model is insensitive to this infor-
mation. We describe how multiple scattering spec-
troscopy may resolve the medium characteristics at
the scale of the optical wavelength.
Consider an extended source in the vicinity of

point R8 containing the points r18 and r28 . The electric
field generated by the extended source at point r8 is
denoted by E0(r8) and R8[(r18+r28)/2. The resulting
electric field amplitude is measured by an extended
detector in the vicinity of point R=(r1+r2)/2. The
resulting electric field autocorrelation function is
given by

^E~r1!E
0~r2!&ensemble

5
v4

c4 Er18r28^G1~r1 ,r18!G2~r2 ,r28!&ensemble

3E0~r18!E0
0~r28! . (9)

Here, and throughout this article, we use the no-
tation *d3r[*r for coordinate space integrals and
the notation *[d3k/(2p)3][*k for wave-vector inte-
grals. For a source-emitting light with initial wave
vector k8, the product of electric fields in the source
region may be rewritten as
J

E0~r18!E0
0~r28!5I0~R8,k8!exp@ ik8•~r182r28!# , (10)

where I0 is the Wigner coherence function of the
source. Green’s functions in Eq. (9) are solutions of
the wave equation:

F2¹22
v6
2

c2
eh~r!GG6~r,r1!5d~r2r18!, (11)

where v6[v+ih with h→0. It follows from Eqs. (9)
and (10) that

I~R,k!5E
R8,k8

Gh~R2R8;k,k8!I0~R8,k8!. (12)

The microscopic form of the kernel Gh follows
from carrying out perturbation theory in the effec-
tive ‘‘scattering potential’’ (v2/c2)eh(r) and taking
the ensemble average defined by Eq. (4). The details
of this derivation may be found elsewhere.15,16 The
derivation of the transport equation involves the
summation of an infinite series of terms. These
terms describe different multiple scattering paths
taken by the photons. In the case of weak scatter-
ing, defined by the criterion l!l * , it is reasonable
to neglect the interference between different scatter-
ing paths on length scales L@l * . Consider for in-
stance, the electric field amplitude arriving at the
detector from two independent paths labelled 1 and
2, with amplitudes A1 and A2 respectively. These
amplitudes can be expressed as

An5fn expF i(
j
qj

~n !
•rj

~n !~t !G , n51,2,

where $rj
(n)(t)% are the positions of the scattering

events on path n , which can be a function of the
time variable t due to random thermal motion of
the scatterers. In biological tissue, in addition to
thermal fluctuations, nonequilibrium processes
such as the flow of fluids and blood cells lead to
time variations in rj

(n). Here, qj
(n)s are the related

scattering wave vectors, and fns are constant factors
that account for the scattering strength of each scat-
tering event. The intensity detected is given by time
averaging of uA1+A2u

2 over the time scale of mea-
surement, which we denote as t. In particular,

^uA11A2u2& time5^uA1u21uA2u2& time

1^A1A2
01A1

0A2& time. (13)

The interference term A1A2
01A1

0A2 can be either
positive or negative with equal likelihood. For the
model of Brownian motion, the result of averaging
is given by16

^A1A2
01A1

0A2& time5A12~0 !exp@2N^q2&Dst# .

Here A12(0) is the value of the interference term at
t50, ^q2& is the average value of qj

(n)·qj
(n) with re-

spect to the scatterer form factor ub(q)u2, Ds is the
diffusion coefficient for the scatterers, and N is the
183OURNAL OF BIOMEDICAL OPTICS d APRIL 1996 d VOL. 1 NO. 2
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total number of scattering events on both paths.
The time scale t0[(^q2&Ds)

−1 is the time for the scat-
tering particles to diffuse a distance on the order of
an optical wavelength. It is clear that for Nt@t0 this
interference term vanishes (with the exception of
paths contributing to coherent backscattering).18,19

For a diffusive scattering path, N.(L/l )2, where L
is the thickness of the illuminated sample and l is
the scattering mean-free-path. The criterion,
t@t0(l /L)

2, for neglecting interference effects may
be violated in certain exceptional cases such as in
the case of ultrashort optical pulse duration t or in
the case of relatively static tissue such as the human
tooth.
The neglect of interference effects between differ-

ent scattering paths leads to an elementary partial
wave expansion for the transport kernel Gh . This is
analogous to the partial wave expansion (2) of the
plane wave amplitude in a nonscattering medium.
In the present case, it is an expansion of the coher-
ence function ^E(r1)E* (r2)&ensemble rather than direct
amplitude E(r). The result20 of this expansion is

Gh~R2R8;k,k8!

. (
m52l max

l max

(
l ,l 85umu

l max exp@2uR2R8u/l l l 8
@m# ]

4pD l l 8
@m# uR2R8u~11ul 2l 8u!

3c l m
0 ~k!c l 8m~k8!. (14)

The l =l 8=m50 term corresponds to the isotropic
diffusion mode. D00

[0] is the optical diffusion coeffi-
cient, l00

[m]=` and c00(k) is a function that is highly
peaked in the vicinity of k0=uku=v/c and indepen-
dent of the direction k̂ .
The terms with l =l 8>1 correspond to higher an-

gular momentum partial waves of the coherence
Green’s function and, in general, the spectral func-
tions take the form

c l m~k!5R l ~k !Y l
m~ k̂ !, (15)

where Y l
m( k̂) is a spherical harmonic and R l (k) is a

‘‘radial’’ function that is highly peaked in the vicin-
ity of k0 . For l =l 8>1, the length scale parameters
l l l 8

@m# are finite. For instance, l11
[0] is on the order of

several transport mean-free-paths and, in general,
l l l

@m# decreases when l is increased. The l Þl 8
terms in (14) correspond to the transitions among
different modes, and the parameters l l l 8

@m# are finite,
in general, except for those with l or l 8=0. (When
one of the l and l 8 is equal to zero, l l l 8

@0#
5 `). The

parameters l l l 8
@m# for l ,l 8>1 describe the length

scale on which nondiffusive coherence effects
propagate through the medium on average. On
very long length scales uR−R8u@l11

[0] , only the diffu-
sion mode persists, whereas on shorter length
scales coherence properties are observable. Equa-
tion (14) therefore provides a microscopic interpo-
lation scheme from the ‘‘diffusive,’’ to ‘‘snakelike,’’
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to ‘‘ballistic’’ photons (in the purely particle pic-
ture) as the source to detector separation is de-
creased, or equivalently the time gating6 of detected
photons is changed. The length scales l l l 8

@m# , the
weight factor D l l 8

@m# , and the spectral functions
c l m(k) can be microscopically related to the char-
acteristic function of the medium Bh(r).
Equation (14) is derived by using the multiple

scattering theory.15,16 We first define

G̃h~Q;k8,k![k0
24E d3R exp@2iQ•R#Gh~R,k8,k!,

k0[v/c . (16)

Here, the input and output photon wave vectors k8
and k may be thought of as continuous indices of
the matrix G̃h , and Q as the ‘‘inverse’’ source-
detector vector in reciprocal space. The matrix Gh
describes the transfer of radiation at wave vector k8
to wave vector k through a sequence of intermedi-
ate wave vectors. Multiple scattering theory15,16 (ne-
glecting the interference of different radiative trans-
fer paths) leads to the result that G̃h is given by the
inverse of the operator (matrix):

H[fQ~k!2Bh~r!, (17)

where

fQ~k!5Fk022S k1
Q
2 D 22S1S k1

Q
2 D G

3Fk022S k2
Q
2 D 22S2S k2

Q
2 D G

and

S6~k!5E
q
B̃h~k2q!/@k0

22q22S6~q!# .

In particular,

G̃h~Q;k8,k!5^k8uH21uk& . (18)

The operator H is analogous to the Hamiltonian of
a quantum mechanical particle moving in the po-
tential well 2Bh(r) with an energy versus wave vec-
tor (dispersion) relation given by fQ(k). The trans-
port kernel (14) follows from solving (18) by using
the eigenfunctions of H at Q=0 as basis functions.
The ‘‘ground state’’ energy of H at Q50 is rigor-
ously equal to zero (in the absence of absorption).
This corresponds to the isotropic and undamped
diffusion mode.
We find that the eigenvalue spectrum of H at

Q50 is especially simple in the case of (weak) scat-
tering pertinent to biological tissue. In general, the
eigenvalue spectrum of a three-dimensional poten-
tial well consists of bound states and continuum
states. The bound states are labelled by a principal
quantum number n and angular momentum quan-
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tum numbers l and m. In general there are many
possible values of n in the bound state spectrum.
For the model of identical dielectric spheres in wa-
ter, with statistical correlations described by the
Percus-Yevick approximation, we find that the
bound state spectrum contains only the n50 prin-
ciple quantum number in a certain parameter re-
gion, as shown in Figure 1 (the region under each
curve) for spheres with a relative refractive index
1.09 (the solid line) and 1.193 (the dashed line). In
this figure, a is the radius of the spheres and f is the
volume-filling fraction of spheres. For a 10% vol-
ume fraction of polystyrene spheres in water (with
a relative refractive index 1.193), it requires that
a&4l (where l=2p/k0 is the optical wavelength) in
order to have only the n50 bound states. This es-
sentially requires that the scattering be weak and
that the scattering microstructures be no more than
an order of magnitude larger than the wavelength
of light. In constructing the transport kernel (14) we
have included only the n50 bound states. The con-
tribution from continuum states of H to the kernel
(14) is negligible, since these modes are exponen-
tially damped on the scale of the wavelength.
The parameters l l l 8

@m# and D l l 8
@m# in the kernel (14)

are determined by the correlation function Bh(r)
and they can be calculated numerically once the
function Bh(r) is given. Table 1 gives an example for
this calculation. In this example, we consider the
model of identical polystyrene spheres* in water,
with statistical correlations described by the Percus-
Yevick approximation. We choose the radius of the

*The ratio of the dielectric constant of polystyrene spheres to
that of water is 1.423.

Fig. 1 Parameter region (the one under each curve) in which the
bound state spectrum contains only the n50 principal quantum
number. The calculation was carried out for the model of identical
dielectric spheres in water, with relative refractive indexes 1.09
(the solid line) and 1.193 (the dashed line). f is the volume-filling
fraction and a is the radius of the spheres.
J

spheres a520k0
21 and the volume-filling fraction

f=0.1 in the calculation. The l and l * in Table 1
are the related scattering mean-free-path and trans-
port mean-free-path, respectively. We see that l11

[0] is
the largest among all l l l 8

@m# and it is about twenty
times larger than the transport mean-free-path! This
means that the l =l 8=1 and m50 term in (14) can
propagate for a distance much longer than the
transport mean-free-path in this example. For this
particular choice of a and f, we find that
D00

[0]/D11
[0]. .054. In other words, the l =1 mode am-

plitude is only 1.5 orders of magnitude smaller than
the l =0 mode. From Table 1, we also see that l22

[m]

and l33
[m] are much smaller than l11

[0] , while some
off-diagonal elements, such as l13

[0] , are close to l11
[0]

in value. If we change the function Bh(r) by chang-
ing, for instance, the radius or the refractive index
of the spheres, the l11

[0] and the other coherence
lengths will change their values accordingly. Table
2 shows how the quantities l11

[0]/l * and l33
[0]/l *

change when we change the parameters a, f and De
(where De is the ratio of the dielectric constant of
the spheres to that of water). We see from Table 2
that, for fixed f and De, l11

[0]/l * first increases and
then decreases when we increase parameter a, and
a520k0

21 (with f=0.1 and De=1.423) corresponds to
the maximum value of l11

[0]/l * in this table. We also
see that, in Table 2, l11

[0]/l * increases when we in-
crease f or De. Owing to the dependence of l l l 8

@m# on
the function Bh(r), it is possible to use the observ-
able parameters l l l 8

@m# as well as D l l 8
@m# to characterize

the medium properties contained in Bh(r).
We mention that the neglect of interference be-

tween different radiative transfer paths in (13) is a
good approximation with the exception of the back-
scattering direction. Here it is well known that the
coherent interference of ‘‘time-reversed’’ optical
paths can give rise to an intensity peak in retrore-
flection from a disordered, dielectric half-space.18,19

This peak intensity is up to twice the ‘‘diffuse’’
background and has an angular width that is of the
order (l/l * ) radians. Accordingly, the interference
corrections to the transport theory we have out-
lined are of the order (l/l * )2 . For biological tissue,
with a transport mean-free-path l *;1 mm and at
wavelengths l;1 mm, this correction is very small.
Nevertheless, a generalization of (17) to include the
effects of coherent backscattering is possible. This,
however, leads to the complication that the local
‘‘potential’’ Bh(r) must be replaced by a nonlocal
‘‘potential.’’20

In the above paragraphs we described wave
propagation in an isotropically disordered homoge-
neous background without absorption. In the pres-
ence of absorption, the dielectric constant eh(r) is no
longer real and has an imaginary part. It can be
shown20 that the corresponding Green’s function
for Wigner coherence in this case is of the same
form as (14) but the coherence lengths l l l 8

@m# , espe-
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Table 1 Numerical results of the coherent lengths l
l l 8
@m# , the scattering mean-free-path l , and the trans-

port mean-free-path l * for the model of identical polystyrene spheres in water, with statistical correlations
described by the Percus-Yevick approximation.

l l * m l11
[m] l22

[m] l33
[m] l12

[m] l13
[m] l23

[m]

7.4 6.03102 0 .1.13104 2.03102 2.03102 .7.63103 .8.53103 2.03102

1 3.63102 4.73102 1.93102 4.63102 .1.23103 4.63102

Note: The radius of the spheres and the volume-filling fraction are taken to be 20k021 and 0.1, respectively. We set
l max=3 in the calculation. All lengths are in units of k021 .
cially, l00
[0] , l0l

@0# and l l 0
@0#, now are all finite. This is

because the ground state energy of H0 is no longer
equal to zero in dissipative media.
We note, finally, that in this paper we have con-

sidered only the case of time-independent, steady-
state imaging. For frequency-domain or time-
domain imaging, we need to consider the time-
dependent generalization of Eqs. (16) to (18). For
example, to describe modulation of the source in-
tensity at the frequency V, it is necessary to evalu-
ate the advanced and retarded self-energies S6 at
frequencies ck0+V/2 and ck0−V/2 respectively,
rather than at the same frequency ck0 . A detailed
discussion of frequency-domain and time-domain
measurements is given in Ref. 20.

3 COMPARISON WITH CONVENTIONAL
RADIATIVE TRANSFER THEORY
In this section we compare our wave theory de-
scribed in the previous section with conventional
radiative transfer theory. As mentioned earlier, our
theory is more fundamental than conventional ra-
diative transfer theory.10 Here, we elucidate the im-
portant differences. For this purpose, we first re-
write (18) as the following integral equation20
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2k·QG̃h~Q;k,k8!

5DGk~Q!dkk81E
k1

DGk~Q!B̃h~k2k1!G̃h~Q;k1,k8!

2S E
k1

DGk1
~Q!B̃h~k2k1! D G̃h~Q;k,k8!, (19)

where

DGk~Q![G1~k1Q/2!2G2~k2Q/2!,
(20)

G6~k![@k0
22k22S6~k!#21.

Equation (19) is equivalent to (18) and can be de-
rived by using (17) and (20).
On the other hand, in conventional radiative

transfer theory, the (time-independent) specific
light intensity Ic(R,k) (where the index c denotes
conventional radiative transfer theory) of a homo-
geneous medium without absorption satisfies the
following phenomenological Boltzmann transport
equation9,10
Table 2 Ratios of coherence lengths l11
[0] and l33

[0] to transport mean-free-path l * versus parameters
f—the volume-filling fraction, a—the radius of the spheres, and De—the ratio of dielectric constant of the
spheres to that of water.

Parameters

l k0 l *k0 l11
[0]/l * l33

[0]/l *De f ak0

1.423 0.1 10 2.03101 4.93102 12.8 0.21

1.423 0.1 20 7.4 6.03102 18.0 0.33

1.423 0.1 27 8.9 1.23103 11.4 0.26

1.193 0.1 20 4.53101 3.73103 3.0 0.21

1.1 0.1 20 1.83102 1.53104 0.7 0.15

1.193 0.3 20 2.73101 1.43103 5.0 0.24

1.193 0.05 20 7.93101 7.23103 1.5 0.20
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~k•“R!Ic~R,k!1ks~k !Ic~R,k!

5I0
c ~R,k!1E

k8
k8s~k8→k!Ic~R,k8!, (21)

where s(k) and s(k8→k) are the total and angular
scattering coefficients, respectively, and satisfy the
relation

E
k8

s~k→k8!5s~k !. (22)

In (21), I0
c (R,k) is the source-specific intensity. Now,

if we define

Ic~R,k!5E
R8k8

Gh
c ~R2R8;k,k8!I0

c ~R8,k8!, (23)

then we can show from (21) that the Fourier trans-
form of Gh

c (R−R8;k,k8) satisfies

ik·QGh
c ~Q;k,k8!5dkk81E

k1
k1s~k1→k!

3G̃h
c ~Q;k1 ,k8!2ks~k !

3G̃h
c ~Q;k,k8!. (24)

It can be easily seen that (19) and (24) are equiva-
lent if we ignore the Q dependence of DGk(Q) in
(19) and identify

G̃h~Q;k,k8!↔G̃h
c ~Q;k,k8!@ iDGk8~0 !#/2,

s~k !↔
1
2kEk1B̃h~k2k1!@ iDGk1

~0 !#52ImS1~k !/k ,

s~k8→k!↔
1
2k8

@ iDGk~0 !#B̃h~k2k8!. (25)

Therefore, the conventional radiative transfer
theory ignores† the Q dependence of DGk(Q),
which corresponds to a nonlocal interaction in po-
sition space, as shown in Fig. 2 where we plot the
Fourier transform of iDGk(Q) for some fixed k’s in
the forward direction [in the backward direction,
with k·R<0, the Fourier transform of iDGk(Q) os-
cillates rapidly on the scale of the wavelength]. Ow-
ing to the neglect of Q dependence, the propagator
Gh(R−R8;k,k8) given by conventional radiative
transfer theory differs from that obtained from our
wave theory in the following two respects20: (1) The
related terms with m50,l =1 and l 8>1 as well as
the terms with m=0,l 8=1 and l >1 in (14) are com-
pletely missing in the conventional radiative trans-
fer theory. In particular, the term with m50 and
l =l 8=1, which can usually propagate for a much

†One consequence of ignoring the Q dependence of DGk(Q) in
the conventional radiative transfer theory is that the diffusion
coefficient D0 , in the limit of length scales much larger than l* ,
comes only from the coupling between c00 and c01 , the ground
state and the first excited state of H at Q50.
longer distance than the transport mean-free-path,
is absent in radiative transfer theory. This is the
most significant difference between the results of
these two theories. (2) The values of parameters
l l l 8

@m# and D l l 8
@m# given by the radiative transfer

theory for other remaining terms are, in general,
not the same as those given by our wave theory
except for the terms with l or l 8=0. When one of l

Fig. 2 Fourier transform of iDGk(Q), namely, DḠk(uRu)
[ *Qexp@iQ • R#@ iDGk(Q)# for the case when: (a) k·R/uRu=1.0k0 ;
(b) k·R/uRu=0.99k0 ; (c) k·R/uRu=0.80k0 . It was calculated for the
model of identical polystyrene spheres in water with f=0.1 and
a520k021 . Note that DḠk(uRu) is real because from Eq. (20) we
have@DGk(Q)#1 5 2DGk(2Q).
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and l 8 is equal to zero, the radiative transfer theory
also gives l l l 8

@0#
5 ` (in the absence of absorption).

The above discussion shows that the conven-
tional radiative transfer theory is an approximation
to our wave theory, and the difference between
these two theories remains important on scales
longer than the transport mean-free-path. Nonlocal
corrections to particlelike transport of photons ap-
pear even without consideration of the interference
of different diffusion paths. These nonlocal correc-
tions arise from the fact that wavelike coherence
persists on long length scales in a medium with a
nontrivial underlying structure. This would be ab-
sent in a ‘‘white noise’’ model consisting of spa-
tially uncorrelated point scatterers. The diffusion
model is insensitive to the important distinctions
between white noise disorder and a scattering me-
dium with specific cellular structures arranged in a
specific order. An extreme illustration of this effect
is that of a periodic dielectric microstructure. Here,
wavelike coherence persists on an infinite length
scale due to perfect coherent interference between
different single scattering events, giving rise to a
propagating Bloch wave. Biological tissue is an in-
termediate case in which this wave coherence may
extend on scales that are large compared with the
transport mean-free-path.
We mention finally that coherent backscattering

effects18,19 may be systematically incorporated into
wave theory by replacing B̃h(k−k1) in Eq. (19) by an
‘‘irreducible vertex function,’’ Uk,k1

(Q).16 This ver-
tex function has a perturbation expansion in the
small parameter (l/l * )2. The leading term in this
expansion is in fact B̃h(k−k1). The Q dependence,
obtained at a higher order in perturbation theory,
gives rise to further nonlocality in the resulting ra-
diative transfer equation.

4 MULTIPLE LIGHT SCATTERING NEAR
AN INHOMOGENEITY

In Sec. 2 we described the relationship between the
coherence propagator Gh and the underlying dielec-
tric microstructure characterized by the translation-
ally invariant function Bh(r−r8)[v4/c4^eh

0(r)
3eh(r8)&ensemble . In the presence of a localized inho-
mogeneity, the dielectric autocorrelation is no
longer translationally invariant. This loss of transla-
tional symmetry is related to the function V(R)
which appears in Eq. (7) and which describes the
fixed location and shape of the inhomogeneity. We
consider, for simplicity, an inhomogeneous region
that is located near some central point R0 . The in-
homogeneity may absorb light and may have dif-
ferent scattering characteristics than the homoge-
neous background. We assume that the internal
correlations of the inhomogeneity, like the back-
ground, are isotropic after ensemble averaging.
That is to say, Bi(r)=Bi(r) where r[uru. It is useful to
define the matrix
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b l m ,l 8m8[^c l muBiuc l 8m8&. (26)

From the isotropy assumption for Bi(r), it follows
that this matrix is diagonal. We define

b l m ,l 8m8[b l d l l 8dmm8 . (27)

This together with the fact that only the n50 prin-
cipal quantum number states contribute to Gh
(weak scattering), leads to the result that the inho-
mogeneity does not mix the partial waves with dif-
ferent n or m indexes of the coherence propagator
Gh . It is useful to introduce a (l max−umu)3(l max−umu)
matrix Ĝh

[m](R−R8) whose (l ,l 8)th element is de-
fined by

~ Ĝh
@m#~R2R8!! l l 8[

1

4pD l l 8
@m#

exp@2uR2R8u/l l l 8
@m#

#

uR2R8u~11ul 2l 8u!
.

(28)

It follows from the above assumptions that the full
coherence propagator (including the inhomogene-
ity) can be expressed in the form

G~R,R8;k,k8!5 (
m52lmax

l max

(
l ,l 85umu

l max

G l l 8
@m#

~R,R8!

3c l m
0 ~k!c l 8m~k8!, (29)

where G l l 8
@m# (R,R8) is the (l ,l 8)th element of a

(l max−umu)3(l max−umu) matrix Ĝ [m](R,R8), which
will be determined.
In the absence of the inhomogeneity [V(R)=0],

Ĝ [m](R,R8) reduces to Ĝh
[m](R−R8). The presence of

the inhomogeneity, however, removes the transla-
tional symmetry of the problem. Using the same set
of approximations which were used in the deriva-
tion of Gh , namely the noninterference of different
radiative transfer paths, it is straightforward to
show20 that Ĝ [m](R,R8) satisfies the following linear
integral equation:

Ĝ@m#~R,R8!5Ĝh
@m#~R2R8!1E

R9
Ĝh

@m#~R2R9!

3V~R9!b̂ @m#Ĝ@m#~R9,R8!, (30)

where b̂ [m] is a constant diagonal matrix whose l th
diagonal element is b l , which describes the inter-
nal, ensemble-averaged microstructure of the inho-
mogeneity. For a spherical tumor of radius b, cen-
tered at R0 , the ‘‘potential’’ V can be described by
the function

V~R!5Q~b2uR2R0u!, (31)

where the step function is defined by Q(x)=1 for
x>0 and Q(x)=0 for x,0.
The integral equation (3) for the inhomogeneous

propagator is remarkably similar to the Lippmann-
Schwinger equation14 describing the quantum me-
chanical scattering of a particle from a static poten-
tial well. For the quantum particle, Ĝh

[m](R−R8) in
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Eq. (30) would be replaced by the free-particle
propagator (3) and V(R9) would be replaced by the
quantum mechanical scattering potential. The
ensemble-averaged, multiple scattering problem
differs from the conventional quantum scattering
problem in two fundamental respects. First of all,
Eq. (30) constitutes a set of (l max−um u)3(l max−um u)
coupled equations. Second, the ‘‘background’’
propagators Ĝh

[m] are damped rather than purely os-
cillatory, since the higher order partial waves of the
coherence function fail to propagate in the disor-
dered medium on scales much, much greater than
the transport mean-free-path l * . It is significant to
note, however, that the damping length scales are
as large as twenty times the transport mean-free-
path in some of the models we have studied. Fi-
nally, we mention that in the case of strong scatter-
ing by the homogeneous background (violating the
fact that only the n50 principle quantum number
states contribute to Gh) or in the case of anisotropic
internal correlations within the inhomogeneity
[Bi(r)ÞBi(r)], the matrix bnl m ,n8l 8m8 [generaliza-
tion of Eq. (26)] has off-diagonal elements. This
leads to a coupling between the partial wave propa-
gators in Eq. (30) for different values of m and n .
The solution of the coupled system of integral

equations is similar in structure to the solution of
the Lippmann-Schwinger equation in quantum me-
chanics. We consider the asymptotic behavior of
Eq. (30) when the source and detectors are far from
the inhomogeneity (uR−R0u@b and uR8−R0@b). For
this purpose, we rewrite Eq. (30) as follows:

Ĝ@m#~R,R8!

5Ĝh
@m#~R2R8!1E

R9
Ĝh

@m#~R2R9!

3V~R9!b̂ @m#Ĝh
@m#~R92R8!

1E
R9R-

Ĝh
@m#~R2R9!V~R9!b̂ @m#Ĝ @m#~R9,R-!

3V~R-!b̂ @m#Ĝh
@m#~R-2R8!. (32)

In the limit uR−R0u@b , we may use the fact that
uR9−R0u!uR−R0u to rewrite uR−R9u=uR−R0−(R9−R0)u
in (32), and then Taylor expand this expression in
the small parameter uR9−R0u. Similar expansion also
applies to the limit uR8−R0u@b .
These expansions yield the asymptotic behavior

of the partial-wave coherence propagator when
both source and detector are far from the inhomo-
geneity:

G l l 8
@m#

~R,R8!

.
1

4pD l l 8
@m#

exp@2uR2R8u/l l l 8
@m#

#

uR2R8u11ul 2l 8u
1 (
i ,j5umu

l max

f l l 8,ij
@m# (u ,i/l l i

@m# ,i/l jl 8
@m#)

3
exp@2uR2R0u/l l i

@m#2uR82R0u/l jl 8
@m#

#

4pD l i
@m#Djl 8

@m#uR2R0u11ul 2iuuR82R0u11ul 82ju
.

(33)

Here, cos u[(R0−R8)·(R−R0)/(uR0−R8uuR−R0u) de-
scribes the angle between the line connecting the
source to inhomogeneity and the line connecting
the inhomogeneity to the detector. The function
f l l 8,ij
@m# (u ,i/l l i

@m# ,i/l jl 8
@m#) is the analog of a scattering

amplitude in quantum mechanics. A straightfor-
ward calculation leads to the following formal ex-
pression for this scattering amplitude:

f l l 8,ij
@m#

~u ,i/l l i
@m# ,i/l jl 8

@m#!5
1
4pEr9

exp@r9•R̂/l l i
@m##

3V~R01r9!@ b̂ @m#

3Ĉ~m ,l 8!~R01r9!# ij ,

(34)

where R̂[(R−R0)/uR−R0u and the ‘‘scattering wave
function’’ satisfies the matrix integral equation:

Ĉ~m ,l 8!~R!5Ê ~m ,l 8!~z !1E
R9

Ĝh
@m#~R2R9!

3V~R9!b̂ @m#Ĉ~m ,l 8!~R9!. (35)

Here, z[(R8−R0)·(R−R0)/uR8−R0u, and @ Ê (m ,l 8)

3(z)# ij 5 exp@z/ljl 8
@m#d ij# . Equation (35) is a matrix

type of Lippmann-Schwinger equation analytically
continued to imaginary wave vectors i/l l l 8

@m# .
The above analysis demonstrates the formal rela-

tionship between scattering from a statistical inho-
mogeneity in a homogeneous multiple-scattering
background and a quantum mechanical type of
scattering governed by Eq. (35). The measurement
of the scattering amplitude f l l 8,ij

@m# (u ,i/l l i
@m# ,i/l jl 8

@m#)
coupled with knowledge of the parameters l l l 8

@m#

and D l l 8
@m# (from measurement of transport in the

homogeneous background) leads to a complete
characterization of the inhomogeneity (tumor). The
scattering amplitude in this illustration may be
measured by using a coherent light source at one
spot on the sample surface and then performing
phase-space tomography at a large number of other
spots along the sample surface. Reconstruction of
the Wigner coherence function at any given spot
requires a large number of intensity measurements
at the spot. A second level of reconstruction con-
sists of evaluating V(R) and Bi(r) from comparison
of the reconstructed Wigner function between a
large number of different spots along the sample
surface. Reconstruction of the tumor profile V(R)
189JOURNAL OF BIOMEDICAL OPTICS d APRIL 1996 d VOL. 1 NO. 2
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and the tumor’s internal characteristic function
Bi(r) reduces to a quantum inverse scattering
problem.21

5 DISCUSSION

We have outlined a formal analogy between wave
propagation in a multiple scattering medium with a
statistical inhomogeneity and the quantum me-
chanical scattering of a particle by a localized po-
tential. Our multiple scattering theory is more fun-
damental than conventional radiative transfer
theory in which photons are treated as classical par-
ticles. In this analogy, the disorder-averaged coher-
ence function ^E* (r1)E(r2)&ensemble plays the role of a
scattering wave function. The coordinate
R[(r1+r2)/2 corresponds to the center of mass of
the quantum particle and the relative coordinate
r[r1−r2 corresponds to some internal degree of
freedom of the quantum particle. By taking the
Fourier transform of the coherence function with
respect to r, we obtain the Wigner function I(R,k).
This function is the wave analog of the specific light
intensity that is used in a Boltzmann-type transport
theory. Alternatively, the spectral content of the ra-
diation field at R may be described in terms of a set
of ‘‘eigenfunctions’’ C l m(k). The precise form of
these eigenfunctions is determined by the homoge-
neous dielectric autocorrelation function
Bh(r)[v4/c4^eh

0(r)eh(0)&ensemble . In particular
c l m(k) are the Fourier transforms of the bound-
state wave functions in the ‘‘potential’’ 2Bh(r). If
the initial mode at point R8 is c l m(k), then, as the
radiation propagates from point R8 to R, the inten-
sity remaining in the initial mode c l m(k) decreases
by the factor exp@ 2 uR 2 R8u/l l l

@m##/(4pD l l
@m#uR

2 R8u). In many cases of physical importance, the
coherence length l11

0 may exceed the transport
mean-free-path by an order of magnitude. The pa-
rameters l l l

@m# and D l l
@m# are related to the ‘‘energy

eigenvalues’’ of the potential 2Bh(r). Here, l00
[0]=`

and D00
[0] is the optical diffusion coefficient. In the

quantum mechanical analogy, Bh(r) plays the role
of an internal binding potential for the (composite)
particle and the c l m are the ground and excited
states of the particle. Depending on the nature of
the coherent light source, some superposition of the
ground (diffusion mode) and excited states may be
created. As the particle propagates from point R8 to
R, the higher excited states are damped and the
internal state of the particle relaxes to the ground
state.
In the presence of a statistical inhomogeneity,

V(R)Bi(r), the center of mass of the composite par-
ticle experiences an external potential proportional
to V(R). When the internal state of the particle is
given by c l m, the external potential from which the
particle scatters is given by ^c l muBiuc l m&V(R).
The above analogy and the mathematical formal-

ism associated with it opens the possibility of high-
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resolution multiple light scattering tomography.
The propagation of the total intensity field
^uE(r)u2&ensemble probes the nature of the dielectric
medium on scales that are large compared with the
transport mean-free-path l * . The internal structure
of the coherence function ^E* (r1)E(r2)&ensemble probes
the structure of the dielectric medium on scales
ranging from l * down to the optical wavelength.
These considerations clearly underscore the en-
hanced sensitivity and resolving power of coherent
multiple light scattering tomography beyond that
allowed by the diffusion model.

APPENDIX: RELATIONSHIP OF THE
WIGNER DISTRIBUTION FUNCTION TO
THE SPECIFIC LIGHT INTENSITY

The Wigner distribution function, I(R,k), defined in
Eq. (1) as the electric field mutual coherence func-
tion is not positive definite. This differs from the
specific light intensity, Ic(R,k), of conventional ra-
diative transfer theory, defined by Eq. (21). The spe-
cific intensity is a measure of the number of pho-
tons in a vicinity of the point R travelling in the
direction of the wave vector k and is by definition
positive definite. As a consequence of the wave na-
ture of the photon, the specific intensity Ic(R,k), re-
fers to coarse-grained regions in coordinate space R
and momentum space k, such that the fundamental
uncertainty relation DRiDki>1, i5x ,y ,z . We dem-
onstrate briefly in the following paragraphs that a
suitable coarse graining of the Wigner distribution
leads to a positive definite distribution which we
identify with the specific light intensity. More de-
tails on the subject of coarse graining of the Wigner
function can be found in Refs. 22 and 23.
Consider the coarse-graining function

r~R,k;R8,k8![
1

p3 exp@2~R82R!2/~DR !2!]

3exp@2~k82k!2/~Dk !2# (36a)

with the constraint that

DRDk51. (36b)

It is straightforward to verify that

E d3Rd3kr~R,k;R8,k8!5~DRDk !351. (37)

Applying this coarse-graining operation to the
Wigner distribution, we obtain
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Ic~R,k!5E d3R8d3k8r~R,k;R8,k8!I~R8,k8!

5
1

p3E d3Rd3rd3k8r~R,k;R8,k8!

3exp@2ik8•r#^E0~R81r/2!

3E~R82r/2!&ensemble . (38)

Using the definition of the coarse-graining function
(36) and making the change of variables u=R8+r/2
and v=R8−r/2, we may integrate (38) with respect
to k8 to obtain:

Ic~R,k!5F ~Dk !2

p G3/2E d3ud3v^E0~u!E~v!&ensemble

3exp@2ik•~u2v!#

3expF2
~Dk !2

4
~u2v!22

~u1v22R!2

4~DR !2 G .
(39)

Using the fact that (Dk)2=1/(DR)2, it follows that

Ic~R,k!5
1

p3/2~DR !3
E d3ud3v^E0~u!E~v!&ensemble

3exp@2ik•~u2v!#

3expF2
~u2R!21~v2R!2

2~DR !2
G

5
1

p3/2~DR !3
K U E d3uE~u!exp@2ik•u

2~u2R!2/@2~DR !2##U2L
ensemble

,

which is indeed positive definite. We identify this
coarse-grained version of the Wigner distribution
function with the specific light intensity of conven-
tional radiative transfer theory.
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