1 March 2006 Monitoring cerebral oxygen saturation during cardiopulmonary bypass using near-infrared spectroscopy: the relationships with body temperature and perfusion rate
Author Affiliations +
Abstract
During cardiopulmonary bypass (CPB) because of weak arterial pulsation, near-IR spectroscopy (NIRS) is almost the only available method to monitor cerebral oxygenation noninvasively. Our group develops a NIRS oximeter to monitor regional cerebral oxygenation especially its oxygen saturation (rScO2). To achieve optimal coupling between the sensor and human brain, the distances between the light source and the detectors on it are properly chosen. The oximeter is calibrated by blood gas analysis, and the results indicate that its algorithm is little influenced by either background absorption or overlying tissue. We used it to measure the rScO2 of 15 patients during CPB. It is shown that rScO2 is negatively correlated with body temperature and positively with perfusion rate. There are two critical stages during CPB when rScO2 might be relatively low: one is the low-perfusion-rate stage, the other is the early rewarming stage. During cooling, the changes of total hemoglobin concentration (CtHb) compared with its original value is also monitored. It is shown that CtHb decreases to a small extent, which may mainly reflect cerebral vasoconstriction induced by cooling. All these results indicate that NIRS can be used to monitor cerebral oxygenation to protect cerebral tissue during CPB.
© (2006) Society of Photo-Optical Instrumentation Engineers (SPIE)
Yichao Teng, HaiShu Ding, Qingcheng Gong, Zaishen Jia, Lan Huang, "Monitoring cerebral oxygen saturation during cardiopulmonary bypass using near-infrared spectroscopy: the relationships with body temperature and perfusion rate," Journal of Biomedical Optics 11(2), 024016 (1 March 2006). https://doi.org/10.1117/1.2187422 . Submission:
JOURNAL ARTICLE
9 PAGES


SHARE
Back to Top