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Abstract. We report on the use of diffuse optical spectroscopy analysis of breast spectra acquired in the wavelength
range from 500 to 1600 nm with a fiber optic probe. A total of 102 ex vivo samples of five different breast tissue
types, namely adipose, glandular, fibroadenoma, invasive carcinoma, and ductal carcinoma in situ from 52
patients were measured. A model deriving from the diffusion theory was applied to the measured spectra in order
to extract clinically relevant parameters such as blood, water, lipid, and collagen volume fractions, β-carotene
concentration, average vessels radius, reduced scattering amplitude, Mie slope, and Mie-to-total scattering fraction.
Based on a classification and regression tree algorithm applied to the derived parameters, a sensitivity-specificity
of 98%–99%, 84%–95%, 81%–98%, 91%–95%, and 83%–99% were obtained for discrimination of adipose,
glandular, fibroadenoma, invasive carcinoma, and ductal carcinoma in situ, respectively; and a multiple classes
overall diagnostic performance of 94%. Sensitivity-specificity values obtained for discriminating malignant from
nonmalignant tissue were compared to existing reported studies by applying the different classification methods
that were used in each of these studies. Furthermore, in these reported studies, either lipid or β-carotene was
considered as adipose tissue precursors. We estimate both chromophore concentrations and demonstrate that
lipid is a better discriminator for adipose tissue than β-carotene. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE).
[DOI: 10.1117/1.3611010]
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1 Introduction
Within present-day strategy of human breast cancer treatment,
diagnostic biopsy and surgical margin assessment are two el-
ements in which procedural accuracy could significantly be
enhanced.

Missed diagnoses of cancer by false-negative biopsies have
been reported ranging from 4.3% to 17.9%, despite ongoing
advances in imaging technologies. Moreover, indeterminate
pathology analysis will result in the need of repeat biopsies
in between 4% to 32% of patients.1–6

Breast conservative therapy, aimed at conserving as much
breast tissue as possible, is the treatment of choice in patients
with T1-T2 breast tumors. However, the rate of irradical resec-
tion and the need for a secondary surgical procedure is often
over 10%, depending on the specific definition.7, 8

Over the last decade, new tools have been developed to clas-
sify breast tissue and assess breast tissue margins based on
optical spectroscopy techniques.9–22 Bigio et al. performed in
vivo elastic scattering spectroscopy measurements between 350
and 750 nm to discriminate between 13 malignant and 59 non-
malignant breast tissue samples by applying artificial neural
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network (ANN) and hierarchical cluster analysis on the spec-
tra yielding sensitivity-specificity of 69%–85% and 67%–79%,
respectively.9 This study also showed that the spectral features
between 400 and 500 nm in adipose tissue are mainly domi-
nated by β-carotene light absorption, however optical proper-
ties were not derived from the measured spectra. The biomedical
group at Duke University has performed several studies where
optical properties were derived from measurements performed
between 350 and 600 nm by using an inverse Monte Carlo
technique to extract hemoglobin and β-carotene concentrations,
as well as hemoglobin saturation and the reduced scattering
amplitude.10–13 Classification based on linear support vector
machine (SVM) learning was performed to classify malignant
(35 samples) from nonmalignant samples (50 samples including
adipose and fibrous tissue types) with a sensitivity-specificity of
83%–80%.10 A more recent study from the same group showed
that it is possible to discriminate 54 malignant samples from
70 nonmalignant samples with a sensitivity-specificity of 83%–
87% based on the extracted parameters from diffuse reflectance
measurements.11 Volynskaya et al. conducted an ex vivo breast
(104 samples) study where a classification between four types
of breast tissue was performed from diffuse reflectance spec-
tra acquired from 350 to 750 nm.14 Classification of 31
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normal, 55 fibrocystic change, 9 fibroadenoma, and 9 infiltrat-
ing ductal carcinoma was achieved with a sensitivity-specificity
of 100%–100% by using a logistic regression (LR) algorithm.
An ex vivo breast study by Majumder et al. showed that sparse
multinomial logistic regression classification of 134 normal (adi-
pose and glandular), 86 invasive ductal carcinoma, 18 duc-
tal carcinoma in situ, and 55 fibroadenoma spectra can be
achieved with sensitivity-specificity ranging from 28%–86% to
86%–97% when only analyzing diffuse reflectance spectra ac-
quired between 400 and 800 nm.15 A more recent study showed
sensitivity-specificity of 85%–96% when discriminating 145
normal from 34 tumor (invasive ductal carcinoma and ductal
carcinoma in situ) samples.16 Laughney et al. presented ex vivo
noncontact optical properties estimations from spectra acquired
between 510 and 785 nm from 29 breast samples and a k-nearest
neighbor (KNN) classification method was used to discriminate
between different tissue types.17 They have shown an interesting
comparison of classifying the different types of tissue according
to their pathology identity and by grouping them into subgroups,
such as adipose (7021 spectra), nonmalignant (533 inflamma-
tion, 4110 benign epithelia, and 31226 normal epithelia spec-
tra), and malignant (194 ductal carcinoma in situ, 479 invasive
lobular carcinoma, and 22547 invasive ductal carcinoma spec-
tra). Their results showed sensitivity-specificity of 87%–99%,
90%–82%, and 77%–90% for adipose, nonmalignant, and ma-
lignant, respectively. However, a sensitivity-specificity of 87%–
99%, 74%–74%, 9%–91%, 0%–100%, 77%–90%, 0%–100%,
and 0%–100% was reached for adipose, normal epithelia, be-
nign, inflammation, invasive ductal carcinoma, ductal carcinoma
in situ, and invasive lobular carcinoma, respectively.

Other studies18–21 investigated wavelength ranges between
600 and 1100 nm where water and lipid were estimated in addi-
tion to hemoglobin. Therefore, adipose tissue could be discrimi-
nated based on the amount of estimated lipid and not β-carotene,
since this chromophore has negligible absorption above 600 nm.
However, these investigators did not perform a classification on
their data.

In our study, we have conducted an ex vivo trial to esti-
mate optical properties from 102 samples of five different types
of breast tissue: adipose, glandular, invasive carcinoma (IC),
fibroadenoma (FA), and ductal carcinoma in situ (DCIS) mea-
sured in 52 patients. Optical spectra were taken with a setup
that can resolve light from 500 nm up to 1600 nm, and a model
based on diffusion theory was applied to the measurements to
estimate the optical properties by determining several parame-
ters such as blood, water, and lipid volume fractions, reduced
scattering amplitude, Mie slope, Mie scattering fraction, and
pigment packaging factor.23, 24 Besides, β-carotene was also in-
cluded in our model since it has significant absorption up to
500 nm as demonstrated by other groups.9–11, 14 Recent findings
by Taroni et al. showed that collagen is an important absorber
to include in the model for fitting the measured spectra as it has
distinct absorption features above 900 nm.19–21 Therefore, we
measured the absorption coefficient of collagen up to 1600 nm
and included it in our model.

We present the first study using diffuse reflectance spec-
troscopy (DRS) measurements on a 500 to 1600 nm wave-
length range to estimate physiological, morphological, and op-
tical properties parameters of ex vivo breast tissue. The classi-
fication and regression tree (CART) algorithm, a probabilistic

discriminative classification method, was applied to the derived
parameters to evaluate the performance of diagnosis of the five
measured types of tissues. Sensitivity-specificity computation
and receiver operating characteristic (ROC) curves analysis were
performed to quantify the overall performance of the diagnosis
by using the Provost and Domingos measure (PDM).25

In addition, several classification methods that were used in
literature to discriminate malignant from nonmalignant tissues
were applied to our data in order to compare our results with
those reported in existing literature studies. Additional classifi-
cation methods were also applied for comparison.

Finally, classification of adipose tissue based on either
β-carotene or lipid only was compared as no existing breast
studies in literature made a comparison on classifying adipose
tissue based on only one of these two adipose tissue precursors.

2 Materials and Methods
2.1 Ex vivo Breast Sample Collection
The human breast samples were obtained under approval by the
internal review board committee of the Dutch Cancer Institute
in Amsterdam, The Netherlands (NKI-AVL) where this study
was conducted. The breast samples that were measured cor-
responded to resection specimens of either to mastectomies or
lumpectomies. Breast samples of patients subject to mastectomy
were sliced with a thickness of roughly 0.5 to 1 cm, whereas the
sample sizes of the patients who were subject to lumpectomy
(e.g., fibroadenoma) corresponded to the size of the excised
tissue which was on average several millimeters in diameter.
After surgical resection, resection samples were transferred to
the pathology department within 2 h, where they were inked at
the surface before slicing them for histological processing. All
optical measurements were performed before formalin fixation
and tissue preparations by the pathologists in order to limit, as
much as possible, changes in the optical properties from the tis-
sue conditions when excised. Five different types of tissue were
measured based on the macroscopical indication by the pathol-
ogist: adipose, glandular, FA, IC, and DCIS. A total number
of 102 samples from 52 patients were investigated, from which
a total number of 980 spectra were acquired and co-registered
with the pathological findings. The pathological diagnosis per-
formance was very high for all the cases that we have tested. The
cancerous cases were all macroscopically clear cut carcinomas;
and in case of doubt we were reluctant to include such cases
in this study. Table 1 summarizes the histological breakdown
of the breast tissue samples, including the amount of acquired
spectra in this study.

2.2 Instrumentation and Spectral Calibration
Ex vivo diffuse reflectance spectra were taken using a portable
spectroscopic system as illustrated in Fig. 1 and used in previous
studies.23, 24, 26 A tungsten halogen broadband light source with
an integrated shutter (Ocean Optics, HL-2000-HP) was used to
deliver light into the tissue. Delivery of light to the tissue and
its collection were achieved with a 1.3-mm diameter fiber-optic
probe with a distal end polished at an angle of 20 deg. The probe
comprises three 200-μm core diameter optical fibers with one
fiber connected to the light source that is located 2.48 mm from
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Table 1 Histological description of breast tissue types and the corre-
sponding amount of samples and spectra that were measured.

Type of breast tissue
Number of
samples

Number of
spectra

Nonmalignant 73 643

Adipose 43 327

Glandular 23 189

FA 7 127

Malignant 29 337

IC 21 241

DCIS 8 96

Total 102 980

the two side-by-side optical fibers that are used to collect the dif-
fused light. The optical fibers used for the collection of light are
connected to a spectrometer with a silicon detector (Andor Tech-
nology, DU420A-BRDD) and a spectrometer with an InGaAs
detector (Andor Technology, DU492A-1.7), respectively. After
thermoelectrically cooling the detectors to −40 ◦C, wavelength
values were assigned to each pixel of the detector by fitting a
second-order polynomial to a set of atomic lines from an ar-
gon source with peaks at known wavelength. Subsequently, the
spectral response of a white reflectance standard (Spectralon)
with known reflectivity was measured by placing the distal end
of the probe at a fixed distance of roughly 2 mm and followed by
a background measurement in order to minimize the impact of
ambient light. This step is necessary as it allows correcting for
the system response (e.g., spectral shape of the light source and
wavelength-dependent sensitivity in the optics and gratings and
the detectors). This white reference measurement is used to di-
vide each spectral measurement on the tissue samples for which
a background measurement is subtracted, yielding to the final

reflectance measurement. The integration time for each mea-
surement is on average 0.5 s. The reflectance spectra obtained
with both spectra are combined together to form one single re-
flectance spectrum ranging from 500 to 1600 nm, and is used in
order to apply the mathematical modeling for the data analysis.

2.3 Spectral Data Modeling
The measured spectra were fitted from 500 to 1600 nm with the
model of Farrell et al.27 that is derived from diffusion theory
using a Levenberg–Marquardt nonlinear inversion algorithm in
order to determine the absorption coefficient μa (λ) and the
reduced scattering coefficient μ′

s (λ) expressed in cm− 1. The
validation of the model based on a phantom study, including
spectral calibration procedures, and its application to in vivo
and ex vivo tissues, were justified in detail elsewhere.23, 24

The model requires the distance between the emitting and
collecting fibers as well as the wavelength-dependent absorption
coefficients of the chromophores of interest as input arguments.
Additionally, the reduced scattering coefficient was empirically
modeled as:

μ′
s (λ) = α

[
ρ

(
λ

λ0

)−b

+ (1 − ρ)

(
λ

λ0

)−4
]

, (1)

where λ0 = 800 nm corresponds to a wavelength normaliza-
tion value, α is the reduced scattering amplitude at λ0, the Mie
scattering slope is b, and ρ denotes the Mie-to-total reduced
scattering fraction assuming Mie and Rayleigh scattering as the
two types of scattering in tissue.

The absorption coefficient is expressed as a term that cor-
responds to vascular absorption μBlood

a (λ), of the light due to
blood-derived chromophores and a second term μOther

a (λ) due to
absorption of light by other chromophores present in breast tis-
sue. The blood related absorbers are deoxygenated-hemoglobin
(Hb) and oxygenated-hemoglobin (HbO2) and define the ab-
sorption coefficient due to blood as:

μBlood
a (λ) = C(λ)ν

[
StO2μ

HbO2
a (λ) + (1 − StO2) μHb

a (λ)
]
,

(2)

Fig. 1 Schematic of the optical setup and the design of the optical probe.
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Fig. 2 Normalized absorption coefficients of Hb, HbO2, β-carotene, water (H2O), lipid, and collagen.

where μHb
a (λ) and μHbO2

a (λ) correspond to absorption coef-
ficients of pure Hb and HbO2 given an average hemoglobin
concentration in blood of 150 mg/ml, respectively. The param-
eters ν and StO2 correspond to the blood volume fraction and
the level of hemoglobin saturation by oxygen, respectively. The
parameter C (λ) was used to account for inhomogenous dis-
tribution of hemoglobin in vessels and is known as pigment
packaging factor28 expressed as:

C(λ) = 1 − exp(−2R[StO2μ
HbO2
a (λ) + (1 − StO2) μHb

a (λ)])

2R[StO2μ
HbO2
a (λ) + (1 − StO2) μHb

a (λ)]
,

(3)
where R corresponds to the average vessel radius. Studies that
were performed on breast tissue11, 14 showed that it is important
to have β-carotene (βc) as an absorber in the model when record-
ing spectra in the visible range. Indeed, these studies demon-
strated that βc is an essential discriminator for adipose tissue
in breast. Other studies that investigated optical properties of
breast in the near-infrared range18, 20 discriminate adipose tissue
from other types of tissue based on light absorption by lipids.
However, no studies so far used both βc and lipid. In our study
we included both absorbers in the model and investigated the ad-
vantage of measuring up to 1600 nm where additional water and
lipid absorption features exist,23 which enables more accurate
estimation of lipid volume fraction.24

Taroni et al. showed that collagen is an abundant absorber in
several breast tissue types when recording optical spectra up to
1100 nm.19–21 Therefore, we have measured collagen Type I
(Sigma-Aldrich C9879) absorption coefficients from 500 to
1600 nm by tightly inserting the collagen fibers in cuvettes of
0.5, 1, and 2-mm thickness, and measuring its absorption with a
spectrophotograph with a 150-mm diameter integrating sphere
(Lambda 900 Spectrometer, Perkin Elmer). The absorption mea-
surements were separated from the scattering by mounting the
cuvettes inside the integrating sphere far away from the detector.
When a sample is mounted inside the sphere, the loss of light is
mainly due to absorption by the sample related to the absorption
coefficient. Because of the turbidity of the sample, scattering

occurs. Therefore, an additional measurement was performed
by allowing the forward transmitted light to escape out of an
exit port in the back end of the sphere in order to measure scat-
tering. The scattered light from the sample mounted inside the
sphere is therefore measured, and subsequently the absorption
coefficient can be determined by subtracting the measurement
with the opened exit port from the measurement with the closed
exit port.

The absorption coefficient due to nonblood derived chro-
mophores is expressed as:

μOther
a = ψ[ fLipidμ

Lipid
a (λ) + (1 − fLipid)μH2O

a (λ)]

+ fCollagenμ
Collagen
a (λ) + cβcεβc (λ) , (4)

where μ
Lipid
a (λ), μH2O

a (λ), μ
Collagen
a (λ), and εβc (λ) correspond

to the absorption coefficients of lipid, water, collagen, and the ex-
tinction coefficient (in cm− 1 M− 1) of β-carotene, respectively.
The parameter ψ represents the water and lipid volume fraction,
and fLipid represents the lipid fraction within the volume probed
by the light. However, fCollagen corresponds to the collagen vol-
ume fraction in the probed tissue, whereas cβc corresponds to
the molar concentration of β-carotene. The absorption coeffi-
cients of the various chromophores of interest are depicted in
Fig. 2. The absorption coefficient at unit concentration of Hb and
HbO2 that is used as a priori knowledge for the model are from
Zijlstra et al.,29 whereas the extinction coefficient of β-carotene
in human adipose cells is from van de Poll et al.30 Water and lipid
absorption coefficients that are used in the presented study are
from a previous published work.23 The collagen absorption co-
efficient presented in this study has a local maximum at 1200 nm
of 1.54 cm− 1, which is of the same order of magnitude as the
water and lipid absorption coefficient in the vicinity of 1200 nm.
It is important to note that collagen has a wider maximum than
fat, but is narrower than water. Other local maxima at 911, 1030,
and 1510 nm are observed with absorption coefficients of 0.21,
0.34, and 5.22 cm− 1. The presented absorption coefficient of
collagen is about an order of magnitude higher than the one
presented by Taroni et al.,20 however it matches very well with
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the coefficients reported by Tsai et al.31 and by Nunez.32 The
difference in collagen absorption values with Taroni et al. could
be due to the fact that the density of our measured sample is
different from the density used by Taroni et al.

In a few cases, the ink used by the pathologist before cut-
ting was spread into the tissue when slicing the breast samples,
influencing the measured spectral shapes. In order to correct
for this, the absorption coefficients of these inks were measured
and added to the fitting. Given the large number of free pa-
rameters, two separate fits on different wavelength ranges were
performed: the first fit was performed between 500 and 900 nm
with μBlood

a (λ) + cβc.εβc (λ), and μ′
s (λ) only in the model and

the second fit was performed between 900 and 1600 nm with
μOther

a (λ) − cβc.εβc (λ), and μ′
s (λ) only in the model. The ex-

tracted values from both fits were used as initial guess for the fit
applied over the full wavelength range between 500 and 1600 nm
in order to ensure stability of the fit.

From fits to the spectra between 500 and 1600 nm, the follow-
ing fit parameters were obtained: ν, StO2, R, ψ , fLipid, fCollagen,
cβc, α, b, and ρ. For each estimated value, a confidence interval
computed from the covariance matrix was used to assess the
reliability for each fit parameter.33

2.4 Statistical Analysis
A nonparametric Kruskal–Wallis statistical test was conducted
to evaluate significant differences of the estimated parameters
between the various types of breast tissue for a significance level
of 5% (i.e., p < 0.05). The test examines if the medians of the
various groups are not all equal; meaning that if the p-value is
below the significance level, at least one type of tissue can be
discriminated from the others. Therefore, an additional post hoc
test is required to account for multiple comparisons, as well as
for the fact that comparisons can be interrelated. In this study,
Tukey’s post hoc test was applied at a significance level of 5%.
This statistical procedure is a restricted pairwise comparison
that follows the Kruskal–Wallis test which had indicated the
significance of the differences.34

2.5 Classification Algorithms
The CART algorithm was used to classify between the five types
of tissue. The CART algorithm starts from a central node that
discriminates the largest class, adipose tissue in our case, based
on the best classifier. From this root node, a split is performed
to discriminate the largest class from the other tissue classes.
From the split, daughter partial trees are generated and other
parameters are used for further splits. The purity of each node is
assessed with the Gini’s maximization index algorithm, which
corresponds to unity minus the sum of squares of the proportions
of target classes at a specific node.35 The advantage of CART is
that it is a nonparametric method, whereas other methods such
as linear discriminant analysis (LDA), LR, and KNN assume
functional relations between dependent and predictor variables.
Moreover, one of the advantages of CART is that it is easy to
interpret since the input parameters for classification are used,
whereas other methods post-process the parameters into scores
that might not be intuitively related to the input parameters. The
performance of the diagnosis was evaluated by carrying out an
ROC analysis. From the sensitivity-specificity values and the

area under the ROC curves (AUC), the PDM for total AUC is
computed to assess the accuracy of the diagnostic algorithms.25

The PDM value corresponds to the sum of AUC of each class
weighted by the class size fraction.

Classifications were carried out on the estimated parame-
ters from the fit model using a leave-one-out (LOO) cross val-
idation scheme. Additionally, a hold-out (HO) cross validation
scheme with a 70%–30% training-testing split of the data was
carried out. The split was performed by random selection of the
data before splitting and classification. This partition procedure
and classification was reproduced 20 times and the computed
sensitivity-specificity values were averaged.

Several techniques were used in literature to classify pa-
rameters based on diffuse reflectance spectroscopy measure-
ments or directly applied to the spectra as mentioned in the
Sec. 1. The following classification algorithms were applied to
our data: ANN,9 linear SVM,11 LR,14–16 and KNN employing
Mahalabonis distance to account for parameters intercorrela-
tion,17 in order to evaluate the sensitivity-specificity of dis-
criminating malignant and nonmalignant types of breast tissue.
Besides, other classification methods were also tested such as
CART, LDA with Mahalanobis distance stratified covariance,
and nonlinear SVM to discriminate malignant from nonmalig-
nant breast tissues. However, the classification was performed
by taking the amount of samples that corresponds to the low-
est sample size within the malignant and nonmalignant cat-
egory, respectively. This means that within the nonmalignant
category, 127 spectra from adipose and from glandular tissues
were randomly selected and added to the FA spectra to form
the nonmalignant database, whereas 96 spectra from IC were
randomly selected and added to the DCIS spectra to form the
malignant database. The purpose of such categorization is to
avoid higher representation of one type of tissue over the others
within the same category. Otherwise, discriminating malignant
from nonmalignant tissue would be comparable to classification
of adipose versus IC given the fact that the total adipose and
IC spectra represent 51% and 72% of the nonmalignant and
malignant samples size, respectively.

Furthermore, this study is the first that estimates both
β-carotene and lipid from breast tissue measurements. A classi-
fication of adipose tissue was performed from all the parameters
except lipid, water, and collagen and another classification with-
out β-carotene to evaluate which adipose precursor is the most
accurate for adipose breast tissue classification using the CART
algorithm.

3 Results
Figure 3 depicts typical examples of spectra measured on
adipose [Fig. 3(a)], glandular [Fig. 3(b)], FA [Fig. 3(c)], IC
[Fig. 3(d)], and DCIS [Fig. 3(e)] tissues and their correspond-
ing fits. From the measurement of adipose breast tissue, one
can notice the effect of β-carotene absorption on the spec-
tra below 550 nm and the lipid absorption peaks at 930 and
1211 nm. Figure 4 depicts the histograms of the median and
standard deviation for each of the parameters derived from
the fit per category of tissue type. Complementary to Fig. 4,
Table 2 displays the parameters that show significant differ-
ences (p < 0.05) for pairwise types of tissue comparison ac-
cording to a Kruskal–Wallis test followed by a post hoc multiple
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Fig. 3 Typical measurement of adipose (a), glandular (b), FA (c), IC (d), and DCIS (e), and their corresponding fit curves.

Fig. 4 Average and standard deviation of the estimated blood volume fraction (ν), oxygenation level (StO2), water (H2O), lipid, reduced scattering
amplitude (α), scattering slope (b), vessel radius (R), β-carotene, collagen, and the Mie-to-total reduced scattering fraction (ρ) for each of the various
types of breast tissues: adipose, glandular, fibroadenoma, invasive carcinoma, and ductal carcinoma in situ.
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Table 2 Parameters that show significant difference for the pairwise comparisons of the different tissue
types after Kruskal–Wallis statistical test with post hoc Tukey’s multiple comparison test (p < 0.05).

Type of breast tissue

Type of
breast tissue Glandular FA IC DCIS

Adipose ν, StO2,
H2O, lipid,

α, βc,
collagen, ρ

ν, StO2,
H2O, lipid,
α, b, R, βc

ν, StO2,
H2O, lipid,
α, b, R, βc,
collagen, ρ

H2O, lipid,
α, b, βc,

collagen, ρ

Glandular – b, R, βc,
collagen, ρ

StO2, H2O,
α, b, R

ν, StO2, α, b

FA – StO2, H2O,
R, βc,

collagen, ρ

ν, StO2,
lipid, α, R, ρ

IC – ν, lipid, α, R

comparison Tukey’s test. It can be seen that adipose and DCIS
tissue contains almost twice as much blood as the other types
of tissue, while the blood oxygenation level is lower in malignant
tissue (StO2 < 40%) compared to nonmalignant tissue. Adipose
tissue can clearly be distinguished from the other tissue types
by its high lipid average volume fraction and β-carotene con-
centration of 80% and 12 μm, respectively. FA has the lowest
β-carotene concentration and is significantly different from the
other tissue types except for DCIS. The reduced scattering am-
plitude is the lowest for adipose tissue (roughly 5 cm− 1) and
the highest for DCIS (roughly 10 cm− 1), whereas it is rather
similar for the other tissues (around 7 cm− 1). A clear distinction
can be observed for the Mie slope, where it is almost two-fold
smaller for nonmalignant compared to malignant samples. Apart
from adipose tissue, IC showed a significant differences based
on the water content with the highest amount among all tis-
sues. Adipose and FA have the lowest collagen volume fraction
of roughly 14%, whereas glandular and IC are about 18% and
DCIS has the highest value with 22%. Although adipose and FA
have similar collagen volume fractions, this parameter showed
a significant difference between DCIS and adipose tissue and
not with FA, due to the higher standard deviation in collagen in
adipose tissue compared to FA. It can be seen that the trends in
collagen are correlated with the estimated Mie scattering frac-
tions: a lower collagen volume fraction corresponds to a higher
Rayleigh scattering contribution.

Multiple class classification was performed with the CART
method, on the five categories of breast tissue, i.e., adipose,
glandular, FA, IC, and DCIS in order to evaluate the perfor-
mance of such a diagnosis. Figure 5 depicts a decision tree
that classifies all tissues based on a specific threshold value
for each parameter. As can be seen, the first node allows dis-
crimination of adipose tissue based on the lipid content. If the
lipid volume fraction is above 40%, an acquired spectrum is
considered to be taken in adipose tissue, otherwise it is an-
other type of tissue. Table 3 corresponds to the confusion matrix
displaying the diagnostic performance by comparing with the
pathological diagnosis being the reference standard. Table 4
compares the sensitivity-specificity rates for each type of tissue
when a LOO and HO cross validation were applied. The over-

all classification accuracy computed from the confusion matrix
is 90% (879 out of 980). The type of tissue with the lowest
sensitivity rate is FA, whereas adipose tissue has the highest
specificity rate. The ROC curves for classification of each tissue
are depicted in Fig. 6 including confidence intervals. Corre-
sponding AUC and PDM measures are summarized in Table 5.
From the AUC values, the performance of the diagnosis can be
classified into three categories with adipose as the best perfor-
mance (AUC almost 100%), glandular as the worst performance
with AUC of 86%, and FA, IC, and DCIS as the median per-
formance with comparable AUC values of roughly 92%. The
PDM multiple classes overall performance of the diagnostic
is 93.6%.

Table 6 summarizes the sensitivity-specificity obtained
for classification of malignant versus nonmalignant tissues
by using various algorithms for classification. The obtained
numbers are compared to what has already been reported by
other studies from different research groups. The best algorithm
performance applied to the data was reached with KNN
classification, whereas the poorest performance was reached
with LDA classification.

Classification based on the CART method showed that dis-
criminating adipose tissue based on the β-carotene values only
yields to a sensitivity-specificity of 68%–92%, whereas classi-
fication based on the lipid parameters yields to a sensitivity-
specificity of 98%–99%. Using both parameters yielded a
sensitivity-specificity of 99%–99%.

4 Discussion
This study corresponds to the first of its kind that evaluates the
classification of different types of breast tissue based on sev-
eral parameters derived from spectroscopic data acquired from
a wide wavelength range from 500 to 1600 nm. From Table 2,
it is clear that adipose tissue is the easiest tissue that can be
discriminated from the other types of tissue. More than seven
parameters showed significant differences with lipid, water, and
β-carotene as main discriminators, as supported by other studies
as well.9–22 Glandular and DCIS tissues have the lowest amount
of parameters that showed significant differences with other
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Fig. 5 Classification decision tree of the different breast types based on parameter threshold values.

tissues. It is important to note that the use of post hoc Tukey’s
test is essential for reliable statistical test for significance of dif-
ferences. If not used, additional parameters become significantly
different between types of tissue. For example, lipid becomes
significantly different between glandular and FA as well as IC
if no post hoc test is performed. Moreover, glandular tissue has
on average 5% lipid, whereas FA and DCIS have below 0.5%
lipid, while still no significant differences are observed accord-
ing to Tukey’s test despite an order of magnitude difference in
lipid content. Similar to ex vivo10, 11, 14 and in vivo18, 22, 36 existing
studies, we also observed a lower blood oxygenation level in ma-
lignant tissue compared to nonmalignant tissue with significant
differences (cf. Table 2 and Fig. 4). This is expected because
malignant tissues are known to exhibit regions of hypoxia.36 Al-
though this observation corroborates with other existing ex vivo

studies, this should be validated in vivo because the oxygena-
tion level of the tissue can significantly change during and after
tissue excision. Another interesting finding is that we observed
comparable amounts of blood (0.3%) in malignant and nonma-
lignant tissue similar to reported studies in literature. Yet on the
contrary, Van Veen et al.22 have reported a higher blood volume
fraction in malignant tissue similar to optical mammography
studies that were conducted in vivo by Spinelli et al. on 190
patients from which 32 had cancer,37 and by Grosenick et al.
on 154 patients with 87 carcinoma cases38 (in Ref. 38, Table 4
provides an overview on blood volume, oxygenation level, and
reduced scattering properties of healthy and malignant tissue
from various optical mammography studies available in litera-
ture). Among the malignant types of tissue, only DCIS exhib-
ited a larger amount of blood than the average value of blood in
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Table 3 Confusion matrix displaying classification of breast tissues
using the CART algorithm for classification.

Type of breast DRS classification diagnosis

tissue (number of Nonmalignant Malignant

samples) Adipose Glandular FA IC DCIS

Adipose (327) 319 6 2 0 0

Glandular (189) 7 158 8 15 1

FA (127) 0 11 103 11 2

IC (241) 0 15 4 219 3

DCIS (96) 0 5 1 10 80

nonmalignant tissues. An increase in blood volume fractions is
a potential marker for angiogenesis. Yet again, the current study
was performed ex vivo and an in vivo study is required to confirm
this observation as shown by Van Veen et al. Furthermore, our
data corroborates with the observation from other studies with
respect to the reduced scattering amplitude. Indeed, the reduced
scattering amplitude is higher in malignant tissue (8.1 cm− 1)
than in nonmalignant tissue (5.6 cm− 1). As expected, we ob-
served that collagen volume fractions correlate with ρ. This is
in agreement with findings of Saidi et al.39 that the Rayleigh
scattering in tissue is mainly due to sub-micrometer collagen
fibers in the connective tissue, suggesting a stronger Rayleigh
contribution in glandular, IC, and DCIS that contain the highest
collagen volume fractions as depicted in Fig. 4. Water content is
the most prominent in IC and is significantly different from the
other tissues (cf. Table 2). The lowest water volume fraction is
obviously observed for adipose tissue since lipid contains almost
no water. However, collagen-rich stroma contains quite a lot of
water as collagen fibers are hydrophilic. Thus, if a tumor induces
a lot of stroma, the water content in the tumor will be relatively
high as the fibers are loosely arranged, leaving a lot of space for
water molecules to intervene in the tumor. In breast tissue with
benign sclerotic changes in which collagen gets cross-linked to a
great extent, hardly any space is left for water molecules. Necro-
sis can also play a role in water increase, but only a very small
minority of all breast cancer contains necrotic areas in general.

Table 4 Sensitivity and specificity of CART classification of each type
of tissue using LOO and 20-fold HO cross validation.

Sensitivity (%) - Specificity (%)

Type of breast tissue
Leave-one-out

cross validation
Hold-out cross

validation

Adipose 98–99 98 ± 1–99 ± 1

Glandular 84–95 80 ± 6–95 ± 2

FA 81–98 75 ± 9–97 ± 1

IC 91–95 86 ± 6–94 ± 2

DCIS 83–99 81 ± 10–98 ± 2

Fig. 6 ROC curves (solid line) for classification of adipose (a), glandu-
lar (b), FA (c), IC (d), and DCIS (e) tissues including confidence intervals
(dashed line) and corresponding AUC.

When investigating the differences in values of the different pa-
rameters within each patient instead of comparing tissue types
from all the patients together, the p-values for discriminating a
tissue from another becomes even smaller. Results of the spec-
tral differences between different patients are to be presented in
a future publication.

Multiple class classification with the CART algorithm
demonstrated a very high overall diagnostic performance of 94%
with the highest AUC value for adipose tissue and the lowest
for glandular tissue as can be seen in the ROC curves in Fig. 6.
In the study by Majumder et al., glandular and adipose tissues
were both classified as normal and discriminated with FA, IC,
and DCIS, and obtained an overall classification performance
of 88% using sparse multinomial LR on the diffuse reflectance
spectra.15 Our data showed better sensitivity-specificity for IC
and DCIS (cf. Table 4), whereas FA showed similar perfor-
mance. It is important to note that the amount of DCIS samples
by Majumder et al. is rather small compared to the other tissues
and therefore a low performance can be expected. Moreover,
DCIS is not a common tissue measured by other groups (6, 2,
and 1 samples measured by Majumder et al.,15 Zhu et al.,11 and
Laughney et al.,17 respectively). It is recommended to acquire
more spectra from a sample and to perform classification on
the spectra in order not to bias the diagnosis by low numbers
compared to other tissues.

For a better comparison of our results with existing literature
studies, we have performed classification on our data using the
techniques suggested in literature. Table 6 summarizes the clas-
sification algorithm used to discriminate malignant tissue (i.e.,
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Table 5 AUC values of ROC curves for the five tissue types and PDM
value.

Type of breast tissue AUC Confidence interval

Adipose 99.8% 99.7%–99.9%

Glandular 85.9% 81.9%–87.9%

FA 92.3% 90.4%–94.1%

IC 92.5% 90.9%–94.0%

DCIS 91.8% 88.7%–93.4%

PDM for total AUC 93.6% 91.9%–94.9%

IC and DCIS) from nonmalignant tissue (i.e., adipose, glandu-
lar, and FA) and compares the reported sensitivity-specificity
values as reported in literature with those obtained in our study.
The sensitivity-specificity obtained with the same method for
all categories of breast classification, i.e., the CART method, is
88%–93%. Compared to the results by Bigio et al., ANN classi-
fication applied to our data showed better sensitivity-specificity.
However, it is important to note that our classification was per-
formed on the parameters derived from the spectra and not
by applying the ANN classification to the spectra as done by
Bigio et al. The KNN classification employing Mahalanobis
distance metric to account for parameter intercorrelations, as
used by Laughney et al., showed the highest diagnostic per-
formance. The sensitivity-specificity obtained with this method
corresponds to a very high performance. One might question
the classification method because the KNN algorithm can be
biased, since it is very sensitive to redundant or similar fea-
tures because all features contribute to the similarity princi-
ple and thus to the classification. Using an LR-based classi-
fication method showed a sensitivity-specificity of 82%–94%,
which is outperformed by the sensitivity-specificity of 100%–

100% obtained by Volynskaya et al. However, it is important
to note that the study by Volynskaya et al. did not include the
6 DCIS samples they measured because they considered it was
a very small number compared to the 9 IC, 9 FA, 31 normal,
and 55 fibrocystic change samples they had measured. Keller
et al. obtained a lower sensitivity but higher specificity com-
pared to our result. It should be noted that they classified the
spectra and not the parameters that were derived from the spec-
tra. Moreover, they included fluorescence spectra to their clas-
sification scheme. Zhu et al. achieved a sensitivity-specificity
of 83%–87% and 82 ± 5%–89 ± 5% using SVM classification
with a LOO and HO cross validation scheme, respectively. In
our study, the sensitivity-specificity with linear SVM classifica-
tion is 79%–93% and 81 ± 4%–93 ± 2% with a LOO and HO
cross validation scheme, respectively. The data used for classifi-
cation by Zhu et al. correspond to 89% of adipose tissue within
the nonmalignant category and 74% of IC among the malig-
nant category. Therefore, the weight of classification is mainly
dominated by adipose and IC for malignant and nonmalignant
tissue, respectively. In our study, 51% of the nonmalignant sam-
ples correspond to adipose tissue and 71% of the malignant
tissue samples correspond to IC. However, we have performed
the classification by taking the same amount of spectra for each
type of tissue within the malignant and nonmalignant category
in order to avoid an over-representation of adipose and IC within
the nonmalignant and malignant category, respectively. This can
explain the fact that we observe a lower sensitivity than Zhu et al.
However, we obtain a higher specificity suggesting that we can
classify nonmalignant tissue better thanks to the additional pa-
rameters derived from the fit-model. In the case of nonlinear
SVM, i.e., using a Gaussian radial basis kernel function instead
of a linear kernel, the performance of discriminating malignant
tissue increased to a sensitivity-specificity of 82%–94%. As
mentioned by Zhu et al. in a previous study,10 a classification
based on linear algorithms could underperform in the diagnosis
since the optical properties are nonlinearly related in the descrip-
tion of the measured spectra, hence the better performance of
the nonlinear, compared to the linear, SVM algorithm applied to

Table 6 Literature overview of diagnostic performance in discriminating malignant from nonmalignant tissue, and comparison of different classifi-
cation algorithms applied to the data in the presented study.

Classification algorithm Reference Sens. (%)-Spec. (%) Sens.-Spec. of this study (LOO) Sens.-Spec. of this study (HO)

Artificial neural network Bigio et al.a 69–85 89–98 91 ± 2–96 ± 4

K-nearest neighbor Laughney et al. 90–77 96–99 94 ± 4–98 ± 2

Logistic regression Volynskaya et al. 100–100b 82–94 82 ± 3–94 ± 6

Logistic regression Keller et al.a 85–96b 82–94 82 ± 3–94 ± 6

Linear support vector machine Zhu et al. 83–87b 79–93 81 ± 4–93 ± 2

Nonlinear support vector machine – – 90–97 88 ± 4–97 ± 2

Linear discriminant analysis – – 78–95 74 ± 6–96 ± 2

Classification and regression tree – – 88–93 85 ± 6–92 ± 3

aSensitivity and specificity computed after classification of the spectra and not from the parameters derived from a fit-model.
bFluorescence was also measured in these studies, however, the reported sensitivity-specificity corresponds to classification of parameters derived from diffuse optical
spectroscopy only except for Keller et al.
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our data. Besides, for comparison with another nonlinear clas-
sification method, a sensitivity-specificity of 78%–95% reached
with LDA employing Mahalanobis distance yielded the low-
est performance among the other classification methods with
respect to specificity. From the various classification methods,
large variations in sensitivity-specificity can be achieved, and
therefore care should be taken when comparing one’s results
with existing results in literature. The choice of the classifi-
cation algorithm is very important and the sample sizes, the
methods, and the linearity of the problem should be carefully
taken into consideration. As a matter of fact, for classification
problems with small sample size, LDA is not suitable, as it is a
parametric method assuming normal distribution of the data in
each class. Other methods have the advantage of being nonpara-
metric methods. However, KNN is very sensitive to redundant
and similar features for classification. On the other hand, lin-
ear SVM finds linear separation of two classes in the training
set with a hyperplane that has maximal distance from the two
classes. If the groups are not linearly separable, non-linear SVM
can be applied.40 The LR algorithm is a probabilistic method
that has the advantage of using few or no statistical assumptions,
but the drawback is that the complete data is needed for each
class to calculate the probabilities. Hence, large variations in
sample sizes can bias the classification.

Among the studies quoted in Table 6, the study by Keller
et al., Majumder et al., Zhu et al., and Volynskaya et al. per-
formed fluorescence measurements. The latter two derived colla-
gen and nicotinamide adenine dinucleotide (NADH) concentra-
tions from fitting the fluorescence spectra. Both studies showed a
significant increase in collagen in malignant tissue compared to
nonmalignant tissue which correlates with our finding where we
estimated collagen with diffuse reflectance spectroscopy mea-
surements. Adding fluorescence to diffuse optical spectroscopy
did not result in the same conclusions for the different studies.
Volynskaya et al. showed a decrease in specificity from 100% to
96%, whereas Zhu et al. did not observe any differences in per-
formance. Majumder et al. showed a tremendous improvement
in discriminating the tumor types of tissue when adding fluores-
cence measurements to the classification routine, increasing the
overall diagnosis performance from 88% without fluorescence
to 95% with fluorescence. Apart from fluorescence, Majumder
et al. performed Raman spectroscopy measurements and showed
that this optical tissue measurement technique yields the best
overall performance (99%). The group of biomedical photon-
ics at MIT presented several Raman studies41–44 showing that
they can reach sensitivity-specificity of 83%–93% by classify-
ing estimated parameters similar to those extracted from the
measurements presented in this paper such as β-carotene, lipid,
and collagen, as well as additional biological substances such
as calcium, cholesterol, and cell nucleus. Interestingly, in com-
parison with the Raman results of the study conducted by the
MIT group, the average collagen and fat fractions are reason-
ably similar for the different types of tissue except for adipose
tissue where we estimate an average collagen content of 15%. In
the latest study from the MIT group,42 the 20 spectra acquired
from DCIS samples were not classified because this type of tis-
sue was not encountered in the calibration data set they used
for their diagnostic algorithm development. They do discuss,
nevertheless, that applying their algorithm to the DCIS samples
would result in 5 samples out of 20 to be classified as malig-

nant based on classification of their estimated fat and collagen
fractions derived from the fitted Raman spectra.

One final point of discussion concerns adipose tissue discrim-
ination. Both lipid and β-carotene are adipose tissue precursors
and only one of them was used in previous studies. In this paper,
we estimate both chromophores and from classifying adipose
tissue based on only one of the chromophores, it turned out that
lipid is the best discriminator for adipose tissue with sensitivity-
specificity of 98%–99% versus 68%–92% for β-carotene. It is
known that β-carotene is significantly lower in smokers than
nonsmokers.45 Thus, it can bias the discrimination of adipose
tissue in the breast, depending whether a patient is a smoker or
not, making lipid a more suitable discriminator.

5 Conclusion
We present the first breast diagnosis study based on estimat-
ing morphological, physiological, and optical parameters de-
rived from diffuse reflectance spectroscopy measurements on
a 500 to 1600 nm wavelength range. Based on a classification
and regression tree algorithm applied to the derived parameters,
a sensitivity-specificity of 98%–99%, 84%–95%, 81%–98%,
91%–95%, and 83%–99% was obtained for discrimination of
adipose, glandular, fibroadenoma, invasive carcinoma, and duc-
tal carcinoma in situ, respectively; and a multiple classes over-
all diagnostic performance of 94%. A comparison of differ-
ent classification techniques to discriminate malignant and non-
malignant tissue showed varying performance that can highly
depend on the classification algorithm. Finally, to the best of
our knowledge, given the fact this is the only study that esti-
mates both β-carotene and lipid as adipose tissue precursor; we
show that lipid is a much better discriminator with sensitivity–
specificity of 98%–99% for lipid versus 68%–92% for
β-carotene.
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26. R. Nachabé, D. Evers, B. H. W. Hendriks, G. W. Lucassen, M. Van
der Voort, J. Wesseling, and T. J. Ruers, “Effect of bile absorption
coefficients on the estimation of liver tissue optical properties and re-
lated implications in discriminating healthy from tumorous samples,”
Biomed. Opt. Exp. 2, 600–614 (2011).

27. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory
model of spatially resolved, steady-state diffuse reflectance for the non-
invasive determination of tissue optical properties,” Med. Phys. 19,
879–888 (1992).

28. W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S.
Nelson, and M. J. C. van Gemert, “Modeling light distributions of
homogenous versus discrete absorbers in light irradiated turbid media,”
Phys. Med. Biol. 42, 51–65 (1997).

29. W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near
Infrared Absorption Spectra of Human and Animal Haemoglobin, VSP
Publishing, Utrecht, The Netherlands (2000).

30. S. W. van de Poll, Raman spectroscopy of atherosclerosis, PhD thesis,
University of Leiden (2003).

31. C. L. Tsai, J. C. Chen, and W. J. Wang, “Near-infrared absorption
property of biological soft tissue constituents,” J. Med. Bio. Eng. 21,
7–14 (2001).

32. A. S. Nunez, A Physical Model of Human Skin and its Application for
Search and Rescue, Air Force Institute of Technology, Ohio (2009).

33. A. Amelink, D. J. Robinson, and H. J. C. M. Sterenborg, “Confidence
interval on fit parameters derived from optical reflectance spectroscopy
measurements,” J. Biomed. Opt. 13, 054044 (2008).

34. H. Motulsky, Intuitive Biostatistics: A Nonmathematical Guide to Sta-
tistical Thinking, Oxford University Press, New York (2010).

35. L. Breiman, Classification and Regression Trees, Wadsworth Interna-
tional Group, Belmont, CA (1984).

36. J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer,
and N. Ramanujam, “Quantitative optical spectroscopy: a robust tool
for direct measurement of breast cancer vascular oxygenation and total
hemoglobin content in vivo,” Cancer Res. 69, 2919–2926 (2009).

37. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and
R. Cubeddu, “Characterization of female breast lesions from multi-
wavelength time-resolved optical mammography,” Phys. Med. Biol. 50,
2489–2502 (2005).

38. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H.
Rinneberg, “Time-domain scanning optical mammography: II. Optical
properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol.
50, 2451–2468 (2005).

39. I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh modeling
of visible-light scattering in neonatal skin,” Appl. Opt. 34, 7410–7418
(1995).

40. T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Springer, New York
(2001).

41. K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles,
R. R. Dasari, and M. S. Feld, “Raman microspectroscopic model of
human breast tissue: implications for breast cancer diagnosis in vivo,”
J. Raman Spectros. 33, 552–563 (2002).

42. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R.
Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman
spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 12371–12376 (2005).

43. A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, J. Lyons, D.
Hicks, M. Fitzmaurice, R. R. Dasari, J. P. Crowe, and M. S. Feld,
“In vivo margin assessment during partial mastectomy breast surgery
using Raman spectroscopy,” Cancer Res. 66, 12371–12376 (2006).

44. A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, R. Shenk, N.
Wang, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Diagnosing breast
cancer using Raman spectroscopy: prospective analysis,” J. Biomed.
Opt. 14, 054023 (2009).

45. R. M. Russel, “Beta-carotene and lung cancer,” Pure Appl. Chem. 74,
1461–1467 (2002).

Journal of Biomedical Optics August 2011 � Vol. 16(8)087010-12

http://dx.doi.org/10.1148/rg.271065029
http://dx.doi.org/10.1245/s10434-009-0609-z
http://dx.doi.org/10.1245/s10434-008-0054-4
http://dx.doi.org/10.1117/1.429990
http://dx.doi.org/10.1117/1.429990
http://dx.doi.org/10.1002/lsm.20356
http://dx.doi.org/10.1117/1.2931078
http://dx.doi.org/10.1364/OE.16.014961
http://dx.doi.org/10.1364/OE.16.014961
http://dx.doi.org/10.1364/OE.18.008058
http://dx.doi.org/10.1117/1.2909672
http://dx.doi.org/10.1117/1.2975962
http://dx.doi.org/10.1117/1.2975962
http://dx.doi.org/10.1002/lsm.20865
http://dx.doi.org/10.1117/1.3516594
http://dx.doi.org/10.1117/1.3516594
http://dx.doi.org/10.1117/1.2337546
http://dx.doi.org/10.1117/1.2699170
http://dx.doi.org/10.1117/1.3251051
http://dx.doi.org/10.1117/1.3251051
http://dx.doi.org/10.1117/1.3506043
http://dx.doi.org/10.1088/0031-9155/50/11/009
http://dx.doi.org/10.1117/1.3454392
http://dx.doi.org/10.1364/BOE.1.001432
http://dx.doi.org/10.1364/BOE.2.000600
http://dx.doi.org/10.1118/1.596777
http://dx.doi.org/10.1088/0031-9155/42/1/003
http://dx.doi.org/10.1117/1.2982523
http://dx.doi.org/10.1158/0008-5472.CAN-08-3370
http://dx.doi.org/10.1088/0031-9155/50/11/004
http://dx.doi.org/10.1088/0031-9155/50/11/002
http://dx.doi.org/10.1364/AO.34.007410
http://dx.doi.org/10.1002/jrs.877
http://dx.doi.org/10.1073/pnas.0501390102
http://dx.doi.org/10.1158/0008-5472.CAN-05-2815
http://dx.doi.org/10.1117/1.3247154
http://dx.doi.org/10.1117/1.3247154
http://dx.doi.org/10.1351/pac200274081461

