1 September 2008 In-vivo optical imaging of hsp70 expression to assess collateral tissue damage associated with infrared laser ablation of skin
Author Affiliations +
J. of Biomedical Optics, 13(5), 054066 (2008). doi:10.1117/1.2992594
Abstract
Laser surgical ablation is achieved by selecting laser parameters that remove confined volumes of target tissue and cause minimal collateral damage. Previous studies have measured the effects of wavelength on ablation, but neglected to measure the cellular impact of ablation on cells outside the lethal zone. In this study, we use optical imaging in addition to conventional assessment techniques to evaluate lethal and sublethal collateral damage after ablative surgery with a free-electron laser (FEL). Heat shock protein (HSP) expression is used as a sensitive quantitative marker of sublethal damage in a transgenic mouse strain, with the hsp70 promoter driving luciferase and green fluorescent protein (GFP) expression (hsp70A1-L2G). To examine the wavelength dependence in the mid-IR, laser surgery is conducted on the hsp70A1-L2G mouse using wavelengths targeting water (OH stretch mode, 2.94 μm), protein (amide-II band, 6.45 μm), and both water and protein (amide-I band, 6.10 μm). For all wavelengths tested, the magnitude of hsp70 expression is dose-dependent and maximal 5 to 12 h after surgery. Tissues treated at 6.45 μm have approximately 4× higher hsp70 expression than 6.10 μm. Histology shows that under comparable fluences, tissue injury at the 2.94-μm wavelength was 2× and 3× deeper than 6.45 and 6.10 μm, respectively. The 6.10-μm wavelength generates the least amount of epidermal hyperplasia. Taken together, this data suggests that the 6.10-μm wavelength is a superior wavelength for laser ablation of skin.
Gerald J. Wilmink, Susan R. Opalenik, Joshua T. Beckham, Mark A. Mackanos, Lillian B. Nanney, Christopher H. Contag, Jeffrey M. Davidson, E. Duco Jansen, "In-vivo optical imaging of hsp70 expression to assess collateral tissue damage associated with infrared laser ablation of skin," Journal of Biomedical Optics 13(5), 054066 (1 September 2008). https://doi.org/10.1117/1.2992594
JOURNAL ARTICLE
12 PAGES


SHARE
RELATED CONTENT


Back to Top