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Abstract. We developed a hybrid two-photon excitation fluorescence-second harmonic generation (TPEF-SHG)
imaging system with an on-stage incubator for long-term live-cell imaging. Using the imaging system, we ob-
served the addition of new sarcomeres during myofibrillogenesis while a cardiomyocyte was spreading on the
substrate. The results suggest that the TPEF-SHG imaging system with an on-stage incubator is an effective tool for
investigation of dynamic myofibrillogenesis. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3662457]
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The study of myofibrillogenesis in live cardiomyocytes
is essential for understanding heart-muscle formation and
remodeling.1, 2 In conventional fluorescence technique, this pro-
cess inside live cells has been studied by labeling, with green
fluorescent protein (GFP) technology,3 specific molecules. The
growth of myofibrils and the maturation of premyofibril were in-
vestigated by monitoring the distribution of alpha-actinin fused
with GFP in live embryonic cardiomyocytes under fluorescence
microscope.4 Whether the GFP is located inside or outside a
structure such as a sarcomere, however, it will fluoresce but not
distinguish among structures.

Two-photon excitation fluorescence (TPEF) can be from a
specific molecule and thus used for exploring how component
molecules are arranged in the myofibrils.5, 6 Second harmonic
generation (SHG) is intrinsic to a specific structure and thus
enables the study of dynamical assembly of a myofibril with-
out any protein labeling.7–10 The combination of TPEF and
SHG (TPEF-SHG) can provide more structural information in a
cardiomyocyte,11, 12 which is ideal for tracking how specific sar-
comeric proteins are assembled into the myofibrils during my-
ofibrillgoenesis. Compared with corresponding single-photon
excitation microscopy, the double wavelength requirement of
TPEF and SHG can achieve a deeper penetration inside bi-
ological materials.13, 14 Because both TPEF and SHG require
high excitation power, which is distributed only within a very
small volume confined at the focal point, TPEF and SHG pro-
vide higher three-dimensional (3D) resolution than conventional
single-photon excitation microscopy.15–17

Dynamic sarcomere contractions in a cardiomyocyte were
recorded for up to several minutes using SHG,8 and the car-
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diomyocyte remained alive during imaging. However, my-
ofibrillogenesis (e.g., the addition of new sarcomeres) is a
process that spans hours to days. Normal physiological con-
ditions (temperature, humidity, pH value, etc.) and appropri-
ate laser power are necessary to maintain normal physiological
processes inside the cardiomyocytes while myofibrillogenesis
is recorded. Therefore, an incubating system that provides the
required physiological conditions is required in the study of
myofibrillogenesis.

In this study, we developed a hybrid TPEF-SHG polarization-
imaging system with an on-stage incubator that provides nor-
mal physiological conditions to isolated cardiomyocytes during
imaging of myofibrillogenesis. Here we report the results of
using this imaging system to record time-lapse images of sin-
gle, live cardiomyocytes while they were spreading on the glass
substrate.

A schematic of the imaging-system setup is shown in
Fig. 1(a). The femtosecond (fs) laser beam from a Ti:Sapphire
laser (Tsunami 3960-X1BB pumped by a 10 W Millennia,
Spectra-Physics, 100 fs and 80 MHz) was tuned to 810 nm
and collimated with optics that also expanded the beam 3 times
and enforced the beam’s polarization. The expanded beam was
directed to the microscope custom-designed and built in our lab
using several Olympus microscopic components. The beam was
then steered onto the XY scanner (6210H, Cambridge Tech.).
After being scanned and passing the scanning lens, the beam
was reflected by a dichroic beam splitter and passed the tube
lens. The beam then passed the TPEF dichroic beam splitter
(FF665, Semrock) and was fed into the back aperture of the ob-
jective (W 60X, 1.0NA, Olypus,) to stimulate the sample. The
stimulated TPEF signals were delivered through the objective,
reflected by the TPEF dichroic beam splitter, and recorded by

1083-3668/2011/16(12)/126012/4/$25.00 C© 2011 SPIE

Journal of Biomedical Optics December 2011 � Vol. 16(12)126012-1

mailto: zgao@clemson.edu


Liu et al.: Myofibrillogenesis in live neonatal cardiomyocytes...

Fig. 1 Schematic of the hybrid TPEF-SHG microscope with an on-stage incubator: (a) Schematic of the imaging system; (b) Location of the on-stage
incubator; (c) Components of the on-stage incubator.

a photomultiplier tube (PMT1, H7422p-40, Hamamatsu) with
an IR filter (Filter1, FF01–720, Semrock). The SHG signals
were collected from the forward direction through an Olym-
pus 1.4 NA oil immersion condenser. The same types of PMT
(PMT2) and IR filter (Filter2) were used in addition to a 405
± 10 nm bandpass filter (Filter3, FF01-405/10-25, Semrock).
The microscope’s XY stage and the objective were controlled
respectively through three orthogonally mounted motors (MP-
285, Sutter). The microscope was equipped with a ThorLab mi-
croscope illumination unit (M530L2) with a polarizer, an EXPO
fluorescence-illumination system (X-cite 120Q450), and an An-
dor EM-CCD camera (DU-888E-C00-#DZ) so that it could be
used individually as a standard polarized microscope or con-
junctionally as a conventional fluorescence microscope.

The lateral scan for 3D imaging was achieved with a pair of
orthogonal galvanometers, which bidirectionally raster-scanned
the fs laser beam to construct the sectional image. To imple-
ment high speed scanning, the turning regions of the triangle
waves were smoothed by our custom-designed waveform. The
laser scanning, data acquisition (PCI6115, NI), and the optical-
shutter switch were controlled using custom-built, LABVIEW-
based software developed in our lab. The scanning range was
calibrated using a standard-resolution target (Fluorescent USAF
1951, Edmund Optics). The resolution was estimated by scan-
ning a 0.2-μm fluorescent bead, imaging it through the TPEF
channel, and fitting the data to the theoretical-point-spread func-
tion. The lateral resolution was estimated to be 0.47 μm, and the
axial resolution was estimated to be 1.2 μm. The scanning speed
was 4 s/frame (spf, 512×512 pixels), and the data were acquired
from both channels simultaneously; different frames acquired in
one single image-acquisition trial were saved in an image vir-
tual stack. The image virtual stack was then processed by IMAGEJ

software (http://rsbweb.nih.gov/ij/).
Although no energy is absorbed during generation of second

harmonics,18 the incident laser may damage cardiomyocytes.11

In our experiment, we proved that an incident-laser power of
2.8 mW (adjusted by a pair of polarizers) was not damaging to
the cultured neonatal cardiomyocyte at days 1 to 5. The sample
was scanned repeatedly, and the images were acquired con-
tinuously at the rate of 4 spf in each image-acquisition trial.
Approximately 10 to 20 frames were recorded in one virtual
stack.

An electric CO2 microscopic stage incubator (H301-TC1-
HMTC, 2GF-MIXER, Okolab) was incorporated into the TPEF-
SHG imaging system [Fig. 1(b)]. The glass-bottom culture dish
that was used for cardiomyocyte culture was mounted on the
on-stage incubator during real-time imaging of live neonatal
cardiomyocytes. The temperature inside the incubator was main-
tained at 37◦C, and a mixture of CO2 (5%) and air (95%) was
passed through a humidifying module and pumped into the in-
cubator. The gap between the objective lens and the top cover
of the on-stage incubator was sealed with a rubber sealing tube
to maintain a stable temperature inside the incubator and to
minimize leakage of the gas mixture.

Three-day-old neonatal rats were euthanized by decapita-
tion according to procedures approved by Clemson’s IACUC.
The heart was isolated and minced into 1 mm3 pieces with
scissors. The tissue pieces were digested with enzyme solution
(0.14 mg/ml trypsin-NO EDTA in PBS solution) overnight and
then shaken at 75 rpm in the collagenase solution (PBS with
1 mg/ml Collagenase II, GIBCO; 0.24 unit/ml Neutral Protease,
Worthington) for 1.5 h. The fibroblasts were removed from the
cell solution using an adhesive assay by incubating the cell solu-
tion in a 150-cm2 flask with culture medium (DMEM, HyClone;
20% Fetal bovine serum, HyClone; 1% Penicillin/Streptomycin,
Fisher Scientific) for 2 h at 37oC. The cardiomyocytes were di-
luted to a concentration of 100 k cells/ml. One milliliter of cell
solution was seeded into a 35-mm culture dish with a glass bot-
tom coated with laminin (20 μg/ml). The cells were cultured
in a conventional incubator (37oC and 5% CO2). The culture
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Fig. 2 2D image of in vitro cultured neonatal cardiomyocyte (day 3):
(a) TPEF image of a live cardiomyocyte with DiO-stained membrane
(green); (b) Simultaneous SHG image of the same cell, showing sarcom-
eric structure (red); (c) Combination of images (a) and (b) (scale bars:
10 μm), showing the relationship between the frontier cell membrane
and the myofibril tip.

medium was changed after 24 h to remove dead cells and then
was changed every 2 days.

The cell membrane was stained with DiO (Invitrogen) before
imaging: The serum-culture medium in the culture dish was re-
moved. The cells were washed with warm PBS solution and
then rinsed again with serum-free medium (DMEM, 1% peni-
cillin/streptomycin). Then, 1 ml DiO solution (5 μl DiO per ml
serum-free medium) was added to the culture dish, and the cells
were incubated in the dark at 37oC for 40 min. The DiO solution
was removed from the culture dish, and the cells were washed
3 times with serum-free medium. Then fresh culture medium
with serum was added to the culture dish.

After we cultured the cardiomyocytes for 1 to 5 days, the
culture dish with DiO-stained cells was moved from the con-
ventional incubator to the on-stage incubator of the TPEF-SHG
imaging system. The cell to be imaged was first identified via
the fluorescence channel of the imaging system. Then the cells
were excited by the 810-nm fs laser beam. The TPEF and SHG
signals from the sample were collected simultaneously through
two different channels. A two-dimensional (2D) image of the
cell was reconstructed from the signals acquired from both chan-
nels and displayed on the monitor. The focus was adjusted to
find the SHG image of the best quality. Time-lapse images were
acquired from both channels and saved at designated time in-
tervals. The 2D images of the selected cells were reconstructed
using IMAGEJ software (Fig. 2).

Figure 3 displays TPEF-SHG overlapped, time-lapse images
of a myofibril structure from a cardiomyocyte on the second
day in culture. These images were acquired when the myofibrils
(red) had not extended to the tip of the filopodia (green) while
the cell was spreading on the substrate. Each sarcomere is in-
dicated by a white arrow. After 40 min of on-stage incubation,
two additional sarcomeres appeared inside the white rectangle.
The two series of white dots, which denote the loci of the my-
ofibrils at the cell boundary, form two different inward curves
respectively in Figs. 3(a) and 3(b), exhibiting the rotation of
the sarcomeres in 40 min. The length of the sarcomeres indi-
cated in Figs. 3(a) and 3(b) by white arrows was estimated using
IMAGEJ software and denoted in Figs. 3(c) and 3(d). The dis-
played loci and indicated sarcomere lengths in Fig. 3 demon-
strate that the space required by the newly added sarcomeres was
gained from rotation and shrinkage of the existing sarcomeres.
The SHG signal has been found to arise from the coiled rod re-
gion of myosin thick filaments.9 Therefore, although there were
no striated sarcomeric structures at the tip of the myofibril [the
area denoted by the long arrows in Figs. 3(a) and 3(b)], the de-
tection of SHG signals suggested that myosin thick filaments ex-

Fig. 3 Addition of new sarcomeres during myofibril growth. DiO-
stained cell membranes acquired through the TPEF channel are green;
myofibrils detected by SHG are red. (a) and (c) are identical TPEF-SHG
overlapped images acquired at 0 min. (b) and (d) are identical TPEF-
SHG overlapped images acquired 40 min after the initial image. In (a)
and (b), each white arrow denotes one sarcomere; the white box in (a)
and (b) shows the addition of two new sarcomeres at 40 min. In (c) and
(d), sarcomeric length (μm) is shown. In the area denoted by the long
arrows in (a) and (b), the SHG signal shows that striated sarcomeric
structure has not yet developed. The scale bars represent 10 μm.

isted in this area before being assembled into myofibrils to form
the striated sarcomeric structure. This is consistent with previ-
ous research that showed that muscle myosin bundles form sep-
arately from the formation of other myofibril components19, 20

before the assembly of the sarcomeric structure.
In myofibrillogenesis research in which the distribution of

alpha-actinin fused with GFP in live embryonic cardiomyocytes
was monitored, myofibrils were found to extend more than
10 μm within several hours through the connecting and bind-
ing of newly formed myofibrils to existing myofibrils.4 One
sarcomere was found to be added in an hour to effectively com-
pensate for an increase in the resting-sarcomere length while a
strain of 10% was applied to neonatal cardiomyocytes.21 In our
experiments, two new sarcomeres were found to appear in the
mature myofibril within 40 min while the cardiomyocyte was
spreading on the substrate. We noticed that while the cardiomy-
ocytes were cultured in vitro, the different microenvironments
caused different growth rates of new sarcomeres in each cell in
the same culture dish. However, the cells remained physiologi-
cally active for at least 10 h (data not shown) in our incubated
imaging system, and the SHG imaging rate of our system (4 spf)
had provided us sufficient time resolution for the observation of
single sarcomere addition.

Our study demonstrates that our TPEF-SHG imaging system
including an on-stage incubator is effective in real-time study of
long-term structural changes in cardiomyocytes. We observed
the addition of new sarcomeres to the mature myofibrils that
occurred within a short time. The results demonstrate that our
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imaging system could be a useful tool for investigating the pro-
longed process of myofibrillogenesis of a single cardiomyocyte.
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