1 May 2010 Monitoring changes of cellular metabolism and microviscosity in vitro based on time-resolved endogenous fluorescence and its anisotropy decay dynamics
Author Affiliations +
Abstract
Reduced nicotinamide adenine dinucleotide (NADH) is a well-known metabolic coenzyme and endogenous fluorophore. In this study, we develop a system that simultaneously measures time- and wavelength-resolved fluorescence to extract free and protein-bound NADH signals from total cellular fluorescence. We analyze temporal characteristics of NADH fluorescence in a mixture of NADH and lactate dehydrogenase (LDH) as well as in living cell samples. The results show that in both the NADH/LDH mixture and cell samples, a fraction of free NADH and protein-bound components can be identified. The extracted free and bound NADH signals are confirmed by time-resolved measurement of anisotropy decay of NADH fluorescence, based on the fact that free NADH is a small fluorescent molecule with much shorter rotational diffusion time than bound NADH. The ratio of free NADH signal to bound NADH signal is very different between normal and cancer cervical epithelial cells. In addition, the ratio changes significantly when the cell samples are treated with a mitochondrial inhibitor or uncoupler, demonstrating that the method is sensitive to monitor cellular metabolic activity. Finally, we demonstrate that the microviscosity for relatively small molecules such as NADH in cells could be extracted from wavelength- and time-resolved NADH fluorescence of living cell samples.
© (2010) Society of Photo-Optical Instrumentation Engineers (SPIE)
Wei Zheng, Wei Zheng, Dong Li, Dong Li, Jianan Y. Qu, Jianan Y. Qu, "Monitoring changes of cellular metabolism and microviscosity in vitro based on time-resolved endogenous fluorescence and its anisotropy decay dynamics," Journal of Biomedical Optics 15(3), 037013 (1 May 2010). https://doi.org/10.1117/1.3449577 . Submission:
JOURNAL ARTICLE
11 PAGES


SHARE
Back to Top