1 March 2010 Measurement of splanchnic photoplethysmographic signals using a new reflectance fiber optic sensor
Author Affiliations +
Splanchnic organs are particularly vulnerable to hypoperfusion. Currently, there is no technique that allows for the continuous estimation of splanchnic blood oxygen saturation (SpO2). As a preliminary to developing a suitable splanchnic SpO2 sensor, a new reflectance fiber optic photoplethysmographic (PPG) sensor and processing system are developed. An experimental procedure to examine the effect of fiber source detector separation distance on acquired PPG signals is carried out before finalizing the sensor design. PPG signals are acquired from four volunteers for separation distances of 1 to 8 mm. The separation range of 3 to 6 mm provides the best quality PPG signals with large amplitudes and the highest signal-to-noise ratios (SNRs). Preliminary calculation of SpO2 shows that distances of 3 and 4 mm provide the most realistic values. Therefore, it is suggested that the separation distance in the design of a fiber optic reflectance pulse oximeter be in the range of 3 to 4 mm. Preliminary PPG signals from various splanchnic organs and the periphery are obtained from six anaesthetized patients. The normalized amplitudes of the splanchnic PPGs are, on average, approximately the same as those obtained simultaneously from the periphery. These observations suggest that fiber optic pulse oximetry may be a valid monitoring technique for splanchnic organs.
© (2010) Society of Photo-Optical Instrumentation Engineers (SPIE)
Michelle Hickey, Michelle Hickey, Neal Samuels, Neal Samuels, Nilesh Randive, Nilesh Randive, Richard M. Langford, Richard M. Langford, Panayiotis A. Kyriacou, Panayiotis A. Kyriacou, } "Measurement of splanchnic photoplethysmographic signals using a new reflectance fiber optic sensor," Journal of Biomedical Optics 15(2), 027012 (1 March 2010). https://doi.org/10.1117/1.3374355 . Submission:

Back to Top