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Abstract. We present a novel methodology for combining breast im-
age data obtained at different times, in different geometries, and by
different techniques. We combine data based on diffuse optical to-
mography �DOT� and magnetic resonance imaging �MRI�. The soft-
ware platform integrates advanced multimodal registration and seg-
mentation algorithms, requires minimal user experience, and employs
computationally efficient techniques. The resulting superposed 3-D
tomographs facilitate tissue analyses based on structural and func-
tional data derived from both modalities, and readily permit enhance-
ment of DOT data reconstruction using MRI-derived a-priori structural
information. We demonstrate the multimodal registration method us-
ing a simulated phantom, and we present initial patient studies that
confirm that tumorous regions in a patient breast found by both im-
aging modalities exhibit significantly higher total hemoglobin concen-
tration �THC� than surrounding normal tissues. The average THC in
the tumorous regions is one to three standard deviations larger than
the overall breast average THC for all patients. © 2007 Society of Photo-
Optical Instrumentation Engineers. �DOI: 10.1117/1.2798630�
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imaging; image registration; image segmentation; photon migration.
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Introduction
ear-infrared �NIR� diffuse optical tomography �DOT� relies
n functional processes, and provides unique measurable pa-
ameters with potential to enhance breast tumor detection sen-
itivity and specificity. For example, several groups have
emonstrated the feasibility of breast tumor characterization
ased on total hemoglobin concentration, blood oxygen satu-
ation, water and lipid concentration and scattering.1–17

The functional information derived with DOT is comple-
entary to structural and functional information available to

onventional imaging modalities such as magnetic resonance

ddress all correspondence to Fred S. Azar, Siemens Corporate Research, Tel:

09-734-6507; Fax: 609-734-6565; E-mail: fred.azar@siemens.com

ournal of Biomedical Optics 051902-
imaging �MRI�, x-ray mammography, and ultrasound. Thus
the combination of functional data from DOT with structural/
anatomical data from other imaging modalities holds potential
for enhancing tumor detection sensitivity and specificity. To
achieve this goal of data fusion, two general approaches can
be employed. The first, concurrent imaging, physically inte-
grates the DOT system into the conventional imaging instru-
ment. This approach derives images in the same geometry and
at the same time. The second approach, nonconcurrent imag-
ing, employs optimized stand-alone DOT devices to produce
3-D images that must then be combined with those of the
conventional imaging modalities via software techniques. In
1083-3668/2007/12�5�/051902/14/$25.00 © 2007 SPIE
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his case, the images are obtained at different times and often
n different geometries.

Thus far a few DOT systems have been physically inte-
rated into conventional imaging modalities such as MRI,18–22

-ray mammography,5 and ultrasound9 for concurrent mea-
urements. By doing so, however, these DOT systems are
ften limited by the requirements of the “other” imaging mo-
ality, for example, restrictions on metallic instrumentation
or MRI, hard breast compression for x-ray mammography,
imited optode combinations for ultrasound �and MRI, x-ray�,
nd time constraints. On the other hand, among the stand-
lone DOT systems available today, only a few attempts have
een made to quantitatively compare DOT images of the same
reast cancer patient to those of other imaging modalities9,22

btained at different times, because the nonconcurrent coreg-
stration problem presents many challenges. It is therefore de-
irable to develop quantitative and systematic methods for
ata fusion that utilize the high-quality data and versatility of
he stand-alone imaging systems.

In this work, we introduce and demonstrate a novel soft-
are platform for combining nonconcurrent MRI and DOT:

he optical and multimodal imaging platform for research as-
essment and diagnosis �OMIRAD�. To our knowledge,
MIRAD is the first software prototype platform capable of

using and jointly analyzing multimodal optical imaging data
ith x-ray tomosynthesis and MR images of the breast.23–28

he OMIRAD platform enables multimodal 3-D image visu-
lization and manipulation of datasets based on a variety of
-D rendering techniques. Through its ability to simulta-
eously control multiple fields of view, OMIRAD can stream-
ine quantitative analyses of structural and functional data.
MIRAD is the result of four years of work to develop and

est a prototype platform specifically designed for multimodal
ptical data visualization, fusion, and analysis, including the
bility to share data and analysis results across several insti-
utions. It is possible that other postprocessing software exists,
ut to our knowledge, none of it has been integrated into a
ull-fledged software prototype, nor tested within several lead-
ng institutions in optical imaging research such as within the
etwork for Translational Research in Optical Imaging

NTROI�. Our preliminary study takes an important step to-
ard improved diagnosis and treatment of breast cancer pa-

ients with DOT and MRI. Coregistration, facilitated by the
oftware platform, combines structural and functional data
rom multiple modalities. Segmentation and fusion will also
nable a-priori structural information derived from MRI to be
ncorporated into the DOT reconstruction algorithms. The
ombined MRI/DOT dataset provides information in a more
seful format than the sum of the individual datasets, and we
xpect the platform to have substantial impact on the stan-
ardization of diffuse optical imaging systems, and therefore
n the translation of optical imaging research prototypes into
iable clinical systems.

The work is organized as follows. We first summarize the
tructure of the DOT system. We then present the multimodal
oftware platform developed to enable nonconcurrent multi-
odal data analysis. We describe procedures used for image

oregistration and segmentation, and we demonstrate the ap-
roach using a simulated phantom breast model. Last, we ap-
ly the platform to coregister DOT and MRI images of three

reast cancer patients.

ournal of Biomedical Optics 051902-
2 Diffuse Optical Tomography System
Overview

A schematic of the DOT instrument is shown in Fig. 1.29 This
hybrid continuous-wave �cw� and frequency-domain �FD�
parallel-plane DOT system has been extensively characterized
for breast cancer imaging using tissue phantoms and normal
breast.30 The breast is softly compressed between the source
plate and a viewing window, to a thickness of 5.5 to 7.5 cm.
The breast box is filled with a matching fluid �i.e., Intralipid
and indian ink� that has optical properties similar to human
tissue. Four laser diodes �690-, 750-, 786-, and 830-nm wave-
length�, amplitude modulated at 70 MHz, were used as light
sources. We use a grid of 9�5=45 source positions with a
spacing of 1.6 cm. For �cw� transmission detection, we
sample a 24�41=984 grid of pixels from the charge-coupled
device �CCD�, which corresponds to a detector separation of
about 3 mm on the detection window. For remission detection
�FD�, we use a 3�3=9 grid �1.6-cm spacing� of detector
fibers located on the source plate. Remission detection is used
to determine the average optical properties of the breast.
These values are used as an initial guess for the nonlinear
image reconstruction. The CCD data are used for the image
reconstruction. For each source position and wavelength, FD
measurements were obtained via nine detector fibers on the
source plate, and cw measurements were obtained simulta-
neously via CCD camera in transmission. The amplitude and
phase information obtained from the FD measurements are
used to quantify bulk optical properties, and the cw transmis-
sion data are used to reconstruct a 3-D tomography of optical
properties within the breast.

To reconstruct the absorption and scattering image, an in-
verse problem associated with the photon diffusion equation
is solved by iterative gradient-based optimization.31 The algo-
rithm reconstructs chromophore concentrations �CHb,CHbO2

�
and scattering coefficients directly using data from all wave-
lengths simultaneously. We use a variation of the open-source
software package Time-resolved optical absorption and Scat-
tering tomography �TOAST� for these reconstructions.
TOAST determines the optical properties inside a medium by
adjusting these parameters, such that the difference between
the modeled and experimental light measurements at the
sample surface is minimized.32 Images of physiologically rel-
evant variables, such as total hemoglobin concentration
�THC�, blood oxygenation saturation �StO2�, and scattering

Fig. 1 Schematic of the parallel plate DOT instrument with patient
subject lying in the prone position �refer to Ref. 29 for the technical
details�.
are thus obtained. Figure 2 shows an example of a 3-D distri-

September/October 2007 � Vol. 12�5�2
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ution of THC ��M� in a patient breast with an invasive
uctal carcinoma.

The resulting DOT dataset is a finite element �FE� model
ontaining on average 50,000 nodes and 200,000 tetrahedral
lements. Each node is associated with the reconstructed
hysiological values such as THC and StO2. To facilitate reg-
stration of DOT and MR images, the FE model is automati-
ally resampled into a 3-D voxelized volume. The smallest
ounding box surrounding the FE model is identified; this
olume is divided into voxels �1283 by default�. Every voxel
s associated to the tetrahedral element to which it belongs,
nd finally, using the element’s shape functions, the correct
hysiological value is interpolated at the location of the voxel.

Software Platform Description
he OMIRAD platform enables multimodal integration and
isualization of data from DOT and MRI. Figure 3 describes a
ypical workflow that a user can follow:

1. Input: the software platform accepts two types of data
ormats. 1. For MRI datasets: Digital Imaging and Communi-
ations in Medicine �DICOM�, the widely accepted format.25

. For DOT datasets: TOAST, developed at University Col-
ege London,30 and Near Infrared Frequency Domain Absorp-
ion and Scatter Tomography �NIRFAST�, developed at Dart-

outh College �Hanover, New Hampshire�,33 two popular
ormats used in the DOT image reconstruction community.
atasets are converted into a common binary format through
user-friendly interface. Then a patient browser �in the import
odule shown in Fig. 3� allows the user to select any two 3-D

atasets for visualization and/or registration.
2. Visualization: the visualization stage permits the user to

nspect each dataset, both through volume rendering and mul-

ig. 2 3-D distribution of THC ��M concentration� in a patient breast
ontaining an invasive ductal carcinoma. Consecutive 2-D patient
lices are adjacent.
Fig. 3 Typical user workflow for the OMIRAD platform.

ournal of Biomedical Optics 051902-
tiplanar reformatting �MPR� visualization, and to define the
volume of interest �VOI� through morphological operations
such as punching. Punching involves determining a 3-D re-
gion of an object from the 2-D region specified on the ortho-
graphic projection of the same object. This 3-D region can
then be removed or retained. This type of operation enables an
easy editing of 3-D structures. This is a particularly important
stage, as the user removes parts of the data that should not be
used in the registration process.

3. Segmentation: the breast MR image segmentation tech-
nique enables a-priori structural information derived from
MRI to be incorporated into the reconstruction of DOT data
�details are given in the next section�.

4. Registration: the user may decide to roughly align one
volume to the other, before starting the automatic registration
procedure �details are given in the next section�.

5. Analysis: once the registration is completed, several
tools are available to the user for assessment of the results,
including fused synchronized MPR and volume manipulation.

The visualization platform showing same patient MRI and
DOT �blood volume� datasets before registration is exhibited
in Fig. 4. After the appropriate color transfer functions are
applied, one can clearly observe the location of the invasive
ductal carcinoma diagnosed in this patient breast.

4 Three-Dimensional/Three Dimensional
Diffuse Optical Tomography to
Magnetic Resonance Imaging Image
Registration Algorithm

3-D DOT/3-D MRI image registration presents several new
challenges. Because registration of DOT to MR acquired non-
concurrently has not been extensively studied, to our knowl-
edge no standard approach has been established for this prob-
lem. In this work, we present a new approach, specifically
devised for addressing the challenges of DOT/MR image reg-
istration. DOT images have much lower anatomical resolution
and contrast than MRI, and the optical reconstruction process
typically uses a geometric model of the breast. In our case, the
constraining geometric model of the breast is a semiellipsoid.
At the University of Pennsylvania, the patient breast is com-
pressed axially in the DOT imaging device and sagitally in the
MRI machine, and, of course, the breast is a highly deform-
able organ.

For this task, we require that registration be automatic with
little prior user interaction and be robust enough to handle the
majority of patient cases. In addition, the process should be
computationally efficient for applicability in practice, and
yield results useful for combined MRI/DOT analysis.

At this time, automatic image registration is an essential
component in medical imaging systems. The basic goal of
intensity-based image registration techniques is to align ana-
tomical structures in different modalities. This is done through
an optimization process, which assesses image similarity and
iteratively changes the transformation of one image with re-
spect to the other, until an optimal alignment is found.34 Com-
putation speed is a critical issue and dictates applicability of
the technology in practice. Although feature-based methods
are computationally more efficient, they are notoriously de-
pendent on the quality of the extracted features from the

35
images.

September/October 2007 � Vol. 12�5�3
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In intensity-based registration, volumes are directly
ligned by iteratively computing a volumetric similarity mea-
ure based on the voxel intensities. Since the amount of com-
utations per iteration is high, the overall registration process
s very slow. In the cases where mutual information �MI� is
sed, sparse sampling of volume intensity could reduce the
omputational complexity while compromising the
ccuracy.36,37 In Ref. 38, a projection-based method for 2-D/
-D image registration is proposed. In this method, the pro-
ections along the two axes of the image are computed. Hori-
ontal and vertical components of the shift are then computed
sing a 1-D cross-correlation-based estimator. They show the
ethod is robust in the presence of temporal and spatial noise,

nd computationally efficient compared to the 2-D
orrelation-based shift estimator. In Ref. 39, the authors for-
ulate 3-D/3-D registration cost function as the summation of

hree 2-D/3-D optimization cost functions. The optimization
s then done concurrently on the sum of the cost functions,
hich are identically parameterized. Furthermore, images are
reprocessed to extract a binary segmentation. Projection im-
ges from the binary segmentation are used for computing
imilarity measures. The key is to choose a well-behaved
imilarity measure that can robustly characterize a metric for
he volumes.40 To make such an algorithm practical, the com-
utational time must also be reduced. In Ref. 40, researchers
uggest random sampling of the volume datasets and compu-
ation performance based only on these random samples to
ecrease the computational load. In Ref. 41, authors propose a
ybrid technique, which selects a set of high-interest points
i.e., landmarks� within the volume and tries to do registration
ased on those points only.

Let us consider two datasets to be registered to each other.
ne dataset is considered the reference and is commonly re-

ig. 4 Visualization platform showing MRI and DOT �blood volume
ransfer functions are applied, one can clearly observe the location of
omponents are shown from left to right: 1. orientation cube, 2. transf
. MPR windows, and 6. command tabs.
erred to as the “fixed” dataset. The other dataset is the one

ournal of Biomedical Optics 051902-
onto which the registration transformation is applied. This
dataset is commonly referred to as the “moving” dataset. Reg-
istration of volumetric datasets �i.e., fixed and moving� in-
volves three steps: first, computation of the similarity measure
quantifying a metric for comparing volumes; second, an opti-
mization scheme that searches through the parameter space
�e.g., 6-D rigid body motion� to maximize the similarity mea-
sure; and third, a volume warping method that applies the
latest computed set of parameters to the original moving vol-
ume to bring it a step closer to the fixed volume.

Our proposed approach is a novel combination of the
methods described in Refs. 42 and 43: we compute 2-D pro-
jection images from the two volumes for various projection
geometries, and set up a similarity measure with an optimiza-
tion scheme that searches through the parameter space. These
images are registered within a 2-D space, which is a subset of
the 3-D space of the original registration transformations. Fi-
nally, we perform these registrations successively and itera-
tively to estimate all the registration parameters of the original
problem.

We further optimize the performance of projection and
2-D/2-D registration similarity computation through the use
of graphics processing units �GPU�. Details and general vali-
dation of this novel approach have been recently presented.44

Multiple 2-D signatures �or projections� can represent the vol-
ume robustly depending on the way the signatures are gener-
ated. An easy way to understand the idea is to derive the
motion of an object by looking at three perpendicular shad-
ows of the object �see Fig. 5�.

Figure 6 provides an illustration of different transformation
models used in medical image registration: rigid, affine, and
free-form transformations. Nonrigid registration, depending
on complexity, can be classified in two ways: 1. affine trans-

sets from the same patient before registration. After the appropriate
asive ductal carcinoma diagnosed in this patient breast. The following
tion editors, 3. data attribute windows, 4. volume rendering window,
� data
the inv
er func
formations �see Fig. 6�c��, which include nonhomogeneous

September/October 2007 � Vol. 12�5�4
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caling and/or shearing; and 2. free-form transformations �see
ig. 6�d��, which include arbitrary deformations at the voxel

evel. These transformations can be based on intensity, shape,
r material properties. The dominant transformation observed
cross the MR and DOT datasets is due to the difference in
ompression axis �lateral compression for MR versus axial
ompression for DOT�; this transformation can be modeled
sing affine parameters. DOT images do not possess enough
ocal structure information for computation of a free-form de-
ormation mapping to register a DOT to an MR dataset.

Given the previous challenges, we used the following pa-
ameters in the nonrigid registration algorithm.

• Projection images: we use maximum intensity projection
MIP� techniques. MIP is a computer visualization method for
-D data that projects in the visualization plane the voxels
ith maximum intensity that fall in the way of parallel rays

raced from the viewpoint to the plane of projection.

ig. 5 Generation of 2-D signatures from 3-D volumes, in the three
utually orthogonal directions.

ig. 6 Illustration of different transformation models applied to a 2-D
mage: �a� original image, �b� rigid transformation, �c� affine transfor-

ation, and �d� free-form transformation.

ournal of Biomedical Optics 051902-
• Projection geometries: we use three mutually orthogonal
2-D MIPs to achieve greater robustness in the registration
algorithm.

• Similarity measure: we use normalized mutual
information.40 Mutual information measures the information
that two random variables A and B share. It measures how
knowledge of one variable reduces the uncertainty in the
other. For example, if A and B are independent, then knowing
A does not give any information about B and vice versa, so
their normalized mutual information is zero. On the other
hand, if A and B are identical, then all information given by A
is shared with B; therefore, knowing A determines the value
of B and vice versa, and the normalized mutual information is
equal to its maximum possible value of 1. Mutual information
quantifies the distance between the joint distribution of A and
B from what it would be if A and B were independent. In our
case, the moving dataset is deformed until the normalized
mutual information between it and the fixed dataset is
maximized.

• Parameter space: we use rigid body motion �translation
and rotation�, and independent linear scaling in all three di-
mensions. This results in a 9-D parameter space enabling non-
rigid registration: three parameters for translation in x, y, and
z, three parameters for rotations about three axes, and three
parameters for linear scaling in each of the x, y, and z
directions.

Mathematically, the estimate of the nine degrees-of-
freedom �DOF� homogeneous transformation matrix T9 is ini-
tially given by

T9 = arg max
T9

S3�If,�T9
3 �Im�� , �1�

where �T9
3 is the six DOF mapping operator, S3 estimates the

similarity metric between two volumes, and If and Im are the
fixed and moving volumetric data, respectively. Both �T9

3 and
S3 have a superscript of 3 to indicate that the operations are
applied in three dimensions. We can reformulate the registra-
tion optimization process so it can be applied to each of the
2-D signatures, or projections, using the five DOF homoge-
neous transformation matrix defined in the plane of projection
TP

5 . The five degrees of freedom in the plane of projection
correspond to horizontal and vertical translation, horizontal
and vertical scaling, and in-plane rotation. The estimate of the
transformation matrix is given by:

TP
5 = arg max

TP
5

S2��P�If�,�TP
5

2 ��P�Im��� , �2�

where �P is an orthographic projection operator, which
projects the volume points onto an image plane, P is a 4
�4 homogeneous transformation matrix, which encodes the
principal axis of the orthographic projection, �TP

5
2 is a three

DOF mapping operator, and S2 computes the similarity metric
between 2-D projections. Here, �TP

5
2 and S2 have a superscript

of 2 to indicate that the operations are applied in two
dimensions.

Since here the similarity metric is mutual information, i.e.,
2
S �h�A�+h�B�−h�A ,B�, Eq. �2� can be rewritten as:

September/October 2007 � Vol. 12�5�5
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TP
5 = arg max

TP
5

�h�A� + h�B� − h�A,B�� , �3�

here A=�P�If�, B=�TP
5

2 ��P�Im��, h�x� is the entropy of a

andom variable x, and h�x ,y� is the joint entropy of two
andom variables x and y.

Entropy is a measure of variability and is defined
s: h�x��−�p�x�ln p�x�dx, and h�x ,y��−�p�x ,y�ln

p�x ,y�dxdy,40 where p�x� is the probability density function
PDF� of variable x, and p�x ,y� is the joint PDF of variables
and y. The entropy h is discretely computed as:

�II� = − 	
I=L

H

pII
�I�log pII

�I� and

�II,IJ� = − 	
I=L

H

	
J=L

H

pII,IJ
�I,J�log pII,IJ

�I,J� , �4�

here II and IJ are two given images; and I and J are the
ntensities ranging from lower limit L �e.g., 0� to higher limit

�e.g., 255� for II and IJ, respectively. pII
�I� is the PDF of

mage II, and pII,IJ
�I ,J� is the joint PDF of images II and IJ

ere, a PDF is represented by a normalized image histogram.
The algorithm flowchart is shown in Fig. 7. Figure 7�a�

hows the global registration flowchart. For a number of it-
rations n �typically n=3�, the three mutually orthogonal 2-D
ignatures are generated �sagittal, coronal, and axial� for both
he fixed and moving volumes. After each 2-D signature gen-
ration, the moving 2-D signature is registered to the fixed
-D signature. This process is shown schematically in Fig.
�b�, and explained in detail next.

First, the � variables are initialized:

�scale = �scale � initial; �trans = �trans � initial;

�rot = �rot � initial.

Then, step k=1 to m is as follows.
1. Compute the deformation steps:

�scale =
�scale

divider
; �trans =

�trans

divider
; �rot =

�rot

divider
.

2. Compute the initial similarity measure Sinitial
2 between

he two 2-D signatures.
3. Scale moving volume vertically by ±�scale, then esti-

ate Sscale-vert
2 . If an improvement has been made, i.e.,

scale-vert
2 �Sinitial

2 , then go to next step, otherwise do not apply
his scaling operation.

4. Scale moving volume horizontally by ±�scale, then es-
imate Sscale-horiz

2 . If an improvement has been made, i.e.,

scale-horiz
2 �Sscale-vert

2 , then go to next step, otherwise do not
pply this scaling operation.

5. Translate moving volume vertically by ±�trans, then
stimate Strans-vert

2 . If an improvement has been made, i.e.,

trans-vert
2 �Sscale-vert

2 , then go to next step, otherwise do not
pply this translation operation.

6. Translate moving volume horizontally by ±�trans, then
stimate Strans-horiz

2 . If an improvement has been made, i.e.,
2 2

trans-horiz�Strans-vert, then go to next step, otherwise do not

ournal of Biomedical Optics 051902-
apply this translation operation.
7. Rotate moving volume in-plane by ±�rot, then estimate

Srot
2 . If an improvement has been made, i.e., Srot

2 �Strans-horiz
2 ,

then go to next step, otherwise do not apply this rotation
operation.

8. Convergence criteria: if 0� 
Srot
2 −Sinitial

2 
��S2 or
divider�divider� threshold, then end k-loop.

9. If no improvements have been made, i.e., Srot
2 =Sinitial

2 ,
then decrease the deformation steps �i.e., divider=divider
�2�.

The variables are initialized at the beginning of the regis-
tration process and are typically set to the following: n=3,
m=40, �scale� initial=4 mm, �trans� initial=4 mm,
�rot� initial=4 deg, divider� threshold=40.

5 Breast Magnetic Resonance Imaging Image
Segmentation

Our proposed segmentation approach is based on the random
walker algorithm. In this case, the segmentation technique
requires little user interaction and is computationally efficient
for practical applications.

This algorithm, originally developed in Ref. 45 and ex-
tended Ref. 46 to incorporate intensity priors, can perform
multilabel, semiautomated image segmentation. Given a small
number of pixels with user-defined labels, one can analyti-
cally �and quickly� determine the probability that a random
walker starting at each unlabeled pixel will first reach one of
the prelabeled pixels. By assigning each pixel to the label for
which the greatest probability is calculated, high-quality im-
age segmentation can be obtained �Fig. 8�. This algorithm is
formulated in discrete space �i.e., on a graph� using combina-
torial analogs of standard operators and principles from con-
tinuous potential theory, allowing it to be applied in arbitrary
dimensions.

Usually T1-weighted MR imaging is performed. Images
show lipid as bright and parenchyma as dark. Tumor also
tends to be dark. Minimal user initialization is required. We
have developed a workflow customized for this type of breast
MRI segmentation.

1. Using a custom-made interactive visual interface, the
user scrolls through axial, sagittal, and coronal views of the
MRI dataset. In each view, the user selects one or two slices
that best incorporate all tissue types.

2. The user draws three types of seed points using a virtual
“brush” on each of the selected slices to indicate different
tissue types: fatty tissue, nonfatty tissue �parenchyma and/or
tumor�, and outside the breast.

3. The algorithm generates a mask file representing the
result of the segmentation. Each voxel in the generated mask
is assigned a value �fatty, nonfatty, or outside�, indicating the
type of tissue.

4. The segmented mask file can finally be incorporated in
a more accurate reconstruction of physiological quantities
�such as THC� to generate the DOT dataset.

The algorithm takes two minutes on average for a MRI
volume of size 256�256�50. This algorithm can be used to
distinguish fatty from nonfatty tissue and tumor from nontu-
mor tissue, as shown in Fig. 8. Since the objective of this
initial study is to show how nonconcurrent data may be reg-

istered and jointly analyzed, we should note that we did not

September/October 2007 � Vol. 12�5�6
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se the results of MRI segmentation to improve the DOT
econstructions. Rather, we used the MRI segmentation to iso-
ate the tumor tissue in the image.

One significant advantage of spatially registering DOT to
RI data is the ability to treat anatomical information from
RI data as prior information in the DOT chromophore con-

entration and scattering variables reconstruction process. By
egmenting fatty from nonfatty tissue in a MR dataset for

Fig. 7 Flowcharts for the registration process: �a� global reg
xample, we can provide a-priori data about the tissue, which

ournal of Biomedical Optics 051902-
interacts with light in a DOT imaging device. This informa-
tion can further be incorporated in solving the inverse prob-
lem associated with the photon diffusion equation, and lead to
a more precise reconstruction of physiological quantities
�such as hemoglobin concentration�. Note that in this work,
the MR segmentation is not incorporated in the DOT recon-
struction process. This approach is the subject of an ongoing
study to be published in the near future.

n flowchart, and �b� 2-D signatures registration flowchart.
September/October 2007 � Vol. 12�5�7
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Initial Validation of Registration Using a
Simulated Phantom Model

.1 Building a Simulated Phantom Model
o obtain reference results, we tested our methodology using
virtual model of the breast. This model consists of a hemi-

pherical form representing the breast and containing a second
phere of twice the background intensity, representing the tu-
or. The diameter of the tumor is 25.6 mm �20% of the

pherical form diameter�, and the diameter of the spherical
orm is 128 mm �see Fig. 9�.

The semispherical model is first compressed in the axial
irection to simulate the DOT image. The initial model is
gain compressed in the sagittal direction to simulate the MR
mage. The amount of compression used is 25% for both op-
ical and MR images, respectively, in the axial direction
along the z axis� and the sagittal direction �along the x axis�.

For the axial compression, the z component of the voxel
ize was decreased by 25% and the x and y components are
roportionally increased to keep the same volume size as the
ncompressed model. The sagittal compression is simulated

ig. 8 Breast MRI 3-D image segmentation based on “random walk-
rs:” �a� segmenting fatty from nonfatty tissue, and �b� segmenting
umor from nontumor tissue.

ig. 9 Compressed models: �a� 3-D sagittal perspective view of super-
mposed MRI �dark volume� and DOT �light volume� models. �b� Sag-
ttal cross section of MRI model going through the center of the tumor.

c� Spatially corresponding sagittal cross section of DOT model.

ournal of Biomedical Optics 051902-
in a similar way by decreasing the x component of the voxel
size by 25%, and the z and y components are proportionally
increased to keep the same volume size. The new tumor cen-
ter position after compression is determined by multiplying
the tumor center position in pixels, by the new voxel size �see
Fig. 9�.

6.2 Simulation Description
The experiments conducted test the registration algorithm’s
sensitivity to changes in breast compression, translation, and
rotation between the MRI and DOT datasets, mainly due to
patient positioning differences.

6.2.1 First set of simulations: incremental translations
along the x, y, and z axis

Initial translations along the x axis are applied incrementally
to the DOT image, i.e., the moving volume. The registration
algorithm was tested after each translation. These translations
simulate the difference in patient placement between the two
image acquisition processes �translations of +/−50 mm�. The
simulation is repeated with translations applied along the y
and z axes, and the registration is tested for each translation.
Figure 10 shows the visual results of translations along the z
and x axes. The MR model �top row� is the fixed volume in
the simulation, and therefore remains unchanged. The DOT
model is the moving volume shown in the center row in Fig.
10. This center row shows different initial starting points for
the DOT model. In Figs. 10�c� and 10�d�, the tumor appears
very small because the cross sections shown are spatially cor-
responding to those of the MR model, and show the edge of
the tumor. Note that the bottom row �the DOT model after
registration� should look as much as possible like the top row

Fig. 10 Simulation of compression and translation. Spatially corre-
sponding cross sections of MRI model �top row�, DOT model before
registration �center row�, and DOT model after registration �bottom
row�. �a� and �b� coronal cross sections: DOT model is translated
±50 mm along z direction. �c� and �d� Axial cross sections: DOT
model translated ±50 mm along x direction.
�the MR model�.

September/October 2007 � Vol. 12�5�8
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.2.2 Second set of simulations: incremental
rotations about the x axis

everal incremental rotations about the x axis �clockwise and
ounterclockwise directions� are applied to the DOT volume,
nd the registration algorithm is tested after each rotation.
his is repeated for rotations around the y and z axes, and the
lgorithm is tested for each rotation step. Figure 11 shows
xamples of rotations applied and the resulting alignments
rotations of +/−18 deg are shown�. Here again, the MR
odel �top row� is the fixed volume in the simulation, and

herefore remains unchanged. The DOT model is the moving
olume shown in the center row in Fig. 11. This center row
hows different initial rotations for the DOT model. In Fig.
1�c�, the tumor appears very small because the cross sections
hown are spatially corresponding to those of the MR model,
nd show the edge of the tumor. Note that the bottom row �the
OT model after registration� should look as much as pos-

ible like the top row �the MR model�.

.2.3 Third set of simulations: incremental axial
compression of the simulated diffuse optical
tomography dataset

ifferent incremental amounts of compression are applied to
he DOT images in the axial direction �along the z axis�. To
imulate the axial compression, the z component of the voxel
ize was decreased by 10% for each test, and the x and y
omponents are proportionally increased to keep the same
olume size as the uncompressed model. The range of com-
ression used is from 0% compression to 40% compression
ith a step of 10% for each simulation. Note, no figure is

hown in this section.

Application to Nonconcurrent Magnetic
Resonance Imaging and Diffuse Optical
Tomography Data of Human Subjects

study involving three patients was performed. This study
rovides an initial answer to a vital question regarding MRI/

ig. 11 Simulation of compression and rotation. Spatially correspond
center row�, and DOT model after registration �bottom row�. �a� S
oronal cross sections: DOT model is rotated±18 deg about the y ax
OT data analysis: how can functional information on a tu-

ournal of Biomedical Optics 051902-
mor obtained from DOT data be combined with the anatomi-
cal information about the tumor derived from MRI data?

Three MRI and three DOT �displaying THC� datasets are
used in this experiment.

1. Patient 1: MRI �256�256�22 with 0.63�0.63
�4.0 mm pixel size� and mastectomy show an invasive duc-
tal carcinoma of the left breast. The size of the tumor was
2.1 cm, as measured from pathology,

2. Patient 2: MRI �256�256�60 with 0.7�0.7
�1.5 mm pixel size� and biopsy show an invasive ductal car-
cinoma of the left breast. The size of the tumor was 5.3 cm,
as measured from the MRI �patient 2 was a neoadjuvant
chemo patient and did not have surgery until later�,

3. Patient 3: MRI �512�512�56 with 0.35�0.35
�3.93 mm pixel size� and mastectomy show an invasive in-
situ carcinoma of the right breast. The size of the tumor was
2.0 cm, as measured from pathology.

All DOT image acquisitions are similar and show the pa-
tient total hemoglobin concentration �THC�. The procedure
described in the typical workflow �Fig. 3� was used for visu-
alizing, editing, and registering the MRI and DOT datasets.
However, since the objective of this initial study is to show
how nonconcurrent data may be registered and jointly ana-
lyzed, we did not use the results of MRI segmentation to
improve the DOT reconstructions.

A quantitative analysis of the resulting data is not trivial.
We propose a simple analysis method that provides valuable
functional information about the carcinoma. Using the MRI/
DOT registered data, we calculate the differences in total he-
moglobin concentration �THC� between the volumes inside
and outside the segmented tumor, as follows.

1. Segment tumor from nontumor tissue in the breast MRI
dataset, using our segmentation approach.

2. Calculate the following statistical quantities from the
DOT dataset, within the resulting segmented tumor and non-
tumor volumes �this is a trivial task, since the DOT and MRI
datasets are now registered�: average THC value over the en-

ss sections of MRI model �top row�, DOT model before registration
cross sections: DOT model is rotated±18 deg about the x axis. �b�
Axial cross sections: DOT model is rotated±18 deg about the z axis.
ing cro
agittal
tire breast 	; average THC value within the tumor volume

September/October 2007 � Vol. 12�5�9
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efined by the MRI segmentation 
; standard deviation of
HC for the entire breast �.

3. Calculate a new difference measure, defined as the dis-
ance from 	 to 
 in terms of �: �= �
−	� /�.

The computed quantities are described in Fig. 12. The re-
ults are shown in next section.

Results and Discussion
.1 Phantom Model Validation

or most registration tasks, the most significant error measure
s the target registration error �TRE�, i.e., the distance after
egistration between corresponding points not used in calcu-
ating the registration transform. The term “target” is used to
uggest that the points are typically points within, or on, the
oundary of lesions. The registration algorithm gives us the
bsolute transformation Tresult that should be applied to the
OT volume to be aligned to the MRI volume. This transfor-
ation is applied to the tumor center and 26 neighboring

oints. The points are arranged on a cube in which the tumor
s inscribed. The cube shares the same center as the tumor �as
hown in Fig. 13�. It has a side length of 25.6 mm �equal to
he diameter of the tumor�. The point positions resulting from
he application of the absolute transformation are then com-
ared to the corresponding point positions resulting from the
pplication of the ground truth transformation TGT, which
ives us the expected point positions. This allows us to deter-
ine the average TRE for each simulation. The TRE is com-

uted as the average Euclidian distance between the 27 pairs
f points �PGT

i , Presult
i �:

TRE =
1

27	
i=1

27

d�PGT
i ,Presult

i � . �5�

The volume of the tumor after registration is also com-
ared to the initial one, and the percentage error is computed.
t is important to note that the range of translations chosen
uring simulations is 40 mm �from −20 to 20 mm� to keep a
ealistic aspect of the simulations. Indeed, the translations rep-

ig. 12 THC distribution in a DOT dataset showing the resulting com-
uted quantities after DOT-MRI image registration.
esent the patient displacements during the image acquisition,

ournal of Biomedical Optics 051902-1
so a range of 40 mm is reasonable. Also, the range of rota-
tions chosen is 36 deg �from −18 to 18 deg� for the same
reasons as before.

Tables 1–3 show the percent volume errors and the result-
ing target registration errors. As can be observed, the algo-
rithm is more sensitive to rotations than translations, as the
error exceeds 5% in some instances. This is explained by the
fact that the algorithm uses 2-D signatures of the 3-D volume.
By applying a rotation to the volume, the shape of the 2-D
signature changes, whereas by applying a translation, the sig-
nature is moved compared to the volume of reference while
keeping the same form. The change in form due to rotation
makes the convergence of the algorithm more difficult. How-
ever, the higher level of rotations �more than ±10 deg� will
seldom be encountered in reality, where patients usually lie
prone in a reproducible manner, and will not cause such high
levels of initial rotation. We conducted tests at these higher
rotations to explore limitations of the registration technique.
For certain points, the error rate increases considerably. This
is also explained by the use of the 2-D signatures. Indeed,
when the displacement of the image exceeds the limit of the
projector that captures the signature, part of the information
on volume is lost, leading to a potential divergence of the
algorithm. Even though the algorithm is not strictly volume
preserving, because of the scaling transformation, the volume
percent error shows that within the practical range of defor-
mations, the tumor volume is preserved within an average of
about 3% of its original size, which is a reasonable error.
Finally, the error due to compression is always under 5%.

8.2 Patient Study
Figure 14 shows the computed statistical quantities as well as
the difference measures. As expected, all DOT datasets show
average tumor THC values, one to three standard deviations
higher than the average breast THC values. The results also
show large variability in average breast THC values from one

Fig. 13 26 points arranged on the cube and used to compute the TRE.
The tumor is inscribed in the cube, and shares the same center as that
of the cube, noted with an �.
patient to another �varying from 21 to 31 �M�. This justifies
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he use of our difference measure �, which defines a normal-
zed quantity allowing interpatient comparisons.

These results confirm that the tumor areas in the patient
reasts exhibit significantly higher THC than their surround-
ngs. Figures 15–17 show the visual results of the registration
lgorithm when applied to real patient datasets. We show su-
erimposed MRI and DOT images �3-D renderings and 2-D
used images� before and after registration. As can be quali-
atively ascertained from the figures, registration has greatly
mproved the alignment of the DOT and MRI datasets. The
mages also show a significant overlap between the location
f the tumors in the MRI and DOT datasets. Patient 3 shows
articularly good correlation between the two modalities.

The combination of DOT and MR image resolution, the
egistration technique, and the segmentation accuracy in MR
ll affect the final outcome. Can registration errors signifi-
antly affect the quantification of the results? Certainly this is
ossible, but a larger-scale study is required to better charac-
erize the effect of the registration error. Indeed, this issue is
ignificant when automatic segmentation is employed and
hen quantitative values are derived, especially in the case of

mall pathologies. Variations in the target registration error
TRE� cause variations in the overlap of the MR segmentation
o the THC in the DOT dataset, which in turn cause variations
n the quantification of the computed difference measure �.

Table 1 Percent volume errors with respect to
tration error due to incremental translations appl

Translation
amount
�mm�

Translation along x axis Tr

Volume
%error

Average
TRE

�mm�
V
%

−20 2.97 3.77

−10 2.27 1.76

0 1.79 2.62

10 4.51 3.02

20 3.95 3.03 −

Table 2 Percent volume errors with respect to
tration errors due to incremental rotations applie

Rotation
amount

�Degrees�

Rotation about x axis

Volume
% error

Average
TRE

�mm�
V
%

−18 7.52 7.45

−9 10.08 11.31

0 1.79 2.62

9 2.88 2.58

18 0.70 0.70 −
ournal of Biomedical Optics 051902-1
However, because the THC is a slowly varying quantity in the
DOT dataset, we expect small variations in �.

To test this hypothesis, we simulated variations in the TRE
by translating incrementally the MR segmentation area in the
direction of maximum THC gradient in the DOT dataset. This
enabled us to assess the upper bound of the quantification
error due to TRE variations. The MR segmentation area was
translated 1, 2, 3, 4, and 5 mm. Then the different statistics
were computed again, and variations in the difference mea-
sure � are shown in Fig. 18.

As Fig. 18 shows, in all cases the difference measure de-
creases in amplitude as the translation distance is increased.
This shows that the MR segmentation area is translated away
from the THC “hotspot” in the DOT datasets. The variations
of � from the baseline �translation=0 mm� in all cases are
less than 15%, and � remains equal to or larger than 1, i.e.,
the average THC inside the segmentation area remains more
than one standard deviation away from the overall dataset
average THC. Even though these results are limited to only
three patients, they exhibit a relative robustness of the
registration-segmentation-quantification approach to errors in
automatic registration and segmentation. It is also worth not-
ing that these results may apply more generally to patients

ginal moving volume, and resulting target regis-
ng the x, y, and z axes.

on along y axis Translation along z axis

Average
TRE

�mm�
Volume
% error

Average
TRE

�mm�

0.60 1.05 0.89

0.87 −1.51 2.34

2.62 1.79 2.62

0.71 1.24 1.00

3.03 5.55 4.21

ginal moving volume, and resulting target regis-
t the x, y, and z axes.

n about y axis Rotation about z axis

Average
TRE

�mm�
Volume
% error

Average
TRE

�mm�

2.66 3.29 10.59

0.90 7.00 4.29

2.62 1.79 2.62

2.98 5.67 1.77

−0.34 4.24 4.24
the ori
ied alo

anslati

olume
error

2.59

1.47

1.79

2.80

1.43
the ori
d abou

Rotatio

olume
error

2.42

0.71

1.79

4.77

0.34
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ith breast cancer tumors of sizes within the size range tested,
etween 2 and 5 cm, which is typical.

The most efficient way to improve the coregistration tech-
ique in the near future will be to provide additional structural
nformation on the DOT dataset. One way to achieve this goal
s to provide a more accurate surface map of the patient’s
reast as it is scanned in the DOT device, using stereo cam-
ras for example. A more precise surface map may enable us
n the near future to use more complex voxel-based and/or
hysics-based nonrigid registration techniques, and achieve
etter MR-DOT dataset alignment, especially for patients
hose cancer tumors are smaller than 1 cm in size.

Conclusion
software platform is developed and tested for multimodal

ntegration and visualization of DOT and MRI datasets. The
latform, OMIRAD, enables qualitative and quantitative
nalysis of DOT and MRI breast datasets, and combines the
unctional and structural data extracted from both types of
mages. To our knowledge, no other software systems com-
ine nonconcurrent DOT and MRI data, as this developed
latform does. The present work introduces this platform and
ts applications. Multiple simulation results are obtained and
emonstrate the robustness of the algorithm.

able 3 Percent volume errors with respect to the original moving
olume, and resulting target registration errors due to incremental
xial compression of the moving volume.

Amount of
xial
ompression Volume % error Average TRE �mm�

4.91 1.21

0 3.66 0.87

0 1.80 1.06

0 −0.36 2.37

0 0.11 2.76

ig. 14 Statistical values computed in the registered DOT datasets:
he segment middle points are the average THC values �	 inside the
reast, 
 inside the tumor�. The segment endpoints represent one
tandard deviation spread � and � is the difference measure �distance

rom 	 to 
 in terms of ��.

ournal of Biomedical Optics 051902-1
The method integrates advanced multimodal registration
and segmentation algorithms along with a straightforward and
well-defined workflow. The method requires little prior user
interaction, and is robust enough to handle a majority of pa-
tient cases, computationally efficient for practical applica-
tions, and yields results useful for combined MRI/DOT analy-
sis. This method presents additional advantages:

• more flexibility than integrated MRI/DOT imaging sys-
tems in the system design and patient positioning

• the ability to independently develop a stand-alone DOT

Fig. 15 Superimposed MRI and DOT images �3-D renderings and 2-D
fused images� of patient 1 before and after registration. The 2-D fused
images show the cross sections going through the center of the tumor.

Fig. 16 Superimposed MRI and DOT images �3-D renderings and 2-D
fused images� of patient 2 before and after registration. The 2-D fused

images show the cross sections going through the center of the tumor.

September/October 2007 � Vol. 12�5�2
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ystem without the stringent limitations imposed by the MRI
evice environment

• combined analysis of structural and functional data de-
ived simultaneously from both modalities

• enhancement of DOT data reconstruction through the
se of MRI-derived a-priori structural information.

We also present an initial patient study that explores an
mportant question: how can functional information on a tu-

or obtained from DOT data be combined with the anatomy
f that tumor derived from MRI data? The study confirms that
he tumor areas in the patient breasts exhibit significantly
igher THC than their surroundings. The results show signifi-
ance in intrapatient THC variations, and justify the use of our
ormalized difference measure.

The completion of this study and the use of the OMIRAD
latform contribute to the important long-term goal of en-
bling a standardized direct comparison of the two modalities
MRI and DOT�. We anticipate it will have a positive impact
n standardization of optical imaging technology through es-
ablishing common data formats and processes for sharing
ata and software, which in turn will allow direct comparison

ig. 17 Superimposed MRI and DOT images �3-D renderings and 2-D
used images� of patient 3 before and after registration. The 2-D fused
mages show the cross sections going through the center of the tumor.

ig. 18 Variations in � for each patient, due to translations of the MR

egmentation area inside the THC DOT dataset.

ournal of Biomedical Optics 051902-1
of different modalities, validation of new versus established
methods in clinical studies, development of commonly ac-
cepted standards in postprocessing methods, creation of a
standardized MR-DOT technology platform, and eventually,
translation of research prototypes into clinical imaging
systems.
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