1 July 2007 Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope
Author Affiliations +
Characteristic changes in the organization of fibrillar collagen can potentially serve as an early diagnostic marker in various pathological processes. Tissue types containing collagen I can be probed by pulsed high-intensity laser radiation, thereby generating second harmonic light that provides information about the composition and structure at a microscopic level. A technique was developed to determine the essential second harmonic generation (SHG) parameters in a laser scanning microscope setup. A rat-tail tendon frozen section was rotated in the xy-plane with the pulsed laser light propagating along the z-axis. By analyzing the generated second harmonic light in the forward direction with parallel and crossed polarizer relative to the polarization of the excitation laser beam, the second-order nonlinear optical susceptibilities of the collagen fiber were determined. Systematic variations in SHG response between ordered and less ordered structures were recorded and evaluated. A 500μm-thick z-cut lithiumniobate (LiNbO3) was used as reference. The method was applied on frozen sections of malignant melanoma and normal skin tissue. Significant differences were found in the values of d22, indicating that this parameter has a potential role in differentiating between normal and pathological processes.
© (2007) Society of Photo-Optical Instrumentation Engineers (SPIE)
Arne Erikson, Arne Erikson, Jonas Ortegren, Jonas Ortegren, Tord Hompland, Tord Hompland, Catharina de Lange Davies, Catharina de Lange Davies, Mikael Lindgren, Mikael Lindgren, } "Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope," Journal of Biomedical Optics 12(4), 044002 (1 July 2007). https://doi.org/10.1117/1.2772311 . Submission:

Back to Top