1 June 2011 Characterization of individual ultrasound microbubble dynamics with a light-scattering system
Author Affiliations +
J. of Biomedical Optics, 16(6), 067002 (2011). doi:10.1117/1.3583575
Abstract
Ultrasound microbubbles are contrast agents used for diagnostic ultrasound imaging and as carriers for noninvasive payload delivery. Understanding the acoustic properties of individual microbubble formulations is important for optimizing the ultrasound imaging parameters for improved image contrast and efficient payload delivery. We report here a practical and simple optical tool for direct real-time characterization of ultrasound contrast microbubble dynamics based on light scattering. Fourier transforms of raw linear and nonlinear acoustic oscillations, and microbubble cavitations are directly recorded. Further, the power of this tool is demonstrated by comparing clinically relevant microbubble cycle-to-cycle dynamics and their corresponding Fourier transforms.
Mark J. Hsu, Sadik C. Esener, Mohammad Eghtedari, David J. Hall, Robert F. Mattrey, Andrew P. Goodwin, "Characterization of individual ultrasound microbubble dynamics with a light-scattering system," Journal of Biomedical Optics 16(6), 067002 (1 June 2011). http://dx.doi.org/10.1117/1.3583575
Submission: Received ; Accepted
JOURNAL ARTICLE
5 PAGES


SHARE
KEYWORDS
Ultrasonography

Acoustics

Light scattering

Cavitation

Signal to noise ratio

Silica

Fourier transforms

Back to Top