
D
p

A
Z
J
J
M
G
7
C

R
N
U

C
1
C

R
M
G
7
C

M
U

C
1
C

M
M
G
7
C

1
B
U
o
A
c
m
c
s
d
i

*
t
T
†

M
‡

c
§

Journal of Biomedical Optics 14�5�, 054023 �September/October 2009�

J

iagnosing breast cancer using Raman spectroscopy:
rospective analysis

bigail S. Haka*,†

oya Volynskaya
oseph A. Gardecki‡

on Nazemi§

assachusetts Institute of Technology
eorge R. Harrison Spectroscopy Laboratory
7 Massachusetts Avenue
ambridge, Massachusetts 02139

obert Shenk
ancy Wang
niversity Hospitals Case Medical Center
and

ase Western Reserve
1100 Euclid Avenue
leveland Ohio 44106

amachandra R. Dasari
assachusetts Institute of Technology
eorge R. Harrison Spectroscopy Laboratory
7 Massachusetts Avenue
ambridge, Massachusetts 02139

aryann Fitzmaurice
niversity Hospitals Case Medical Center
and

ase Western Reserve
1100 Euclid Avenue
leveland Ohio 44106

ichael S. Feld
assachusetts Institute of Technology
eorge R. Harrison Spectroscopy Laboratory
7 Massachusetts Avenue
ambridge, Massachusetts 02139

Abstract. We present the first prospective test of Raman spectroscopy
in diagnosing normal, benign, and malignant human breast tissues.
Prospective testing of spectral diagnostic algorithms allows clinicians
to accurately assess the diagnostic information contained in, and any
bias of, the spectroscopic measurement. In previous work, we devel-
oped an accurate, internally validated algorithm for breast cancer di-
agnosis based on analysis of Raman spectra acquired from fresh-
frozen in vitro tissue samples. We currently evaluate the performance
of this algorithm prospectively on a large ex vivo clinical data set that
closely mimics the in vivo environment. Spectroscopic data were col-
lected from freshly excised surgical specimens, and 129 tissue sites
from 21 patients were examined. Prospective application of the algo-
rithm to the clinical data set resulted in a sensitivity of 83%, a speci-
ficity of 93%, a positive predictive value of 36%, and a negative pre-
dictive value of 99% for distinguishing cancerous from normal and
benign tissues. The performance of the algorithm in different patient
populations is discussed. Sources of bias in the in vitro calibration and
ex vivo prospective data sets, including disease prevalence and dis-
ease spectrum, are examined and analytical methods for comparison
provided. © 2009 Society of Photo-Optical Instrumentation Engineers.
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Introduction
reast cancer is the most common female cancer in the
nited States. Recent data indicate that a woman harbors a
ne-in-eight lifetime probability of developing breast cancer.1

s such, significant research efforts have focused on breast
ancer diagnosis, surgery, and management, resulting in dra-
atic improvements in outcome over the past several de-

ades. Currently, a variety of optical imaging and spectro-
copic techniques are being explored to improve breast cancer
iagnosis and treatment.2–12 They employ visible or near-
nfrared light, have the potential to provide chemical as well
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as morphologic information, and are less invasive than current
diagnostic procedures.

Raman spectroscopy is a spectroscopic modality capable
of providing detailed quantitative chemical/morphological in-
formation about tissue. It is an inelastic scattering process in
which photons incident on tissue transfer energy to or from
molecular vibrational modes.13 This gives rise to a change in
frequency �i.e., energy� of the emitted photon, hence the term
“inelastic.” Because the energy levels are unique for every
molecule, Raman spectra are chemical specific. Raman spec-
troscopy is particularly amenable to in vivo measurements,
because the excitation wavelengths and laser fluences used are
nondestructive to the tissue and have a relatively large pen-
etration depth.14

We present the first prospective test of Raman spectro-
scopy in diagnosing normal, benign, and malignant human

1083-3668/2009/14�5�/054023/8/$25.00 © 2009 SPIE
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reast tissue in freshly excised surgical specimens. Several
aboratories, including ours, have investigated the use of Ra-

an spectroscopy for the examination of breast disease.15–23

here are a number of ways in which Raman spectroscopy
ould aid in breast cancer diagnosis and treatment. A spectro-
copic transdermal has the advantage of providing immediate
iagnosis. As a result, the technique has the potential to re-
uce both the likelihood of a nondiagnostic biopsy that would
equire repeat needle or surgical biopsy, and patient anxiety
y eliminating the currently unavoidable wait for a histopa-
hology diagnosis. Because Raman spectroscopy provides im-

ediate diagnosis, it may also aid in real-time intraoperative
argin assessment. Accurate intraoperative margin assess-
ent using Raman spectroscopy would lessen the need for

eexcision surgeries resulting from positive margins, and
hereby reduce the recurrence rate of breast cancer following
artial mastectomy surgeries.

Our previous research demonstrated the ability of Raman
pectroscopy to accurately diagnose normal, benign, and ma-
ignant tissues of the breast with high sensitivities and
pecificities.21 This study examined in vitro fresh-frozen tis-
ues in a laboratory setting. Four types of tissue, normal
reast tissue, fibrocystic change, fibroadenoma, and invasive
arcinoma, were studied in 126 sites from 58 patients. To
xtract information from the Raman spectra, we employ a
pectroscopic model.20 Modeling of the Raman spectrum
ields fit coefficients that reflect the chemical makeup of the
esion, which is in turn associated with morphologic changes
hat pathologists routinely rely on to diagnose disease. Tissue
omposition extracted through modeling was used as the basis
f a diagnostic algorithm. The fit coefficients for fat and col-
agen were found to be the key diagnostic parameters in dis-
inguishing pathologies. These parameters were used to form
he basis of a binary diagnostic algorithm, an x-y plot in
hich the fit coefficient for collagen is plotted on the y-axis,

he fit coefficient for fat on the x-axis, and decision lines
efine the four classification regions. The resulting diagnostic
lgorithm, which classifies tissues, not just as benign or ma-
ignant, but according to specific pathological diagnoses,
chieved a sensitivity �SE� of 94%, a specificity �SP� of 96%,
nd a total test efficiency of 95% for the diagnosis of cancer.
e shall refer to this as the calibration analysis. This algo-

ithm employed internal validation �leave-one-out cross vali-
ation�; hence, its prospective capability had not been tested.

The excellent results of our in vitro calibration analysis
upported testing the efficacy of the algorithm in a clinical
etting. The current study prospectively evaluates the perfor-
ance of Raman spectral diagnosis with this algorithm on

reshly excised surgical specimens from a series of women
ndergoing needle localization breast biopsy or partial mas-
ectomy. Sources of bias in the calibration and prospective
ata sets are examined, and analytical methods for compari-
on provided. Changes in performance of the Raman diagnos-
ic algorithm can largely be explained by differences in the
wo patient populations in the calibration and prospective
tudies with respect to disease spectrum and cancer preva-
ence. Prospective testing of spectral diagnostic algorithms is
f crucial importance because it allows clinicians to accu-
ately assess the diagnostic information contained in, and any
ias of, the spectroscopic measurement.
ournal of Biomedical Optics 054023-
2 Materials and Methods
2.1 Patient Population
Breast tissue was obtained from a series of 28 consecutive
patients undergoing excisional breast biopsy �n=20�, partial
mastectomy �lumpectomy, n=7�, or simple mastectomy �n
=1� at University Hospitals–Case Medical Center. Patient age
averaged 52.5 years �range 35–80 years�. All studies involv-
ing human tissue were approved by the University Hospitals–
Case Medical Center Institutional Review Board and the Mas-
sachusetts Institute of Technology Committee On the Use of
Humans as Experimental Subjects. Informed consent was ob-
tained from all subjects prior to their surgical procedures.

2.2 Tissue Preparation
Data were collected from freshly excised surgical specimens
in the pathology suite adjacent to the operating rooms, typi-
cally within 30 min of tissue excision. On removal, the outer
surface of the surgical specimen was inked for identification
of margins following standard pathology protocol. Each
specimen was then sectioned and Raman spectra acquired
from the uninked cut surface of the breast tissue from sites
chosen by the pathologist. The number of spectra taken per
patient varied, depending on the number and types of grossly
visible breast tissue lesions. To reduce background, the breast
specimens were placed in a light tight box for collection of
Raman spectra. Following spectral acquisition, the breast
specimens were marked with multicolored colloidal ink to
uniquely identify each site sampled and fixed in 10% neutral
buffered formalin. The fixed tissue samples were routinely
processed, paraffin embedded, cut through the marked loca-
tions in 5-�m-thick sections, and stained with H&E. The his-
tology slides were evaluated by an experienced breast pa-
thologist who was blinded to the outcome of the Raman
spectroscopy analysis. The pathology results served as the
gold standard against which the Raman spectral diagnoses
were compared. A total of 220 Raman spectra from the 28
patients were collected. Of these, 129 Raman spectra from 21
patients were appropriate for prospective analysis: 41 spectra
from normal breast tissue from 18 patients, 82 from benign
lesions, and six from malignant lesions. Benign lesions con-
sisted of 73 regions of fibrocystic change from 16 patients and
nine fibroadenomas from two patients. Malignant lesions con-
sisted of 6 infiltrating ductal carcinomas �IDC� from five pa-
tients. Because multiple spectra were collected from each pa-
tient, some tissue samples are included in both the normal and
diseased categories, depending on the pathology underlying
the exact region of data collection. Ten spectra were excluded
from the analysis due to excessive light contamination �six
normal, one fibrocystic change, three IDC�. Twenty spectra
acquired from specimens diagnosed as ductal carcinoma in
situ �DCIS� were also excluded, because this pathology was
not encountered in the calibration data set used for diagnostic
algorithm development. Sixty-one spectra acquired from two
patients with breast cancer who had undergone preoperative
chemotherapy �16 normal, nine fibrocystic change, three
IDC�, and five patients undergoing reexcision surgery to in-
sure negative margins �14 normal, 17 fibrocystic change, two
IDC� were also excluded from prospective analysis. Breast
tissues from such patients exhibit histologic tissue changes
not encountered in the calibration data set and, therefore, not
September/October 2009 � Vol. 14�5�2
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ddressed in the original diagnostic algorithm
evelopment.24,25

.3 Raman Spectroscopic Measurements
ata were acquired using the clinical Raman system and Ra-
an optical fiber probe shown in Fig. 1 and described in

etail elsewhere.26,27 Briefly, light from an 830-nm-diode la-
er is collimated and then bandpass filtered before being fo-
used into the Raman probe’s excitation fiber. The 4-m-long
robe is �2 mm in diameter and consists of a single central
xcitation fiber surrounded by 15 collection fibers. All fibers
re low-OH fused silica and have a 200-�m core diameter.
he probe’s distal end is registered with a dual-filter module

hat rejects the intense interfering signals generated in the
bers. The distal tip of the probe is terminated with a sapphire
all lens, which focuses the excitation light and efficiently
athers and couples the Raman scattered light from the tissue
nto the collection fibers. The linear array of collection fibers
t the proximal end is coupled to an f/1.8 spectrograph for
ispersion onto a liquid-nitrogen-cooled, back-illuminated,
eep-depletion CCD detector. Raman spectra in this study
ere acquired with a 10-to-30-s integration time, depending
n signal intensity, and a spectral resolution of 8 cm−1. The
verage laser excitation power varied between 100 and
50 mW. No tissue damage was observed, either grossly or
n histological review.

Diode Laser

CCD

830 nm

Holographic
grating

Holographic band-
pass filter

Notch filter

Shutter

RG850

Ra
ma
n P
rob
e

2 mm

retaining
sleeve

ball lens

collection fibers

long-pass
filter tube
metal
sleeve

aluminum jacket

short-pass
filter rod

excitation fiber

te
flo
n
ja
ck
et

EXCITATIO
N

COLLECTION

ig. 1 Schematic of the clinical Raman system and optical fiber Ra-
an probe. Light from an 830-nm diode laser is focused into the
aman probe’s excitation fiber. The 4-m-long probe is �2 mm in di-
meter and consists of a single central excitation fiber surrounded by
5 collection fibers. The distal tip of the probe is terminated with a
apphire ball lens, which focuses the excitation light and efficiently
ouples the Raman scattered light from the tissue into the collection
bers. The linear array of collection fibers at the proximal end is
oupled to a spectrograph for dispersion onto a CCD detector.
ournal of Biomedical Optics 054023-
2.4 Data Processing
Prior to data collection, calibration spectra �not to be confused
with the Raman data set used for algorithm development�
were collected for spectral corrections. Wave-number calibra-
tion was established with a spectrum of 4-acetamidophenol.
Chromatic intensity variations were corrected by collecting
the spectrum of a tungsten white light source diffusely scatted
by a reflectance standard �BaSO4�. The remaining probe
background generated in the optical fibers was characterized
by collecting the excitation light scattered from a roughened
aluminum surface. This background was optimally subtracted
from the data in an iterative loop by using a scaling factor
related to the tissue’s optical properties.27 The tissue fluores-
cence background was modeled and removed with a sixth-
order polynomial. Following spectral correction, the basis
spectra of the Raman spectral model were fit to the spectrum
obtained from the breast tissue via non-negativity constrained
least-squares minimization.20 Raman spectra of epoxy and
sapphire, two probe components, were added to the model,
and a background spectrum acquired in the light tight box
with no sample present was included to account for light con-
tamination. Following the procedure used in the calibration
study, the fit coefficients for each Raman spectrum of the data
set were normalized to sum to unity. The microcalcification
spectra were excluded from this normalization, as these spe-
cies were not present in the tissue samples used for diagnostic
algorithm development; their diagnostic significance will be
considered elsewhere. We also observed increased contribu-
tions from cholesterol-like lipid deposits in this data set, and
thus, cholesterol-like was excluded from normalization. Pos-
sible reasons for the increased contribution from cholesterol-
like lipid deposits seen in the clinical data set are discussed
below.

Because of the more realistic conditions encountered in
fresh tissue, the signal-to-noise ratio �SNR� was lower for this
ex vivo clinical data set than for the in vitro calibration data
set. Therefore, we determined the error in each fit coefficient,
excluded model components with fit coefficients less than
twice these errors, and renormalized the remaining fit coeffi-
cients. �2 analysis was used to calculate the goodness of fit
and the error associated with model fitting.28 The Raman
spectra in each diagnostic category have different SNRs; thus,
mean errors are reported for each. Fitting errors for the two
diagnostic model components, fat and collagen, are 0.003 and
0.001 for normal breast tissue, 0.025 and 0.014 for fibrocystic
change, and 0.021 and 0.011 for fibroadenoma and IDC, re-
spectively. Errors are slightly larger for fat than for collagen
because the Raman spectrum of fat has more similarity to
other model components than that of collagen. A cutoff of
twice the error was employed in this analysis because this is
the degree of agreement observed between experimental Ra-
man data and errors determined via �2 analysis.29

3 Results
3.1 Prospective Analysis
Each of the 129 Raman spectra in the prospective data set was
analyzed as described above to obtain the normalized fit co-
efficients of collagen and fat. The previously developed diag-
nostic algorithm was then applied prospectively to obtain the
September/October 2009 � Vol. 14�5�3
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aman spectral diagnoses, which were subsequently com-
ared to traditional histopathology diagnoses. The results are
hown in Fig. 2. Prospective application of this algorithm re-
ulted in correct diagnosis of five of six cancerous sites
IDCs� and 114 of 123 noncancerous sites �normal breast tis-
ues and benign lesions�. This corresponds to a SE of 83%
nd a SP of 93%, giving a total test efficiency of 92% for the
iagnosis of cancer. The overall accuracy of correctly classi-
ying each of the four tissue types individually is 78%
101 /129�. The Raman spectral diagnoses and the histopa-
hology diagnoses are compared in Table 1. We note that al-
hough there are only six cancerous specimens in the present
ata set, the diagnostic algorithm has previously been vali-
ated with 31 cancerous specimens. For reference, the results
f the internally validated calibration set are SE 94% �29 /31�,
P 96% �91 /95�, total test efficiency 95%, and overall accu-
acy of 86% �108 /126�.21

Normal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
FC
(C
ol
l)

FC(Fat)

Fibrocystic
Change

Invasive
Carcinoma

Fibroadenoma

ig. 2 Prospective application of the diagnostic algorithm developed
n vitro on fresh-frozen tissues to an ex vivo clinical data set of freshly
xcised tissues which closely mimics the in vivo environment. Nor-
al �stars�, fibrocystic change �diamonds�, fibroadenoma �triangles�,

nd invasive ductal carcinoma �squares�.

able 1 Comparison of pathologic diagnosis with that of the Raman
iagnostic algorithm. Prospective application of the Raman diagnostic
lgorithm results in a sensitivity of 83%, a specificity of 93% and a
egative predictive value of 99% for distinguishing cancerous from
ormal and benign tissues.

aman
iagnosis

Pathology
diagnosis

Normal
41 spectra
18 patients

Fibrocystic
change

73 spectra
16 patients

Fibroadenoma
9 spectra
2 patients

Invasive
carcinoma
6 spectra
5 patients

ormal 38 13 0 0

ibrocystic
hange

3 54 0 0

ibroadenoma 0 2 4 1

nvasive
arcinoma

0 4 5 5
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The predictive values of the prospective and calibration
data can also be computed. Unlike SE and SP, these depend
on the prevalence of disease in the respective data sets and
must be considered carefully in this light. The positive pre-
dictive value �PPV� and negative predictive value �NPV� of
the prospective data set for the diagnosis of IDC are 36 and
99%, respectively. The corresponding values for the calibra-
tion set are 88 and 98%. These results are summarized in
Table 2, and their significance examined in Sec. 4.

It is clear that any clinically accepted implementation of
Raman spectroscopy to breast cancer diagnosis must encom-
pass DCIS. Because of its diagnostic importance, breast tissue
harboring DCIS was not routinely available in the case-
control calibration study used for algorithm development, and
thus, these specimens were excluded from prospective analy-
sis. Although the algorithm was not developed to examine
DCIS, it is of interest to observe where the samples diagnosed
as DCIS fall on the diagnostic plane. Using our current algo-
rithm based on the fit coefficients for fat and collagen, 5 of 20
DCIS specimens were correctly diagnosed as cancerous. The
remaining 15 DCIS specimens were diagnosed as noncancer-
ous �seven normal breast tissues, seven fibrocystic change,
and one fibroadenoma�. We note that eight of these spectra
were obtained from patients who had undergone preoperative
chemotherapy. All eight of these spectra were incorrectly di-
agnosed. It is clear that other fit coefficients must be incorpo-
rated into our algorithm to correctly diagnose DCIS. Studies
are currently underway to expand our diagnostic algorithm to
incorporate DCIS.

One area for algorithm refinement may be the incorpora-
tion of the nuclear-to-cytoplasm �N/C� ratio. Enlargement of
cell nuclei is a hallmark of cancer.30,31 In our studies, the
spectroscopic parameter characterizing the N/C ratio is ob-
tained by dividing the fit coefficient of the cell nucleus basis
spectrum by that of the epithelial cell cytoplasm basis spec-
trum. Fibrocystic change and fibroadenoma have mean N/C
parameters of 0.02 and 0.01, respectively, whereas infiltrating
carcinoma has a much higher mean N/C parameter of 0.06.
The mean N/C parameter of the samples diagnosed as DCIS is
0.05, intermediate between that of benign breast conditions
and IDC, indicating the potential for detecting DCIS. Similar
trends were seen in the mean N/C values in the calibration
study, but the N/C parameter was not diagnostic because there
was significant variability within pathologies.

Table 2 Summary of results from the in vitro calibration and ex vivo
prospective data sets.

In vitro
calibration
data set

�%�

Ex vivo
prospective

data set
�%�

SE 94 83

SP 96 93

PPV 88 36

NPV 98 99
September/October 2009 � Vol. 14�5�4
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It is also of interest to examine where the samples from
atients who had undergone preoperative chemotherapy or
ere undergoing reexcision surgery fall on the diagnostic
lane. Breast tissues from these patients demonstrate a fibrous
ealing reaction to surgery- or chemotherapy-induced tissue
njury.24,25 Consequently, the spectra display an increase in the
t coefficient for collagen and the majority of these data
oints were diagnosed as fibrocystic change. For instance, the
ean collagen fit coefficient for samples diagnosed as IDC

ncreased by 35% in patients who had received preoperative
hemotherapy and 64% in patients who were undergoing re-
xcision surgery. Upcoming studies will focus on develop-
ent of distinct diagnostic algorithms for patients who have

ndergone a prior surgery or preoperative chemotherapy.

Discussion
he performance of the diagnostic algorithm in this ex vivo
rospective clinical study, summarized in Table 1, is generally
uite good. In particular, the NPV of 99% is excellent, and as
iscussed below, NPV is the key parameter for making clini-
al decisions in either of our proposed applications. As ex-
ected, the SE and SP of the algorithm, applied prospectively,
re lower than for the calibration data set. The NPV remains
ery high, while the PPV is greatly reduced.

In comparing the calibration and validation study, we have
dentified four factors that influence the performance of the
iagnostic algorithm. �i� The use of prospective data rather
han internally validated calibration data. The latter is always
xpected to give “more efficacious” results because the cross-
alidation employed to develop the algorithm gives internally
onsistent results. We note that some investigators regard such
nternal-validation techniques to be prospective.32–34 �ii� Dif-
erences in the patient populations studied �cohort versus case
ontrol�.34 As discussed below, potential sources of bias in the
atient populations must be properly taken into account. �iii�
he use of freshly excised surgical samples as opposed to

resh-frozen samples. Past studies have shown that the Raman
pectral line shape is equivalent in the two types of samples
ith regard to the moieties that comprise our model, since

hey are structural rather than metabolic in nature.35 However,
e did witness changes in the contribution of particular model

omponents to the bulk Raman spectrum between the calibra-
ion and prospective studies. This may be due to changes in
isease spectrum, as discussed below, or alternatively to
hanges in the tissue density/scattering between the fresh �ex
ivo, prospective� and fresh-frozen �in vitro, calibration� data
ets. Further experiments are needed to investigate the basis
f these changes. �iv� Instrumentation factors, particularly
NR.36

.1 Cohort versus Case-Control Study
issue samples were obtained by different methods in the
alibration and prospective studies. Our initial calibration
tudy was a case-control study, in which tissues were pro-
ured from 58 patients several different hospitals via the Co-
perative Human Tissue Network �CHTN�, snap frozen, and
hipped to MIT for spectral interrogation. CHTN was asked to
rovide samples with grossly visible/palpable lesions paired
ith normal control tissues whenever possible. This artifi-

ially increased the prevalence of cancer �31 /126; 25%� in
ournal of Biomedical Optics 054023-
the calibration data set. The current prospective study was a
cohort study, in which we examined freshly excised breast
tissue from a series of 28 consecutive patients at a single
hospital undergoing excisional biopsy, lumpectomy, or simple
mastectomy. Spectra were collected from all types of breast
tissue present in the surgical specimens and therefore included
a much broader range of lesions. Only six of these patients
had grossly visible/palpable lesions; the remainder had mam-
mographically suspect/nonpalpable lesions, the majority of
which were noncancers. This significantly reduced the preva-
lence of cancer �IDC� in the prospective study. However, the
decreased cancer prevalence in the cohort data set better rep-
resents that expected in the target patient population for clini-
cal spectroscopic diagnosis.37 The decreased disease preva-
lence in the ex vivo prospective data set adversely affected the
PPV of the diagnostic algorithm.

4.2 Disease Prevalence
Disease prevalence �or prior probability� refers to the propor-
tion of individuals with a disease in a given population. The
predictive value of a diagnostic test is influenced by disease
prevalence. There are two types of predictive value. PPV
gives the probability of disease if a test result is positive,
while NPV gives the probability of no disease if a test result is
negative. As the disease prevalence in a particular data set
decreases, PPV decreases and NPV increases. Thus, the lower
the disease prevalence is, the less the probability that a posi-
tive result will be “correct,” regardless of other parameters of
test performance �SE and SP�.

The cancer prevalence in the calibration study was 25%,
while in the prospective study it fell to 5%. As a result, PPV
decreased and NPV increased in the prospective study. To
examine the effect of disease prevalence on algorithm perfor-
mance, we calculated predictive values for the calibration data
set as a function of disease prevalence. According to Bayes’
theorem,

PPV = pSE/�pSE + �1 − p��1 − SP�� ,

NPV = �1 − p�SP/��1 − p�SP + p�1 − SE�� ,

where p is prior probability of encountering disease �disease
prevalence�.38 These equations allow the effectiveness of the
algorithm to be extrapolated to data sets that are comprised of
largely different proportions of normal and diseased tissues.
As shown in Fig. 3, with a drop in the prevalence of invasive
cancer from 25 to 5%, the PPV is expected to decrease from
88 to 53% while the NPV is expected to increase from 98 to
99%. Thus, the decrease in PPV seen in the prospective study
�88–36%� is due, in large part, to the decrease in cancer
prevalence in the patient cohort.

4.3 Disease Spectrum
SE, the probability of a positive test result among patients
with the disease, and SP, the probability of a negative test
result in a population without the disease, are not affected by
disease prevalence. This is because SE depends on the distri-
bution of positives and SP on the distribution of negatives, but
both are independent of the relative number of positives and
negatives in the data set. However, SE and SP are affected by
September/October 2009 � Vol. 14�5�5
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isease spectrum or variability in severity of disease in the
tudy population.39 Note that disease spectrum discussed in
his section refers to disease variation and not Raman spectral
ariation. SE and SP will be high if the control tissues �non-
ancers� are distinctly different from the target tissues �can-
ers�. SE and SP both fall if the spectrum of disease in the
ontrol population changes such that the difference from the
arget population is less marked.39

This was the case for the fibrocystic change subset in the
rospective study, where a broader range of histologic mani-
estations was encountered than in the calibration study. In the
alibration study, the predominant manifestation of fibrocystic
hange seen was stromal fibrosis, a pathology characterized
y collagen accumulation. In the prospective study, all three
anifestations of fibrocystic change were observed, stromal
brosis, cyst formation, and adenosis �gland proliferation�.
epresentative histopathologic images illustrating the disease

pectrum seen in fibrocystic change in the calibration and pro-
pective data set are shown in Fig. 4. In addition to the pres-

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

prevalence (p)

P
os
iti
ve
P
re
di
ct
iv
e
V
al
ue
(P
P
V
)

p=25%

PPV=88%

p=5%

PPV=53%

ig. 3 Positive and negative predictive value of the diagnostic algorithm
n the prevalence of invasive cancer from 25 to 5%, the PPV is pred
xperimental PPV and NPV of the diagnostic algorithm in the prospec
9%, respectively.
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ig. 4 Histopathologic photomicrographs �H&E; 10X� illustrating the
isease spectrum seen in fibrocystic change in the calibration �A only�
nd prospective �A, B, and C� data sets: �A� fibrosis; �B� cyst formation
arrow�, �C� adenosis �arrow�.
ournal of Biomedical Optics 054023-
ence of duct cysts and adenosis, the fibrocystic change speci-
mens show a marked increase in the amount of fat relative to
stromal fibrosis. Consistent with histopathology, within the
fibrocystic change specimens, we observed an increase in the
mean fit coefficient of fat from 0.32 to 0.50 and a decrease in
the mean fit coefficient of collagen from 0.38 to 0.29 from the
calibration to the prospective data set.

The change in the disease spectrum of the fibrocystic
change control population can also be examined in the context
of the entire Raman spectrum. Correlation coefficients, a mea-
sure of Raman spectral similarity, were calculated for the
mean spectra in each diagnostic category and are shown in
Table 3. The spectral correlation coefficient for fibrocystic
change and IDC increased from 0.95 in the calibration study
to 0.99 in the prospective study, indicating that the Raman
spectra of the control tissues �fibrocystic change� and the tar-
get tissues �IDC� are more similar in the prospective study.
This change in disease spectrum likely contributes to the de-
crease in both SE and SP in the prospective study.
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unction of disease prevalence for the calibration data set. With a drop
fall from 88 to 54% while the NPV increases from 98 to 99%. The

ta set, which had a prevalence of invasive cancer of 5%, were 36 and

Table 3 Raman spectral correlation coefficients for the mean spectra
in each diagnostic category.

Correlation coefficient

Calibration Prospective

IDC versus fibrocystic change 0.95 0.99

IDC versus fibroadenoma 0.97 0.94

IDC versus normal 0.80 0.87
as a f
icted to
tive da
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We also encountered an increase in the rate of misdiagno-
is between fibroadenoma and IDC in the prospective data set.
owever, unlike fibrocystic change, the spectral correlation

oefficient for fibroadenoma and IDC decreased from 0.97 in
he calibration study to 0.94 in the prospective study, indicat-
ng that, in this case, there is more difference between the
ontrol tissues �fibroadenoma� and the target tissues �IDC� in
he prospective study. This may be the result of spectral
hanges unrelated to fat and collagen content and thus may
ot play a role in prospective application of a diagnostic al-
orithm based on these two parameters. This conjecture is
olstered by examination of the root mean square �rms� of the
ean residual �the difference between the spectrum and
odel fit� in each diagnostic category. The rms is a frequently

sed measure of the difference between values predicted by a
odel and the values actually observed. For samples diag-

osed as fibroadenoma and IDC, the rms doubled between the
alibration and validation data, while the rms remained rela-
ively constant for samples diagnosed as normal and fibrocys-
ic change. This indicates that there may be new components
resent in the fibroadenoma and IDC tissue samples examined
n the prospective study. However, all of the rms values were
mall and the model was able to account for the majority of
he spectral features observed. Thus, the new components are
resent in low concentrations or have relatively small Raman
cattering cross sections.

The reason for the increase in the rate of misdiagnosis of
broadenoma and IDC is currently unclear. Although we have
inimized the effects of SNR through our spectral error

nalysis, we may not have completely nullified all SNR ef-
ects. Any remaining SNR effects would likely have the great-
st impact on the diagnosis of fibroadenoma, as this diagnos-
ic category occupies the smallest area in our diagnostic plane
Fig. 2�. Nevertheless, the fact that the correlation coefficient
or fibroadenoma and IDC decreased in the prospective data
et is encouraging for future algorithm refinement.

Although it is difficult to quantify the effects of changes in
isease spectrum on algorithm performance, it is clear that the
ecrease in SE and SP in the prospective study results, at least
n part, from changes in disease spectrum.39 Changes in dis-
ase spectrum also affect PPV and NPV, which depend not
nly on disease prevalence but additionally on SE and SP.
hus, the change in performance of the Raman diagnostic
lgorithm can be largely explained by differences in disease
pectrum and cancer prevalence in the calibration and pro-
pective studies.

.4 Clinical Significance of Positive and Negative
Predictive Value

verall, the prospective PPV of our Raman diagnostic algo-
ithm was more adversely affected than the NPV. However, in
ither of our proposed clinical applications, NPV is the statis-
ic clinicians would rely on for decision making. In the case of
ransdermal spectral diagnosis via needle at mammography,
he goal is to identify lesions that need to be biopsied or
xcised. A high NPV, such as in our prospective study, would
llow the clinician to decide that a benign spectral diagnosis is
ufficient to leave a lesion unbiopsied, while a low PPV might
ead a clinician to unnecessarily biopsy a benign lesion. In
his scenario, there is less risk to the patient in biopsying a
ournal of Biomedical Optics 054023-
benign lesion than in leaving a malignant lesion unbiopsied.
The same is true in intraoperative margin assessment, where a
high NPV would allow the surgeon to accept a margin as
negative and not excise more tissue. In other words, a high
NPV represents a high likelihood that the lesion/margin is not
cancer.

Nevertheless, a higher PPV would result in a more robust
overall diagnostic algorithm. In order to improve PPV, a new
diagnostic algorithm will be devised using data sets with a
sufficient number of samples in each diagnostic category that
better represent the target patient population of our proposed
applications. An iterative process of devising and prospec-
tively validating new diagnostic algorithms in progressively
larger ex vivo and in vivo clinical studies is needed to realize
the full potential of Raman spectroscopy for breast cancer
diagnosis.

5 Conclusions
The current study has validated a Raman spectroscopic algo-
rithm for the diagnosis of breast cancer that was developed in
vitro, on a large prospective ex vivo data set that closely mim-
ics the target patient population of our anticipated in vivo
clinical applications. It is the first prospective application of
Raman spectroscopy in diagnosing normal, benign, and ma-
lignant breast tissue. The NPV of our diagnostic algorithm in
this prospective study was excellent. Effects on the PPV, SE,
and SP of the diagnostic algorithm were seen largely due to
changes in disease prevalence and disease spectrum in the
prospective data set. As the application of optical techniques
to medicine and breast cancer diagnosis matures, algorithms
must be tested prospectively to allow clinicians to accurately
assess the diagnostic information contained in and any bias of
the measurements. Although these preliminary results are
promising, in order to fully assess the potential of Raman
spectroscopy for breast cancer diagnosis, further algorithm
development and larger scale ex vivo and in vivo studies are
needed.
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