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Abstract. Fluorescence tomography excites a fluorophore inside a
sample by light sources on the surface. From boundary measurements
of the fluorescent light, the distribution of the fluorophore is recon-
structed. The optode placement determines the quality of the recon-
structions in terms of, e.g., resolution and contrast-to-noise ratio. We
address the adaptation of the measurement setup. The redundancy of
the measurements is chosen as a quality criterion for the optodes and
is computed from the Jacobian of the mathematical formulation of
light propagation. The algorithm finds a subset with minimum redun-
dancy in the measurements from a feasible pool of optodes. This al-
lows biasing the design in order to favor reconstruction results inside
a given region. Two different variations of the algorithm, based on
geometric and arithmetic averaging, are compared. Both deliver simi-
lar optode configurations. The arithmetic averaging is slightly more
stable, whereas the geometric averaging approach shows a better con-
ditioning of the sensitivity matrix and mathematically corresponds
more closely with entropy optimization. Adapted illumination and
detector patterns are presented for an initial set of 96 optodes placed
on a cylinder with focusing on different regions. Examples for the
attenuation of fluorophore signals from regions outside the focus are
given. © 2010 Society of Photo-Optical Instrumentation Engineers.
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Introduction

luorescence diffusion optical tomography �FDOT� is one of
he newer imaging techniques with promising application po-
ential in medicine. FDOT provides the possibility of func-
ional imaging, i.e., it not only visualizes anatomical struc-
ures but also provides information about physiological states
nd processes.

FDOT utilizes the ability of fluorescent dyes to absorb
ight in a certain wavelength range and to emit photons at a
igher wavelength. The excitation light is injected into the
ample through a set of sources. A source can either be in
ontact with the sample’s surface �e.g., a waveguide� or it
elivers the light in a contactless manner using collimated or
ivergent light beams. The excitation light is scattered and
bsorbed while it spreads in the tissue. At sites where a fluo-
ophore is present and active �e.g., inside a tumor�, a part of
he absorbed light leads to reemission at another wavelength.
his secondary light is again scattered through the tissue, and

ddress all correspondence to: Manuel Freiberger, Graz University of Technol-
gy, Institute of Medical Engineering, Kronesgasse 5/II, 8010 Graz, Austria. Tel:
43 316 873 7879; Fax: +43 316 873 7890; E-mail:
anuel.freiberger@tugraz.at
ournal of Biomedical Optics 016024-
the part that reaches the boundary can be measured by photon
detectors.

Due to the diffuse propagation of the photons in tissue,1

light emerging from the fluorescent dye widely spreads before
it reaches the boundary. This is in contrast to other established
imaging techniques like x rays where the rays travel through
the sample of interest in nearly straight lines. The photon
diffusion has to be considered in a suitable forward model that
is the basis for the reconstruction algorithm that seeks to de-
termine the distribution of the fluorophore from boundary
measurements.

The reconstructed results usually improve when increasing
the number of sensors. However, this is true only up to a
certain extent, as the diffuse nature of the photon propagation
inherently limits the independence of information of different
sensors and hence the obtainable resolution. On the contrary,
the cost for the detector hardware, the acquisition time, and
the computation effort, as well as the memory needed for
reconstruction, increase as the number of source/detector
combinations grows larger. The goal is to find a good com-
promise between image quality and both hardware and recon-
struction feasibility.

1083-3668/2010/15�1�/016024/10/$25.00 © 2010 SPIE
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Graves et al.2 have performed some investigations on how
he number of sources and detectors and their respective dis-
ance influences the reconstruction. Later, the method was ex-
ended by Lasser et al.,3 who applied it to 360-deg projection
omography.

This paper presents a different approach to adapting the
ptode configuration of a fluorescence tomography system in
he sense that it does not just compare different optode con-
gurations but provides an information measure for every
ingle optode, therefore offering greater flexibility. Further-
ore, it will be shown how the adaptation can be modified

uch that the reconstruction is focused on a given region of
nterest.

Methods
.1 Forward Model

ne of the most accurate ways to model light propagation is
o utilize Boltzmann’s transport equation for kinetic gases.
he photons can then be treated like independent gas particles

eading to the radiation transfer equation. Unfortunately, the
hoton intensity in the radiation transfer equation is a field
ependent on the spatial coordinates and the direction �i.e.,
wo angles� into which the photons travel. This leads to a
iscretization with a huge number of degrees of freedom and
equires extensive computing power and memory.

Therefore, it is common to use an approximation of the
ransfer equation known as the diffusion equation.4 Including
spatially variable fluorophore concentration c, the diffusion

quation reads

− � · ���x,�� � ��x�� + ��a,i�x,�� + c�x����� +
i�

v
���x�

= q�x� , �1�

ogether with the boundary condition

��x� + 2R��x,��
���x�

�n
= 0, �2�

here � is the photon density field; �= �3��a,i+c�+�s���−1 is
he diffusion coefficient; �a and �s� are the intrinsic absorp-
ion and reduced scattering coefficient, respectively; � is the
uorophore’s extinction, which relates the fluorophore con-
entration to photon absorption; � is the wavelength of the
ight; � is the modulation frequency of the light source; v is
he speed of light; and q is the source term. The factor R is
ntroduced to incorporate reflections at the boundary whose
ormal is denoted by n. Equation �1� can be solved efficiently
sing a finite element discretization.

For fluorescence applications, two diffusion equations—
ne describing the propagation of the excitation photons
�=�ex, �=�ex�, and one describing the emission field
�=�em, �=�em�—can be coupled. We prefer to write this in
n operator �or matrix-like� notation, where Aex and Aem de-
cribe the propagation of the excitation and emission field,
espectively:

A �c�� = q ,
ex ex

ournal of Biomedical Optics 016024-
Aem�c��em = B�c��ex. �3�

The operator B converts the photon density from the excita-
tion wavelength to the emission wavelength at sites where a
fluorophore is present and thus serves as a source for the
emission field. It is defined as

B�c��ex�x� =
Q

1 − i��
c�x��ex�ex�x� , �4�

where Q is the quantum yield, and � is the fluorescence
lifetime.5

Although more elaborate detector models �e.g., Ref. 6�
could be used, in this paper, a measurement d is defined as the
number of photons leaving the sample at a certain point xD
per unit time:

d ª − v�
��

	�x − xD��em�x�
��em�x�

�n
dx

=
�2�

v�
��

1

2R
	�x − xD��em�x� dx . �5�

If more than one source and one detector are present, we
denote the measurement made with the i’th pair of source/
detector by di.

2.2 Sensitivity
In order to solve the inverse problem, i.e., the reconstruction
of the distribution of the fluorophore’s concentration c�x�
from measurements on the boundary, it is necessary to know
the influence of a change in the concentration distribution on
the measurements. In other words, the so-called sensitivity,
given by the derivative of the system �3� with respect to c�x�,
is needed. Since the measurement d is a linear functional of
the emitted photon density �em, it suffices to calculate the
derivative of �em with respect to c. To this end, we write the
coupled system of partial differential equations describing the
dependence of �em �and �ex� on c as a nonlinear operator
equation F�c ,��c��=0, where �= ��ex ,�em� and

F:�c,�� → � Aex�c��ex − q ,

Aem�c��em − B�c��ex.
	 �6�

Since F is continuous and Fréchet-differentiable with respect
to c and �, the Banach space version of the implicit function
theorem7 states that ��c� is Fréchet-differentiable with respect
to c, and that the derivative ���c� satisfies

��F�c,��c�����c� = − �cF�c,��c�� , �7�

provided that ��F�c ,��c�� is bijective. The operator F being
linear in �, the partial Fréchet derivative with respect to �
applied to the variation 	�= �	�ex ,	�em� is just

��F�c,��c��	� = �Aex�c�	�ex,

Aem�c�	�em − B�c�	�ex,
	 �8�

and the bijectivity follows from the well-posedness of the
forward problem.
January/February 2010 � Vol. 15�1�2
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It remains to calculate the Fréchet derivative �cF�c ,��c�� acting on the variation 	c. Taking the derivative of the system �3�
ith respect to c and setting

�ex� =
�ex

3��a,i,ex + c�ex + �s��
2 , �9�

nd correspondingly for �em� , we find that

�cF�c,��c��	c =

− � · �− �ex� 	c � �ex� + 	c�ex�ex,

− �ex� 	c�n�ex,

− � · �− �em� 	c � �em� + 	c�em�em −
Q

1 − i��
	c�ex�ex,

− �em� 	c�n�em.
� �10�

Therefore, in order to calculate the sensitivity of the measurement d for given c with respect to a perturbation 	c, we first
ompute �ex�c� and �em�c� as the solution of �3� and then solve the boundary value problem

�− � · ��ex � 	�ex� + ��a,i,ex + c�ex + �s��	�ex = − � · ��ex� 	c � �ex� − 	c�ex�ex,

�ex + 2R�ex�n�ex = 2R�ex� 	c�n�ex,
	 �11�

or 	�ex, followed by


− � · ��em � 	�em� + ��a,i,em + c�em + �s��	�em = − � · ��em� 	c � �em� − 	c�em�em +
Q�ex

1 − i��
�	c�ex + c	�ex� ,

�em + 2R�em�n�em = 2R�em� 	c�n�em,
� �12�
or 	�em. The change in measurement at a certain location xD
s then given by

	d = v�
��

1

2R
	�x − xD�	�em�x� dx . �13�

In a finite element context, the discretization of the con-
entration using piecewise-constant ansatz functions in �3�,
11�, and �12� leads to the Jacobian or sensitivity matrix,
hich is denoted by J in this paper. The element Jij describes

he effect of a concentration change in the j’th finite element
n the i’th measurement.

In certain applications, it is feasible to operate with differ-
nce measurements. A measurement d0 is made with a base-
ine concentration c0, and a second measurement d1 is per-
ormed after the concentration distribution has changed to c1.
f the difference in concentration is small, the following lin-
arization can be used for reconstruction:


d = J�c0�
c , �14�

here 
d is a vector of difference measurements, and 
c is
he vector of concentrations in the finite elements. This for-

ulation will be used throughout this paper. However, the 

s neglected from now on, and we understand all measurement
nd concentrations as differences from a base state.

Adaptation of the Measurement Setup
ntropy-based optimization methods have a quite long history

n image processing and reconstruction8 and have been ap-
ournal of Biomedical Optics 016024-
plied to various fields of tomography, as can be seen from
Refs. 9–13, to name just a few. The basic idea is to treat the
unknown parameter—in our case, the fluorophore
concentration—as a random variable with a certain probabil-
ity density. Then one seeks to reconstruct that parameter dis-
tribution leading to the maximum entropy, for example.

The optimization approach followed in this paper is based
on the idea that the different measurements should be as in-
dependent as possible, i.e., every measurement should result
in new information that can be used for the inverse problem.
A way to quantify this independence is by using the mutual
information �MI�.

Let M denote the set of all measurement indices, i.e., each
element of M uniquely defines one pair of source/detector.
Further, let Si�M be the indices of those measurements that
are made with the i’th source. Without loss of generality, it
can be assumed that the measurements are ordered such that
for one fixed source i, the sensitivity matrix and the measure-
ments can be partitioned as

J = �J1

J2
, �d1

d2
 = �J1

J2
c , �15�

where d2 consists of all measurements made with the i’th
source, and d1 those made with other sources. The submatrix
J1 has �M \Si� rows and J2 has �Si� rows, giving a total num-
ber of �M� rows for J.

In order to calculate the entropy, one has to interpret the
model parameters as random variables and one has to make
assumptions on their probability distribution. For the sake of
January/February 2010 � Vol. 15�1�3
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implicity, it is assumed that the model parameters �i.e., the
oncentrations in the finite elements� are independent and nor-
ally distributed with equal variance �c. This will render the
odel covariance matrix diagonal: cov�c�=�cI. The data co-

ariance matrix is coupled via the relation d=Jc, and it holds
hat

cov�d� = cov�Jc� = Jcov�c�JT = �cJJT, �16�

r using the split data set:

cov�d1

d2
 = �c�J1J1

T J1J2
T

J2J1
T J2J2

T  . �17�

The entropy �or uncertainty� of the full data is given
hrough the multivariate normal distribution14 as

H�d� =
1

2
log��2�e�M det�cov�d��� . �18�

or the split data set, the entropy if only d1 is measured is

H�d1� =
1

2
log��2�e�M−Si det�cov�d1��� , �19�

nd the conditional entropy of d1 if d2 is already known is

H�d1�d2� =
1

2
log��2�e�M−Si det�cov�d1�d2��� , �20�

here cov�d1 �d2� is the conditional covariance. It can be cal-
ulated from Eq. �17� by the Schur complement of J2J2

T in JJT

Ref. 15�:

cov�d1�d2� = �c�J1J1
T − J1J2

T�J2J2
T�−1J2J1

T� . �21�

his is well defined, because J2J2
T is invertible due to the fact

hat J has more columns than rows and there are no two
easurements with the same sensitivity distribution, which
eans that the rows of J—and thus those of J1 and J2—are

inearly independent.
As a remark, we note that the term J2

†
ªJ2

T�J2J2
T�−1 appear-

ng in Eq. �21� is the pseudo-inverse of J2. If J2
†J2= I were

ulfilled exactly, the covariance of d1 would be zero. In such a
ase, the model parameters would lead to measurement data

2 that already contains all the information, and d1 can be
redicted from it. Furthermore, all model parameters could be
econstructed exactly from the knowledge of the measure-
ents d2 alone.
Now, a source can be removed safely, if the conditional

ntropy H�d1 �d2� is low, because in that case, measuring d2
ignificantly decreases the uncertainty in d1. In other words,
he information in the measurements d1 �made with the source
ptode under test� is also largely explained by the measure-
ents d2 �made without this source�. This can also be ex-

ressed by introducing the mutual information MI�d1 ,d2�
H�d1�−H�d1 �d2� which quantifies the reduction of uncer-

ainty in d1 when d2 is known beforehand. If the measure-
ents d2 of the currently considered source have a high mu-

ual information with all other measurements, the source can
e removed from the pool, as its information is also present in

to a large extent.
1

ournal of Biomedical Optics 016024-
Writing the negative mutual information together with Eqs.
�19�–�21� gives

− MI�d1,d2� =
1

2
log�det�J1J1

T − J1J2
T�J2J2

T�−1J2J1
T�/det�J1J1

T�� .

�22�

Using the same argumentation as for J2J2
T, J1J1

T is also invert-
ible. Furthermore, it is required that the matrix has an invert-
ible square root matrix such that

det−1�J1J1
T� = det��J1J1

T�−1/2�det��J1J1
T�−1/2� . �23�

Eventually, we arrive at the expression

− MI�d1,d2�

=
1

2
log�det�I − �J1J1

T�−1/2J1J2
T�J2J2

T�−1J2J1
T�J1J1

T�−1/2�� .

�24�

A major drawback of this technique is the fact that the
computation of the mutual information requires significant
computing effort due to the necessity of matrix inversions and
the computations of the determinants in Eq. �24�. This renders
such an approach computationally infeasible, which is why an
alternative method was implemented instead.

3.1 Redundancy Reduction

A different method was originally developed by Michelini and
Lomax and published by Curtis et al.16 They quantified the
independence of two measurements by computing the inner
product and the angle, respectively, between the respective
rows of the sensitivity matrix J. Then the algorithm has to
find that set of measurements that is closest to an orthogonal
set.

Using the same notation as in the previous section, the
square of the cosine of the angle between two measurements,
one made with source i and one made with another source, is
given by the term

�jm, jn�2

�jm�2�jn�2 , m � Si, n � M \ Si, �25�

where jm and jn denote the m’th and n’th row of the sensitiv-
ity matrix J, respectively. This quantity is a real number from
the interval �0, 1�. If the measurements are orthogonal, the
cosine will be zero, and the more they depend on each other,
the more the cosine will approach 1. In contrast to the formula
in Ref. 16, the square of the cosine is used here, which turns
out to be advantageous for the comparison to the mutual in-
formation measure later.

Now, consider the average square of the cosine between all
measurements made with source i and those measurements
made with another source. This will lead to the expression
January/February 2010 � Vol. 15�1�4
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ri ª
1

�M \ Si�
�

n�M\Si

1

�Si�
�

m�Si

�jm, jn�2

�jm�2�jn�2

=
1

�M \ Si��Si�
�

n�M\Si

�
m�Si

�jm, jn�2

�jm�2�jn�2 , �26�

hich is again from �0, 1�. If the value is close to 1, the
nformation gained using source i can also be gained using
ther sources, which means that the source i is redundant.
herefore, we call ri the redundancy of source i. The quantity

qi ª 1 − ri = 1 −
1

�M \ Si��Si�
�

n�M\Si

�
m�Si

�jm, jn�2

�jm�2�jn�2 ,

�27�

s used as a quality criterion in the optimization algorithm. An
nalog expression can be derived for the detectors. This is
chieved by replacing Si in Eq. �26� by Di, the set of indices
elonging to the i’th detector.

The optimization algorithm starts with a set of feasible
ptodes. It then iteratively calculates the quality measure for
very source and removes the one with the lowest measure
rom the optode pool. This is done until a given stopping
riterion is met. The optodes left in the pool are considered to
e the best source optodes for the given geometry. The same
rocedure can be applied to the set of detectors, too. The
easurement setup is then found by combining the sets of

est sources and best detectors.

.1.1 Geometric Averaging

he averaging of the single optode redundancies in the former
ection were introduced in an intuitive way using the arith-
etic mean. However, one could also think about using other

pproaches—for example, based on the geometric mean:

qg,i ª � �
n�M\Si

�1 −
1

�Si�
�

m�Si

�jm, jn�2

�jm�2�jn�2�	1/�M\Si�

. �28�

he advantage of this formulation is that from a mathematical
oint of view, it is linked more closely to entropy optimiza-
ion, as will be shown in Sec. 3.2.

.2 Relation to Entropy Optimization

n this section, a link between the mutual information optimi-
ation and the redundancy minimization technique is estab-
ished. To relate the redundancy to entropy, Eq. �26� has to be
rought into a matrix formulation. Using the partitioned sen-
itivity defined in Eq. �15� and the notation

diag−1/2�JJT� =�
1

�j1�
�

1

�jM�
� , �29�

he redundancy from Eq. �26� can be rewritten as
ournal of Biomedical Optics 016024-
ri =
1

�M \ Si��Si�
�
k=1

�M\Si�

�
l=1

�Si�

�diag−1/2�J1J1
T�J1J2

T diag−1/2�J2J2
T��k,l

2 .

�30�

This is actually the square of the Frobenius norm of the ma-

trix diag− 1
2 �J1J1

T�J1J2
T diag− 1

2 �J2J2
T� and can also be expressed

by the trace of the matrix multiplied with its transposed. Thus,
the matrix form of Eq. �26� reads:

ri =
1

�M \ Si��Si�
tr�diag−1/2�J1J1

T�J1J2
T diag−1�J2J2

T�J2J1
T

diag−1/2�J1J1
T�� . �31�

Last, the matrix form of the quality measure from Eq. �27� is:

qi =
1

�M \ Si�
tr�I −

1

�Si�
diag−1/2�J1J1

T�J1J2
T

diag−1�J2J2
T�J2J1

T diag−1/2�J1J1
T�� . �32�

A similar derivation can be done for the geometric quality
measure introduced in Eq. �28�. The final result will be:

qg,i = �det diag�I −
1

�Si�
diag−1/2�J1J1

T�J1J2
T diag−1�J2J2

T�J2J1
T

diag−1/2�J1J1
T��	1/�M\Si�

. �33�

When the results of Eqs. �32�, �33�, and �24� are compared,
one notices interesting similarities in the structure of these
equations, although they are not the same. The mutual infor-
mation formula �24� combines the whole conditional covari-
ance matrix into a single quality measure using the determi-
nant. The other two equations based on the redundancy
operate on the diagonal matrix parts �the variances� only and
neglect the covariance completely.

The original formulation based on the arithmetic mean
�Eq. �32�� has the disadvantage that there is no strong rela-
tionship between the trace of a �symmetric positive-definite�
covariance matrix and its determinant in general. In fact, it is
rather easy to construct examples where the trace between
two setups increases while the determinant decreases.

The newly introduced geometric averaging �Eq. �33�� re-
sembles the entropy optimization much more closely. By us-
ing the Cauchy-Schwarz inequality cov2�x ,y��var�x�var�y�,
it is obvious that a reduction in the variances have to reduce
the covariance simultaneously. Thus, we can argue that a de-
crease in the geometrically weighted redundancy quality mea-
sure qg,i will decrease �−MI� and therefore increase the mu-
tual information. In other words, an optode that is highly
redundant is likely to exhibit a high mutual information con-
tent between measurement associated to that optode and all
other measurements.

3.3 Focusing
In certain applications, it can be advantageous to bias the
arrangement of the optodes in order to reach a higher
January/February 2010 � Vol. 15�1�5
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ensitivity—which usually goes along with a higher reso-
ution and/or a better contrast-to-noise ratio—in a specified
egion. This can be used to focus the reconstruction on certain
rgans, for example.

A simple approach to achieve focusing is by weighting the
olumns of the sensitivity matrix with a predefined weighting
ask f:

JF = J diag�f� , �34�

here JF denotes the focused sensitivity matrix. This resultant
atrix will then be used in the adaptation algorithm described

arlier.
In the simplest case, f is a binary vector that has entries

ne in the region of interest and zero everywhere else.
mooth variations of the mask are possible as well. Generally,
e can assume that 0� f i�1.

Results
.1 Adapted Configurations
he optode adaptation was performed on a cylinder with a
eight of 90 mm and a radius of 30 mm, which mimics a
mall animal. The values of the optical properties can be
ound in Table 1. Equations and estimates of these parameters
an be found in Refs. 5, 17, and 18.

able 1 Values of optical parameters used for the forward simulation
Ref. 5, 17, and 18�.

�s�
mm−1

�a,i
mm−1

c ·�
mm−1 R

xcitation 0.275 0.036 83.510−3 2.51

mission 0.235 0.029 28.110−3 2.51

9
0

30

1
0

z

xy

source
detector

z = 0

ring 6

ring 5

ring 4

ring 3

ring 2

ring 1

(b)(a)

ig. 1 �a� Geometry of the optimization model �measured in mm� toge
attern on six rings with 10-mm spacing. �b� to �d� The result of the ad
etectors belonging to the best set found by the geometric or the arithm
nly.�
ournal of Biomedical Optics 016024-
A regular grid with 48 source and 48 detector nodes was
specified as an initial pool of feasible optode positions. The
optodes were arranged in a zigzag-like pattern on six rings
with a spacing of 10 mm �see Fig. 1�a��. The adaptation al-
gorithm needs the desired number of sources and detectors as
stopping-criterion, both of which were set to eight.

Three different focus regions were chosen to demonstrate
the focusing capability. Region A consists of the voxels in the
cylinder slice given by 10 mm�z�20 mm, region B is an-
other slice defined by −7.5 mm�z�7.5 mm, and region C
is the half-cylinder slice −20 mm�z�−10 mm and x
�0 mm. The adaptation was performed on a finite element
mesh with approximately 30,000 elements.

Looking at the outcome of the adaptation procedure, one
notices that the algorithm tends to concentrate the final
sources and optodes near the focus regions, which is desired
because the sensitivity is usually higher toward the optodes.
The result of adapting to the uppermost focus region in Fig.
1�b� could also have been suggested intuitively. On the other
hand, the best configuration in Fig. 1�c� is symmetric around
the cylinder’s axis but asymmetric to its midplane.

We also compared the geometric averaging method to the
original formulation published in Ref. 16. The result of the
adaptation using the arithmetic averaging is to a large extent
equivalent to the geometric averaging method, and so we in-
dicate only the differences in Fig. 1. Focusing to regions A
and B resulted in exactly the same optode set. Only when
focusing on the half-cylinder slice, two detectors changed
their location. Their position in Fig. 1�d� has been labeled G
for the geometric and A for the original arithmetic averaging.
This is an expected result, as the geometric averaging method
replaces only one of the sums by a product and thus there
should not be a dramatic difference in the best optode con-
figuration. From these outcomes, one can conclude that both
the geometric and the arithmetic adaptation methods result in

(c) (d)

A

A

G

G

ith the initial pool of feasible optodes, which are arranged in a zigzag
n algorithm when focusing on the regions drawn in orange. In �d� the
eraging method are marked with G and A, respectively. �Color online
ther w
aptatio
etic av
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ptode configurations that are meaningful and comprehen-
ible.

Figures 2�a�–2�c� show the rank of the optodes, i.e., the
teration in which they were removed from the pool of fea-
ible optodes for the geometric averaging method. The lighter
he color, the longer the optode remains in the feasible pool.
here is a general tendency to remove optodes far from the

ocus region early from the adaptation process, as can be seen
y looking at the lower optode rings in Fig. 2�a� or at rings 1
nd 6 in Fig. 2�b�. However, this is not the case anymore
hen the region of interest is set to the half-cylinder slice,
here the first optodes to be removed are the ones on ring 2
pposite the focus region. There are also optodes on ring 5
hat stay longer in the feasible pool. This can be explained by
he fact that off-plane information could improve the reso-
ution in the direction of the cylinder axis.

(a) (b) (c)

ig. 2 The rank of the removed optodes using the geometrical weight-
ng encoded in color for three different focus regions �sketched in
range�. Optodes drawn in black or red were eliminated early during
he adaptation process, while those in yellow and white remained
onger in the pool. The final set of optodes has been omitted. �Color
nline only.�

Table 2 Singular value �SV� analysis for the ful
focusing on different regions. The table lists the
between them �the condition number�, which is

Averaging Design

Full pool of optodes

Focus on region A

Geometric Focus on region B

Focus on region C

Focus on region A

Arithmetic Focus on region B

Focus on region C
ournal of Biomedical Optics 016024-
4.2 Comparison of Reconstructed Images

To provide evidence that the adapted arrangements improve
reconstruction results, simple symmetrical optode arrange-
ments were compared to the results of the adaptation algo-
rithms. To quantify the reconstructed images in an objective
manner, a reconstruction with the full set of optodes was used
as gold standard, as this is the best reconstruction one can
achieve under the given circumstances.

First, four fluorescent inclusions with a diameter of 5 mm
were placed inside the focus region B. Every second source
and detector optode on the rings 3 and 4 were chosen as an
intuitive arrangement. This configuration resulted in a relative
reconstruction error of 46% compared to the reconstruction
with all optodes. The reconstruction with the best set of op-
todes for region B �which is the same for both adaptation
methods� yielded a relative error of 42%.

For the second test case, a single 5-mm sphere was placed
inside focus region C. The relative error of the intuitive
arrangement—which was all optodes on ring 2—to the best
possible reconstruction was 25.6%. Using the geometrically
weighted adapted optode set resulted in a relative error of
16.9%. The best configuration using the adaptation routine
with arithmetic averaging yielded an error of 17.4%.

For the focus region A, the adapted optode configurations
are identical to the intuitive one.

As an objective quality measure for the sensitivity matrix
of the adapted optodes, its singular values or its condition
number can be used. The largest and smallest singular values
together with the ratio between them can be found in Table 2.
The full optode configuration has a rather high ratio of 6 ·109

and is thus rather ill-conditioned. The focused designs show a
singular value �SV� ratio that is reduced by a factor of 104 to
106. This is exactly what is intended by the redundancy mini-
mization algorithm, as the removal of nonorthogonal rows
from the sensitivity matrix improves conditioning. As the ad-
aptation method with geometric and arithmetic averaging re-
sulted in nearly optimal optode configurations, the difference
in singular values when focusing on region C is rather small.

ivity matrix and the adapted configurations with
and smallest singular values as well as the ratio
ure of stability for matrix inversion.

SV Min SV Ratio

10−5 6.1910−15 6.42109

10−5 1.5710−10 2.29105

10−5 4.2410−9 7.67103

10−5 2.5110−9 1.40104

10−5 1.5710−10 2.29105

10−5 4.2410−9 7.67103

10−5 2.3110−9 1.52104
l sensit
largest
a meas

Max

3.98

3.60

3.26

3.52

3.60

3.26

3.51
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.3 Robustness
he robustness of the adaptation method was tested by a
onte Carlo simulation. First, the best adapted configurations

sing either the arithmetic or the geometric averaging were
efined as reference sets. In each run of the Monte Carlo
imulation, the optodes in the initial pool were shifted ran-
omly up to �1 mm along the z axis and the cylinder perim-
ter �which is a shift of 10% of the distance between two
ptodes in z direction and 15% along the perimeter�, after
hich the adaptation procedure was used on these shifted op-

odes. Table 3 lists the number of 50 Monte Carlo trials for
hich the adapted set did not differ by more than four optodes

rom the reference set with an unshifted initial optode pool.
The shifting of the optodes has obviously no influence

hen focusing on region A, as both averaging methods are
ble to return the best solution in every Monte Carlo trial. In
he other two cases where the best solution is not so obvious,
he stability is decreased a bit. This is especially true when
ocusing on region B. One reason is that in this setup, the best
et of optodes can be rotated around the cylinder’s axis or
irrored at the xy-plane, and the resultant configuration

hould be equivalent to the reference solution with respect to
edundancy in measurement data.

For Fig. 3, the frequency of every optode in the final set
as counted, coded in the marker size, and drawn on the

ylinder surface. The bigger the optode circle �source� or
quare �detector� is drawn, the more often this optode will be
n the outcome of the adaptation process and the more stable
t is. The reference result for which the initial pool of optodes
as left unshifted is marked with an x. It is well visible that

he optodes are always placed near the focus region.
Last, Table 4 shows the mean value and standard deviation

f the quality measure from Eqs. �27� and �28� for the best
nd worst source and detector optode. The standard deviation
s quite small, which indicates that even if the adaptation

ethod does not find the optodes from the reference set, the
esultant optodes still have a high quality, i.e., their measure-
ents exhibit a small redundancy.

.4 Off-Focus Signal Suppression
igure 4 shows example reconstructions based on artificial
easurement data for three spherical perturbations with a di-

Table 3 Number of Monte Carlo trials with shi
optode set that did not differ from the reference

Averaging Focus 0

Region A 50

Geometric Region B 11

Region C 2

Region A 50

Arithmetic Region B 11

Region C 27
fted initial optode positions that resulted in an adapted
set by more than nmiss �cumulated�.

nmiss

1 2 3 4

50 50 50 50

19 30 36 43

25 37 46 49

50 50 50 50

23 34 40 45

47 50 50 50
ournal of Biomedical Optics 016024-
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(a)

(b)

Fig. 3 Stability of the adaptation result using geometric averaging for
focus regions B �a� and C �b�. Sources are drawn as circles, detectors
as squares. The marker size is proportional to the stability of the op-
tode. Optodes from the reference set �unshifted initial pool of op-
todes� are marked with x.
January/February 2010 � Vol. 15�1�8



a
t
p
t
u
c
s
c
c

5
T
p
t
t
i
b

r
r
w
w
u
B

F
�
f
5
r
A
t

Freiberger, Clason, and Scharfetter: Adaptation and focusing of optode configurations for fluorescence optical tomography…

J

meter of 5 mm, using the three different focusing strategies
ogether with geometric averaging. The exact locations of the
erturbations are shown in Fig. 4. The optical properties are
he same as listed in Table 1. The synthetic data was generated
sing a finer finite element mesh, and 5% noise was added. It
an be noticed that every configuration is able to suppress the
ignal from outside its focus region quite effectively. The re-
onstruction is best for the lower sphere because the optode
onfiguration was adapted to a smaller focus volume there.

Discussion
he location of the sensors and detectors is a critical design
arameter for FDOT hardware. A configuration determines
he sensitivity of the measurements in a given region and also
he obtainable resolution. The method presented in this paper
s based on a simulation model and can thus be used prior to
uilding hardware.

Comparisons of different hardware configurations for fluo-
escence tomography that we are aware of were previously
eported by Graves et al.2 and Lasser et al.3 Their approaches
ere based on a singular value �SV� analysis of the so-called
eight matrix. This matrix is essentially the sensitivity matrix
sed in this paper, but was obtained using the normalized
orn approximation.19

Table 4 Mean and standard deviation of the qua
optodes over all Monte Carlo runs.

Averaging Focus Best source W

Region A 0.9549±0.0016 0.9

Geometric Region B 0.9544±0.0035 0.9

Region C 0.9094±0.0069 0.8

Region A 0.9565±0.0015 0.9

Arithmetic Region B 0.9553±0.0031 0.9

Region C 0.9146±0.0047 0.8

10

30

6
0

(a) (b) (c) (d)

ig. 4 Reconstruction examples for differently focused optode setups.
a� The simulation model used to generate artificial measurement data
or all optode setups. The spherical perturbations have a diameter of

mm. The six dotted horizontal lines mark the location of the optode
ings. The other figures show reconstructions when focusing on region

�b�, region B �c�, or region C �d� with the optimal setup gained with
he geometric averaging method.
ournal of Biomedical Optics 016024-
In contrast to the previous methods, the adaptation algo-
rithm used herein operates on the complete derivative of the
diffusion approximation �7�. Therefore, also the change of the
excitation field due to a perturbation in the fluorophore distri-
bution is considered, which is neglected in commonly used
first-order Born approximations.

The SV analysis implemented by Graves and Lasser re-
quires a singular value decomposition �SVD� of the sensitivity
matrix. This demands a large amount of computation time. As
an example, the calculation of a single SVD for a matrix of
size 48·4830,000 takes about 50 min on a dual-core pro-
cessor. Therefore, the SV optimization is limited to 2-D ap-
plications or to rather simple 3-D geometries, which can be
modeled with fewer finite elements. The redundancy reduc-
tion algorithm does not suffer from these limitations, as it
needs to compute only inner products of rows of the sensitiv-
ity matrix. The matrix is built up efficiently using an implicit
function formulation that requires one additional finite ele-
ment solution per optode only. Furthermore, both the assem-
bly of the sensitivity matrix as well as the calculation of the
inner products can be parallelized with moderate effort �the
basic principle can be found in Ref. 20, for example�, which
allows accelerating the method even more.

The algorithm we implemented starts with a complete op-
tode arrangement and iteratively discards the one optode hav-
ing the lowest quality measure. Unfortunately, the algorithm
cannot determine in the current step whether it would be ad-
vantageous later if the worst optode was kept and another one
was dismissed from the pool instead. Thus, the drawback of
this simple top-down strategy is that it cannot guarantee to
find the global minimum. However, a full search is an nonde-
terministic polynomial time �NP� problem and would require
the computation of around 1018 different configurations for
the rather simple geometry demonstrated earlier. This is com-
putationally not feasible. A viable alternative could be the
implementation of stochastic methods that have a long tradi-
tion in numerical optimization. A recent promising approach
involves formulating this problem as a distributed control
problem with sparsity constraints,21,22 which computes an
“optode field” that is nonzero only at discrete points. These
could be taken as optimal locations where optodes should be
placed. In addition, the solution would indicate the optimal
strength of the sources as well.

asure for the best and worst source and detector

ource Best detector Worst detector

.0013 0.9113±0.0019 0.9025±0.0022

.0033 0.9109±0.0018 0.9003±0.0018

.0062 0.8554±0.0064 0.7786±0.0061

.0012 0.9148±0.0017 0.9069±0.0020

.0033 0.9140±0.0022 0.9037±0.0019

.0055 0.8645±0.0046 0.7940±0.0045
lity me

orst s

482±0

393±0

404±0

503±0

420±0

527±0
January/February 2010 � Vol. 15�1�9



p
c
a
fi
p
t
s

c
p
f
b
s
t

s
w
a
I
t
p
t

t
q
s
f
w

t
t
i
t
i
o

fi
m
m
a
m
d
c
r
f
c

6
W
a
m
s
p
s

A
T
t
r
i

Freiberger, Clason, and Scharfetter: Adaptation and focusing of optode configurations for fluorescence optical tomography…

J

A great advantage of the redundancy minimization is that it
rovides a quality measure for every single optode rather than
omparing complete configurations, as is the case in SV
nalysis. This offers the possibility to choose a superior con-
guration first, which could even be obtained with a com-
letely different method, and to adapt the arrangement further
hrough the removal of optodes exhibiting a poor quality mea-
ure.

To our knowledge, the possibility of choosing an optode
onfiguration such that the reconstruction is focused on an a
riori given region inside the tissue has not been investigated
or fluorescence tomography before. Similar strategies have
een reported for other diffusion-limited imaging modalities
uch as seismic tomography16 and magnetic induction
omography.23

The effect of focusing on the reconstruction is demon-
trated in Figure 4. The best reconstruction result is obtained
hen the optode configuration is adapted to a small volume

round the field of view, which is demonstrated in Fig. 4�d�.
n all three reconstructions, the concentration changes outside
he focus region are suppressed very well. This feature might
rove advantageous in certain cases—for example, if the au-
ofluorescence signal from other organs needs to be damped.

In Sec. 3.2, we attempted to link the redundancy measure
o entropy and mutual information, respectively. The three
uality criteria given in Eqs. �32�, �33�, and �24� are very
imilar in their structure, although not equal. The mutual in-
ormation criterion operates on the full covariance matrix,
hile the redundancy criteria use its diagonal part only.

The MI optimization is computationally expensive due to
he need for matrix decompositions, matrix inversions, and
he calculation of the determinant. The redundancy reduction
s much more efficient, as it mainly depends on the calcula-
ion of inner products of matrix rows. However, the decrease
n numerical effort goes hand in hand with the neglect of the
ff-diagonal matrix entries.

In this paper, one of the most simple stopping criteria, the
nal number of sources and detectors, was chosen. It is worth
entioning that the algorithm is flexible enough to include
ore elaborate criteria easily. For example, it could be desir-

ble to specify the minimum required resolution or the mini-
um contrast-to-noise ratio. In further work, the feasibility of

ynamic stopping criteria will also be investigated. The prin-
iple is to calculate an initial image quality criterion �e.g., the
esolution� and then again iteratively remove optodes from the
easible pool. As soon as the image quality decreases signifi-
antly, the procedure is stopped.

Conclusion
e have presented an algorithm to adaptively remove sensor

nd detector locations for fluorescence diffusion optical to-
ography. The possibility to bias the resultant design to be

ensitive in a given area was demonstrated. In contrast to
reviously reported algorithms, the current formulation has a
trong connection to entropy optimization.
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