1 July 2007 Ultrahigh-resolution imaging of human donor cornea using full-field optical coherence tomography
Author Affiliations +
A feasibility study of ultrahigh-resolution full-field optical coherence tomography (FF-OCT) for a subcellular-level imaging of human donor corneas is presented. The FF-OCT system employed in this experiment is based on a white light interference microscope, where the sample is illuminated by a thermal light source and a horizontal cross-sectional (en face) image is detected using a charge coupled device (CCD) camera. A conventional four-frame phase-shift detection technique is employed to extract the interferometric image from the CCD output. A 95-nm-broadband full-field illumination yields an axial resolution of 2.0 μm, and the system covers an area of 850 μm×850 μm with a transverse resolution of 2.4 μm using a 0.3-NA microscope objective and a CCD camera with 512×512 pixels. Starting a measurement from the epithelial to the endothelial side, a series of en face images was obtained. From detected en face images, the epithelial cells, Bowman's layer, stromal keratocyte, nerve fiber, Descemet's membrane, and endothelial cell were clearly observed. Keratocyte cytoplasm, its nuclei, and its processes were also separately detected. Two-dimensional interconnectivity of the keratocytes is visualized, and the keratocytes existing between collagen lamellaes are separately extracted by exploiting a high axial resolution ability of FF-OCT.
© (2007) Society of Photo-Optical Instrumentation Engineers (SPIE)
Masahiro Akiba, Masahiro Akiba, Naoyuki Maeda, Naoyuki Maeda, Kazuhiko Yumikake, Kazuhiko Yumikake, Takeshi Soma, Takeshi Soma, Kohji Nishida, Kohji Nishida, Yasuo Tano, Yasuo Tano, Kin-Pui Chan, Kin-Pui Chan, } "Ultrahigh-resolution imaging of human donor cornea using full-field optical coherence tomography," Journal of Biomedical Optics 12(4), 041202 (1 July 2007). https://doi.org/10.1117/1.2764461 . Submission:


Full-field optical coherence microscopy
Proceedings of SPIE (July 28 2004)
Simultaneous OCT/confocal-OCT/ICG system for imaging the eye
Proceedings of SPIE (December 08 2004)
Full field OCT ex vivo and in vivo biological...
Proceedings of SPIE (April 12 2005)

Back to Top