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Abstract. Faulty postures, scoliosis and sagittal plane deformities should be detected as early as possible to apply
preventive and treatment measures against major clinical consequences. To support documentation of the severity of
deformity and diminish x-ray exposures, several solutions utilizing analysis of back surface topography data were
introduced. A novel approach to automatic recognition and localization of anatomical landmarks of the human back
is presented that may provide more repeatable results and speed up the whole procedure. The algorithm was
designed as a two-step process involving a statistical model built upon expert knowledge and analysis of three-
dimensional back surface shape data. Voronoi diagram is used to connect mean geometric relations, which provide
a first approximation of the positions,with surface curvature distribution,which further guides the recognition process
and gives final locations of landmarks. Positions obtained using the developed algorithms are validated with respect
to accuracy of manual landmark indication by experts. Preliminary validation proved that the landmarks were
localized correctly, with accuracy depending mostly on the characteristics of a given structure. It was concluded
that recognition should mainly take into account the shape of the back surface, putting as little emphasis on the
statistical approximation as possible. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.5.056015]
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1 Introduction
Spinal deformities affect all age groups, leading to the most fre-
quent postural and pain problems in modern societies.1–4 Back
pain is one of the diseases, which usually lowers the quality of
life.5–8 The adult deformity may relate to pain9 and/or compres-
sion fractures.10 Faulty postures and associated disorders should
be detected as early as possible to apply preventive measures
against major consequences in old age.11,12

Back examination is performed by physicians based mainly
on the observation of the body, sometimes followed by simple
linear or other more precise measurements.13–16 Radiography is
carried out in the most suspected cases16,17. It provides a widely
accepted method of measurement, analysis, documentation and
follow-up of clinical cases. However, in most screened cases the
aforementioned physical examination is the only type of docu-
mentation available and is inevitably subjective. This can lead to
errors during comparison of a patient’s spine condition in time
or even when assessed by another physician. Radiography
remains the main method for periodical evaluation of deformity
changes during treatment. This implies intensified, repeated
x-ray exposure, which should be avoided in general, especially
in adolescents.18–20

1.1 Deformity Assessment using Back Surface
Topography

A few systems for back shape assessment already exist, allowing
the accomplishment of the task of documentation. The most of

them are marker-dependent or markerless optical systems, based
mainly on the moiré technique, laser and structured light illu-
mination (SLI), incorporating assessment methods which ana-
lyze mutual position of certain anatomical structures.21–32

Back shape indices calculated using mentioned systems
were proven to be useful and reliable in clinical settings.25,33

The conformity of the parameters with the gold standard used
in radiography, the Cobb angle measurement, is quite high, e.g.,
the r-Pearson correlation coefficient was estimated to 0.801 for
the Quantec Q-angle parameter34 and to 0.668 and 0.706 for the
posterior trunk symmetry index (POTSI) and deformity in the
axial plane index (DAPI).22

The approach used in creating these parameters is approxi-
mately equivalent to the physical examination, where the physi-
cian mainly evaluates the broadly understood symmetry of the
back. The vast majority of diagnostic systems are based on man-
ual indication of anatomical back surface landmarks28,35–37 by
operator’s palpation. Palpated landmarks are often considered
as a principle for quantitative evaluation of deformation, however,
landmarks pointed by inspection are accepted and reliable.28,38

The aim of the presented algorithm is to provide a more reli-
able way of anatomical back shape landmarks localization by
automatic markerless analysis of the back shape surface. The
algorithm was developed as a straightforward generalization
of the existing manual deformation assessment methods used
in clinical conditions. In the following sections, a detailed
description of the algorithm and its preliminary validation are
given to show that the accuracy of the proposed solution is com-
parable with accuracy of the existing methods for given cases
(where accuracy is defined as difference with respect to average
manual marking and is compared to uncertainty of manual
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indication by the experts). Further validation for a more diver-
sified group of subjects, including different criteria, will be con-
ducted in the future as indicated in Sec. 5.

1.2 Existing Methods of Automatic Shape Analysis

The methods that deal with automatic shape analysis are usually
very much application-dependent, although significant effort
has been put into generalizing this problem. A significant factor
is the character of data representation used, which in this case is
three-dimensional, though it may be approximated as a surface
of the form [x, y, f ðx; yÞ] with respect to the frontal plane of
the body. This makes it possible to utilize methods intended
for two-dimensional data as well, if there is such necessity.

It should be mentioned that several methods exist which
deal with “three-dimensional segmentation of anatomical
structures,”39–41 they are nevertheless intended to work with
volumetric three-dimensional data, such as data from MRI or
CT, and thus are of no use in cases where structures have to be
located on an explicitly given surface. It is much easier to
generalize the two-dimensional methods into three-dimensional
space in most cases.

A separate class of methods deals with broadly understood
anatomical shape characterization, but their main goal is finding
the best way (i.e., with maximized inter-class variability) to
describe a specific object type, usually by indicating landmarks
on the surface of the object.42 Such landmarks are then used for
analysis of a given class of objects. This approach cannot be
implemented in this case as the set of anatomically meaningful
landmarks is given explicitly and has to be recovered in the
recognition process. Moreover, some of the methods which
could provide a meaningful representation do not support
the type of data topology used in our study (e.g., spherical
harmonics with point distribution model, SPHARM-PDM,
which can only work on data with spherical topology).

The active shape model43 represents a class of methods
which can be used to build a generalized model of the shape
based on a learning set of shapes with indicated characteristic
points. This model can be further utilized to find instances of
new shapes, controlling the extent to what they can deviate
from the model using eigen-analysis of the set. The method
was originally developed to work with two-dimensional images
of arbitrary descent. The point distribution model (PDM), which
is used to build the statistical correspondence, can be easily gen-
eralized to match the three-dimensional character of input data
by adding the third coordinate during analysis. Further general-
ization, however, is impeded by the fact that the structures have
to be found on an explicitly given surface, which provides a
strict constraint for the search procedure. It is valid for volu-
metric data where the model can be fully deformed in all
three dimensions.

Moreover, there are doubts whether using statistical corre-
spondence to limit the shape domain would work well, particu-
larly if the final objective is to detect anomalies in the back
structure, with equal sensitivity to all kinds of deformations.
The author of the ASM technique warns against model
“over-training,” i.e., providing a training set which is very
coherent and does not provide all the variations, because it
would prevent the method from finding new shapes which
are valid in reality, although do not match the statistically
built model. Moreover, since deformed structure of the back
constitutes a small percentage of the whole population (even
more so considering rare deformations), these modes of varia-

tions could be unintentionally neglected during model building
using principal component analysis (PCA).

The same stipulation concerns the active appearance model
(AAM) technique.44 Here, even more statistical constraints
exist, as the texture of the image is also taken into account dur-
ing the statistical model building. This method was also devel-
oped for images. It uses a matrix form for the intensity model,
particularly because PCA is a linear method. Using this techni-
que would demand generating “texture matrices” from unorga-
nized point clouds for any feature considered as texture – depth,
curvature or other – and performing all the operations in the XY
projection. Moreover, it is arguable whether global optimization
of the model which is utilized by this method when searching for
the new model is the right approach in this case.

Summarizing the described approaches, although providing
valuable insights into data analysis, they do not solve the given
problem well. These general tools may act more as a drawback
than as an advantage. The ASM technique, along with the con-
gener active contour model (ACM) technique were used in
Ref. 45 to model back and spine variability with moderate
success, however, the aspect of landmark recognition was of
secondary importance in the mentioned work and did not
address the stipulations with respect to some aspects of this
method shown here. To overcome some of them, a handcrafted
solution was attempted, which uses some of the ideas provided
above. However, in future versions the algorithm may incorpo-
rate more aspects of the described methods, as presented
in Sec. 5.

2 Methodology

2.1 Input Data Characterization

In real application the 3-D measurement with algorithms of
directional merging and conversion (3DMADMAC) system
environment was utilized, a complete measurement and calcula-
tion environment for three-dimensional objects based on the SLI
technique.46,47 The measurement is carried out by projecting a
set of sinusoidal and Gray code images on the surface of the
object, capturing the deformed patterns using a digital camera
and transforming the obtained values to real coordinates with a
calibration performed prior to the measurement.

The data obtained from the measurement is in the form of
raw point clouds. A cloud of points represents an unordered
set of points, where each point is characterized by its Cartesian
coordinates, color (RGB or gray scale, depending on the type of
detector), normal vector of the surface and quality factor corre-
sponding to the uncertainty of coordinates’ determination.
These data form a set of information which fully describes
the geometrical properties and color of the measured surface.
In this study, only geometry is used in the automatic recognition
process, however, color was helpful during the analysis of
measurements by experts, as it made the measurement resemble
a “3D photograph.”

A single point cloud contains information about points on the
surface of the measured object which are both illuminated by the
projection unit and captured by the acquisition unit. The shape
of human back was captured with a single-directional system.

2.2 Selection of Anatomical Structures

There are several anatomical structures used to calculate indices
for spine deformity assessment.28 These structures represent
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skeletal topographic points characteristically visible on the
surface (e.g., lower angle of scapula) or unique areas of the
body (e.g., axilla). Locations of other landmarks are arbitrarily
defined (e.g., point on the shoulder above the axilla). The
common feature of those structures is that their position is influ-
enced by the shape of the spine which may facilitate deformity
diagnosis using only topographic data. The indices addressed
in this study are POTSI36,48,49 and DAPI,25 which impose
the selection of anatomical structures to discover (Fig. 1). By
merging the lists of landmarks required for both indices, the
following anatomical structures were selected:

• vertebral prominence of C7,

• top of the intergluteal furrow,

• left and right shoulder (points on the shoulder immedi-
ately above the axillae),

• left and right axilla,

• most proximal points on both sides of waist,

• posterior superior iliac spines (left and right),

• inferior angles of scapula (left and right).

Most of the structures are small areas rather than single
points. However, the parameters commonly used to assess
the deformity should take single positions as an input
(POTSI and DAPI). Despite the fact that this approach may
be error prone, it is a method medically acclaimed and thus
has to be addressed. High quality and resolution of the measure-
ment data suggest that more general parameters would better
describe the deformity, but unfortunately such parameters
have not been developed yet. What follows is that the output
of the described algorithms should also be single points, each
point indicating the position of a single anatomical structure.

2.3 Assumptions

The algorithm originally developed for this study does not
fully incorporate any existing concepts. Its approach has not
been described in the literature yet. It benefits only loosely

from certain aspects of other analysis methods. The developed
concept of anatomical structures recognition is based on the fol-
lowing empirical assumptions:

• the anatomical structures are associated with the shape
of human body, i.e., the topographical properties of the
surface;

• it is possible to describe local topography using features
calculated for the surface;

• the mutual position of the anatomical landmarks and their
relation to the boundary of the body in the frontal plane
remains relatively stable across the population.

The anatomical structures are connected with the skeleton
and are all placed in the trunk area. The variability of their loca-
tion can be recognized and utilized by analyzing the population.
The population data consists of a set of information about the
patient, including a 3-D model of the patient’s back, anatomical
landmarks indicated on the model by a group of experts and
some additional information, such as sex or BMI, which can
help to distinguish natural variability between subjects from
that caused by spine deformation.

The assumptions together form a mutual relation of equili-
brium. Subjects may appear for whom some of the anatomical
structures would not manifest sufficiently on the back surface,
for example due to adipose tissue or musculature. In such case
optimization process based only on the shape and not guided by
any other a priori information may result in finding points of no
anatomical significance, but of some local characterization of
shape that by chance matched the given criteria. However, by
providing additional a priori data in the form of a mean
model of structure arrangement, a good starting point and
additional constraint for the optimization process are obtained.
The mean model is considered only as a very broad approxima-
tion of final positions of landmarks.

The strength of the proposed algorithm consists of both com-
bined concepts, namely: the position of the anatomical structure
may be approximated using the mean model and further tuned

Fig. 1 (a) Anatomical landmarks used in this study: 1—vertebra prominens, 2,3—shoulders, 4,5—axillae, 6,7—scapulae, 8,9—waist line,
10,11—posterior superior iliac spines, 12—natal cleft; (b) POTSI (c) DAPI
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using shape variability with influence of the statistical model, so
that the spatial relations provided by the first approximation are
regarded as an accurate guideline. The assumptions are expected
to apply to most of the cases and in the preliminary version of
the algorithm only general validation is performed, but the
potential limitations mentioned above have to be considered
in future and the method will be validated with more factors
in mind, such as age, weight or posture type.

2.4 Algorithm Formulation

The developed algorithm is composed of two phases. The first
phase is based on a learning set of data containing landmarks
indicated manually by experts on the surface of point clouds
representing patient’s back obtained from measurement
(Fig. 2). For each measurement the specialists of four phy-
siotherapists and four orthopedists were requested to select
all possible landmarks (based on a list supplied within the appli-
cation used for this purpose, containing all the structures listed
in Sec. 2.2) without the knowledge about the position of land-
marks selected by the rest of the staff. Altogether, a total of 23
measurements were examined. The average age of the patients
was 24.7 (minimum 23, maximum 26), with a sex ratio of 11
females and 12 males. The data were supplemented by informa-
tion about the region of interest for every measurement, detected
automatically using the developed algorithms. The landmarks
are aligned using a modified Procrustes method and a mean
model is built upon it, including an average region of interest.50

It should be mentioned that the mean model was generated
only on the basis of healthy (as stated by the experts) nonobese
subjects, to present a good reference frame for the recognition
process. Precise information about the location of structures in
unknownmeasurementswill then be supplied by shapevariability.

The second phase uses themeanmodel from the previous step.
First, the measurement is aligned and the region of interest is
found within the measurement using the same methods as in
phase one. Then, knowing the relation between themean and cur-
rent regions of interest, the mean model containing positions of
landmarks is adjusted to fit new data and the points are projected
onto the measurement surface. Finally, features are calculated for
the point cloud, normalized locally and combined with the
approximated positions of landmarks with the help of a Voronoi
diagram51 to extract the final location of anatomical structures.

2.4.1 Definition of the region of interest

The region of interest extracted from the measurements has to be
defined unambiguously. During this process, information is
generated by the segmentation operation. The bounding box
is then estimated as follows:

• the left and right surfaces are set by the left and right
axillae;

• the top surface is set on the neck, at a point exhibiting a
specific width ratio with the shoulders;

• the bottom surface is indicated by the buttocks.

The algorithm takes a preliminarily aligned cloud of points as
its input. Itmay be classified as operating on 2-Ddata (in fact it is a
simple segmentation), but considering information about depth as
well. The point cloud is divided into slices perpendicular to the
vertical axis (calibrated during measurement) which are then
connected into groups. Using this information, characteristic
points used to calculate the final bounding box are found. For the
set of measurements analyzed in this work the following, experi-
mentally chosen, values were used as input for the algorithm:

• segmentation slice height: 10 mm;

• minimum distance between groups in the X direc-
tion: 8 mm;

• minimum distance between groups in the Z direc-
tion: 8 mm;

• width drop ratio from arms to neck: 0.5.

The front and back faces of the bounding box are not neces-
sarily required. The bounding rectangle is used only to scale the
mean landmark set in the X and Y directions. The rectangle is
described using following features (Fig. 3):

• the orientation of the rectangle, in the form of three unit
vectors corresponding to the X, Y and Z axes of the coor-
dinate system;

• center of the coordinate system of the area, positioned in
the center of the bounding rectangle;

• size of the box, in the X and Y directions, reflecting size of
the bounding rectangle.

Fig. 2 Landmarks charted by (a) single expert, (b) group of 8 experts, and (c) uncertainty.
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2.4.2 Analysis of existing dataset

Every measurement requires preprocessing, i.e., filtering, align-
ment and segmentation. For this purpose the same algorithms as
in the recognition part are used, so the correspondence between
the currently analyzed measurements and their landmarks can be
applied in future to reverse the relation and approximate the
landmarks based on the features calculated for the new measure-
ment. For each measurement, points indicating characteristic
anatomical structures selected by the operators were averaged
and projected onto the cloud, creating a mean landmark set.
The deviations were determined as well. This landmark set is
a local mean landmark set, as opposed to the global mean land-
mark set, which will be calculated based on all local sets.
Because the mean local sets are found in different coordinate
systems and come from different patients, the shape cannot
be analyzed until the operations mentioned above are used: a
full transformation (i.e., translation, rotation and scale) has to
be calculated for every set.52,53

In order to find the rotation and translation parameters, it suf-
fices to use the Iterative Closest Point (ICP) technique.54 The
method for computing scale was based on,55 which is calculated
before other operations as follows:

• calculate the centers of mass of the two sets:

x̄l ¼
1

n

Xn
i¼1

xl;i; x̄r ¼
1

n

Xn
i¼1

xr;i;

• modify the positions of the landmarks by subtracting the
centers of mass

x 0l;i ¼ xl;i − x̄l; x 0r;i ¼ xr;i − x̄r

• the optimal scale factor s is then computed as:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1 kx 0r;ikP
n
i¼1 kx 0l;ik

s
:

Anisotropic scaling perturbs the definition of the model.
Further, in the process of recognition, after the model is roughly

segmented, the mean model is adjusted in a more appropriate
way using a bounding rectangle based on body boundaries. Sim-
ple single-factor scaling would fail to address the variability of
the skeletal structure of the body and would give less accurate
approximations, because it would only take into account the
overall change in size of the model.

All the shapes are first coarsely aligned using the system’s
vertical, calibrated before the measurements, and the left and
right posterior superior iliac spines (PSIS), obtained from the
defined landmark set, as the fine alignment using ICP needs
a good starting point (i.e., the differences between positions
of the stable and aligned model have to be moderate).

The final shapes alignment is carried out with ICP by choos-
ing one arbitrary landmark set as the stable one, to which all the
other shapes are aligned (Fig. 4). Then, second iteration of
alignment is performed in the same fashion, only this time a
mean model can be calculated from all the previously aligned
shapes. The scale, pose and central point of the model are nor-
malized as follows:

• the scale was chosen so that the difference between PSIS
landmarks is equal to 1;

• pose was chosen so that the line connecting vertebra pro-
minens and top of the natal cleft is the Y axis;

• central point was chosen as the middle point between the
PSIS landmarks.

This approach, described in Ref. 43, allows to obtain better
models, as opposed to normalizing each individual shape
separately.

The bounding rectangles obtained for every measurement
were aligned using transformations found for the shape along
with the landmark sets. The global mean bounding rectangle
was calculated. Following the formulation of the bounding
rectangle, we obtain a set of:

• triples of X, Y , Z unit vectors;

• coordinate system centers;

• size of the box in X and Y direction of the bounding box
coordinate system.

Fig. 3 (a) Vertical cross-sections, (b) limiting points, and (c) region of interest.
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Next iterations are performed in the same way as the second
one until the method converges. The convergence condition is
tested by examining the difference between calculated mean
shape of two consecutive iterations.

2.4.3 Finding potential areas for the locations of landmarks

Having a new measurement, after preprocessing and calculation
of the bounding box, the transformation between the current and
the mean bounding box can be found easily (in fact this is
equivalent to moving between coordinate systems and scaling).
This transformation is used to transform the mean shape into the
coordinate system of the new measurement (Fig. 5). The role of
this approximation is twofold:

• approximation of areas where the anatomical structures
will be found; with this knowledge global optimization
can be avoided and local optimization performed for
every area does suffice;

• the points are potentially good starting positions which
may facilitate and accelerate the optimization process.

In order to divide the point cloud into areas corresponding to
the calculated landmark set, the landmarks are projected onto
the frontal plane. Then, the two-dimensional Voronoi diagram
is computed. The main purpose of such a diagram for a
given a set of points is to assign to each of these points a segment
of space in which a defined distance metric yields smaller values
than for any other point. In this case, a simple Euclidean metric
in the frontal plane is used. The diagram is then projected back
on the cloud with every cell determining a separate group of
points connected with each anatomical structure.

An additional advantage of using the Voronoi diagram in this
case results from the rigidity of the skeletal structure. The ana-
tomical structures, although their exact positions are unknown,
never lie in direct proximity to each other. The diagram assigns
weights to points in such a way that points placed halfway
between the approximated positions are the least probable to
become the final result.

2.4.4 Surface shape descriptors

The methods of describing a surface may be divided into based
on local curvature and employing statistical features. The former

Fig. 4 (a) Unaligned sets of landmarks and bounding rectangles (in magenta), (b) after preliminary alignment, (c) after final alignment.

Fig. 5 First approximation by fitting regions of interest.
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may be further divided into calculated on the basis of analytical
definition, mathematically approximated or numerically com-
puted as derived features, semantically similar to classical
parameters, though not directly correlated. When computing
the mathematically defined curvature, other derived parameters
are available, which assist the interpretation of obtained
surface description.

In case of a 3-D surface representation in its parametric form,
calculation of the curvatures is a straightforward differentiation
task. However, when working with real data there is an
additional difficulty in approximation of the local shape of
the surface before calculating the curvatures.

Methods of curvature approximation are either inaccurate
and prone to noise or computationally expensive.47 Estimators
used for triangle meshes work well, but require intensive
preprocessing to create the mesh, which may take longer
than estimation of the curvature itself for experimental data.

The main advantages of using numerically computed para-
meters (including simple statistical features) over mean and
Gaussian curvatures are full numerical stability for all neighbor-
hood types. There is no need for setting boundary conditions
for simultaneous nonlinear differential equations. It is also
more resistant to noise, and operates with a less complicated
algorithm yielding faster numerical apparatus, because it does
not require iterative calculations.

Therefore, five features suited to the type of input data and
purposes were selected:

• topographical parameters: C1 and C2,

• statistical parameters: RMS, kurtosis and skewness.56

Because all these parameters have to be calculated assuming
local neighborhood of a specified size, the operator size which
could describe the structures to be found has to be determined
beforehand. Moreover, usefulness of these features should be
evaluated, in order to minimize information necessary to find

specific structures. To accomplish this, distributions of all fea-
tures for nine different operator sizes (neighborhood radius
equal to 2, 5, 10, 20, 30, 40, 60, 80 and 120 mm) were tested
for a set of measurements (Fig. 6).

In the low range of neighborhood size, the noise andmeasure-
ment errors were visible, while in the upper range only general
description of the shape could be given. Optimal values of the
neighborhood were found in the central range, with radius of
30 mm being the most informative. It was also discovered
that the C1 and C2 parameters present the best insight into
shape, with the least ratio of noise. The statistical features
become more prone to noise when moments of higher order
are computed (RMS giving the lowest amount of noise, with
results similar to C1).

2.4.5 Cost function

The cost function is a weight map, which contains a specific
scalar value for every point in the region of interest. This func-
tion is composed of:

• weights calculated from the Voronoi diagram; this part of
the cost function is influenced by the landmark set
approximated using the mean model; the values are in
the range [0;1] and are calculated as:

VðPÞ ¼ dðP;Ei;jÞ∕dðS;Ei;jÞ;

where dðP;Ei;jÞ is the two-dimensional distance of point P
from the j-th edge of the i-th cell along the line containing
both siteS andpointP, anddðS;Ei;jÞ is the two-dimensional
distance of the site S from the edge along the same line; the
highest value corresponds to the central point of the cell and
the lowest to points on the boundary of the cell;

• weights resulting from features calculated from
current measurement data; these weights are computed

Fig. 6 Distributions of features for different radii: (a) C1 and (b) C2.
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by normalizing the value of each feature with respect to the
maximum and minimum value in each cell of the Voronoi
diagram; the final values of every feature are scaled to range
[0;1] usingmaximumandminimumvalues of the feature in
each cell; then, values for all the points belonging to a cell
are normalized in the following manner:

FðPÞ ¼ ½f ðPÞ − fmin;i�∕ðfmax;i − fmin;iÞ;

where f ðPÞ is the old value in point P, fmin;i and fmax;i are
minimum andmaximum values for the ith Voronoi cell and
FðPÞ represents the new value assigned to the point P.

The components of the weight function are then summed to
yield the final map. Additionally, the weights given by a feature
for a specific cell are inverted, depending on whether minimum
or maximum is predicted for the specific landmark (Fig. 7).
The optimization is also governed by coefficients used during
summing of the Voronoi and feature parts:

CðPÞ ¼ wvVðPÞ þ wFFðPÞ;
where CðPÞ—resulting cost function; wv, wF—factors assigned
to the Voronoi and feature maps; VðPÞ—Voronoi weight for a
given point P, FðPÞ—feature weight for a given point P.

In order to find the optimal factor of influence for the feature
and mean model for all landmarks, the recognition process was
carried out with step of 0.1, with 0.0 corresponding to a process
based only on the local feature and 1.0 corresponding to a pro-
cess governed only by the mean model.

2.4.6 Extracting final positions of landmarks

Final positions of points are obtained by a local optimization
method, which simply takes the first approximation as a starting
point, and then iteratively searches for the largest value in the
local neighborhood of the point of radius equal to three average
point-to-point distances in the cloud. The process stops when
the last calculated value is the largest and the corresponding
geometrical point of the cloud is taken as the final position
of the landmark.

3 Validation
Since the information to be found is not exactly specified (i.e., it
is not possible to define exact locations in space of anatomical
structures, because they are not single points, as described in

Sec. 2.2), it is hard to assess the accuracy of results. What deter-
mines the characteristics of the areas searched for is expert
knowledge. The most obvious solution for validation would
be to compare the estimated position of each structure with
its position indicated by a physician, although it has to be
assumed that manual indication has high intra-observer and
inter-observer reliability.38

To become less dependent on the variability of manual
indication and to provide more reliable input for comparison,
mean positions of structures were calculated over all points
supplied by experts. These local average mean landmark sets
were found by calculating average points for given landmarks
for every measurement and projecting them onto the cloud,
so that they represent actual points on the back surface. The
uncertainty for each landmark was calculated as the root mean
square error between all the manual landmark positions and the
obtained average.

The final validation was performed by comparing the
Cartesian distance between automatically found positions of
landmarks and averaged positions of manually indicated land-
marks with the uncertainty of manual indication. Accuracy was
tested with different weight factors for the Voronoi diagram and
curvature map to determine an optimal value for the current
population. The error for every landmark was normalized
with respect to the minimum and maximum in all factors to
expose the relation trend of the recognition accuracy with
respect to weight factor value.

The developed method has to consider anatomical landmarks
used in deformation assessment with topographical data, but not
all of those landmarks can be related to x-ray, as they are not part
of the skeletal system (i.e., axillae or waist). Moreover, trunk
radiography can be performed either in the horizontal or vertical
position, which may influence on the mutual locations of ana-
tomical structures with respect to standing position, used in
three-dimensional measurements. Finally, it is hard to correlate
the coordinate systems of x-ray and 3-D models in an unambig-
uous manner, which further impedes result comparison. Due to
these reasons validation of results with radiography data was not
attempted in this study but some data already appeared in the
literature.34

4 Results
Preliminary results representing the accuracy of automatic land-
mark recognition with respect to accuracy of manual indication
by the experts for some of the landmarks is shown in Fig. 8.
Accuracy is better in the automatic procedure, although standard

Fig. 7 Generation of cost function using normalized map of C1 para-
meter and weights resulting from Voronoi diagram.

Fig. 8 Average error and standard deviation in manual (left value) and
automatic (right value) procedure for selected anatomical structures.
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Fig. 9 Representative distributions of the recognition error for (a) left scapula, (b) right PSIS, and (c) vertebra prominens for different values of weight
factor for 8 patients. Figures to the left show the relative recognition error, which is the ratio of distance between automatic and manual landmark,
figures to the right show the same error normalized to expose the trend (red dashed line).
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deviation is usually higher. In all presented cases the error was
between 5 and 15 mm.

The trends exposed for landmarks, showing the relation of
recognition accuracy against weight factor used in the cost func-
tion (Fig. 9), are of various character and can be grouped into:

• trends which exhibit a clear minimum: both scapulae and
posterior superior iliac spines; the minimum for scapulae
appears between 50% and 60% of influence of the mean
model (relative error with respect to manual uncertainty is
58% and 78% for the left and right scapula, respectively);
right PSIS is best recognized on average for 60% to 70%
of influence of the mean model (relative error with respect
to manual uncertainty is 11% to 16%), while left PSIS is
best recognized on average for 40% to 50% of influence
of the mean model (relative error with respect to manual
uncertainty is 34%); trend minimum can also be found for
left shoulder for 30% to 40% of influence of the mean
model (average relative error with respect to manual
uncertainty equal to 20%) and for right axilla—at 60%
(average relative error with respect to manual uncertainty
equal to 32%);

• trends which attain smaller values with high influence of a
feature: right shoulder;

• trends which attain smaller values with high influence of
mean shape: vertebra prominens and natal cleft;

• trends which do not show a clear relation: left axilla.

In general, the recognition error depends on the mutual
position of feature’s local extremum, manually indicated land-
mark and mean landmark. The higher the influence of the
mean model, the more the error distribution stabilizes to
the difference between a manually indicated point and the
mean model. When a specific landmark is closer to the aver-
age model, the final error will become small. However, this
error is not stable and may prove to be equally large or
small and depends on how much the specific landmark’s posi-
tion is different from its corresponding position in the mean
model. On the other hand, if the manually indicated landmark
is close to the local extremum of the feature, errors will
decrease with decreasing influence of the mean model, but
if the assumption that the true location of the structure is con-
nected with an extremum of shape feature distribution is incor-
rect, the error will increase. In total, the two models should
compensate, yielding more stable results than obtained by the
two methods used separately, which can be seen in the case of
scapulae and posterior superior iliac spines.

It is also interesting that despite low accuracy of indication of
axillae extracted with high influence of the feature, points on the
shoulders found using these erroneous results yield higher accu-
racy with respect to manual landmarks. This may be due to the
fact that the points representing axillae are unstable in the Y
direction, but are well localized in the X direction, which is
used to extract positions of shoulders.

Similarly, better accuracy of localization of spinous process
of vertebra prominens and natal cleft with high influence of the
mean model results from the fact that these points were used to
extract the region of interest (especially natal cleft, which was
used as a limit for the bounding rectangle due to incomplete
measurement data). The remaining error results from differences

of the mean model in the X direction only, as the mean model is
directly scaled to fit those landmarks.

Values of the deformation parameters are very unstable for all
the influence factors. However, a general conclusion can be
drawn in the case of POTSI,47,57 that balanced values of the fac-
tor from the middle of the range provide better correlation with
parameters calculated on the basis of manually indicated
landmarks.

5 Conclusions and Future Work
All anatomical back surface landmarks have been recognized
successfully as there were no coarse errors among processed
results. The accuracy of automatic detection of waist, shoulders,
or axillae on the boundary of the body in the frontal plane
remains lower than the accuracy of manual indication, mainly
due to inaccurate formulation of the structures and measurement
errors, which result from local surface orientation tangent to the
direction of measurement. In future versions of the system, a
two-directional measurement system will be used to eliminate
some of these errors. Nevertheless, other structures in the central
part of the back surface were recognized with comparable or
even better accuracy than the average accuracy of operator’s
detection (ranging from 50% to 90% of average relative error).

The problem of choosing factors for merging feature map
and weights calculated on the basis of Voronoi diagram remains
significant. The ratio of those factors determines whether we
rely more on the local shape properties or the statistical
model, which stores the general geometrical relations between
landmarks. In this case, the factor was chosen experimentally to
be equal to 0.7 for the feature and 0.3 for the Voronoi weights,
i.e., an assumption is made that the variability of shape will
guide the recognition process better than the rough statistical
model. This approach works for the majority of cases, but some-
times ambiguities emerge. Figure 10 shows two cases of the cost
function, calculated with influence factor 0.3 and 0.4 for the
Voronoi diagram weights. In the former case the scapula is posi-
tioned close to the local maximum of the C1 parameter, while in
the latter Voronoi weights dominate and the scapula is placed
close to the first approximation of the statistical model. In
this case, a serious asymmetry is visible in the region of
right scapula, giving rise to the bump close to the spine line.
The question remains whether asymmetry should be accounted
for during calculation of deformity parameters and signal abnor-
mal shape distribution.

Weights computed on the base of Voronoi diagram not only
determine the influence of the approximated locations of land-
marks, but also decrease the probability for points near the
boundaries of the cell to be selected as anatomical landmarks.
It plays a role when the feature takes extreme values for points
near the border, which could confuse the optimization process.
In specific cases a problem arises, when feature artifacts occur
and very high (or low) values of the feature are found in a cell
(Fig. 11). The normalization process simply scales values of the
feature within each cell with respect to the minimum and max-
imum and, if an unexpectedly extreme value is used, difference
between values near the local extremum for the actual landmark
searched for becomes very small. In general, this would not
cause big problems to the optimization process. However due
to merging of these normalized values with weights from Vor-
onoi diagram, which are computed artificially and are always in
the range of [0; 1], very low sensitivity is obtained in the region
of the extremum. The extremum is iteratively searched for in the
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local neighborhood of a small radius and in extreme cases the
optimization process may fail.

Generally, all errors in shape alignment propagate to
subsequent stages of analysis, which is rarely addressed in
the literature. This corresponds to the mutual relation of
measurement system and the data captured during measurement.
Analysis of any set of geometrical data should be preceded
by accurate alignment with respect to an accurately defined
reference coordinate system.

The alignment error in the training set may directly influence
the generation of the mean model. It is impossible to give an

absolute estimate of it, because the problem of shape correspon-
dence itself is very vague. Although formulated quite clearly,
there is no objective way of solving it. In this study, the
most popular and mathematically correct method was used. It
is arguable if cumulative distance error of all landmarks used
for fine-tuning the transformation of each shape is an objectively
better criterion than the one used for coarse alignment process—
the pelvis could easily be chosen as an object of reference for the
skeletal system with additional orientation correction using the
vertical direction, which would give an anatomical reference
frame. Moreover, the alignment error affects deformation

Fig. 11 Map of the C1 parameter (a) normalized in Voronoi cells (b), Voronoi weights (c) and the final cost function computed by merging the two
previous maps (d). In the cell corresponding to left posterior superior iliac spine, extreme values of the feature are found on the left gluteus, caused by
underwear. After normalization, values in the area of the PSIS were flattened.

Fig. 10 (a) Map of the C1 parameter normalized in Voronoi cells, (b) Voronoi weights computed on the base of mean shape, (c) both maps merged with
factor 0.3, and (d) 0.4 for the Voronoi part, yielding different positions of right scapula.
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indices, calculated based on positions of localized landmarks.
Currently, values of the indices are inaccurate not only because
of high intra-observer variability, but also due to misalignment
of the back surface. Some systems use depth-alignment,22 in
cases where the prominence of landmarks is relevant, but
most often a correct position is assumed. Finally, it may be
related to the problem of manual indication of landmarks by
experts. Those cannot be validated and have to be considered
correct, which holds true in most cases.

However, if the anatomical structures are not well visible on
the surface of the back (the landmarks were indicated on the
point cloud without any additional help), the indication is some-
times incorrect and could provide better results when correlated
with the features at the time of indication. Figure 12(a) presents
the distribution of the C1 parameter with average positions of
landmarks indicated manually (in white, the radius corresponds
to uncertainty of indication). Clearly the posterior superior iliac
spines should be placed in the minima of the distribution (blue
areas above), while, for some reason, all the experts positioned
them below the correct region (small radius refers to low uncer-
tainty). Moreover, in this measurement the scapulae are not well
visible, which impedes any topography-based recognition, be
that manual or automatic.

Automatic analysis should provide more repeatable results,
when the structures actually do manifest themselves on the sur-
face of the back. It is questionable in case of scapulae and ver-
tebra prominens, where surface shape varies with changes in the
positions of arms and posture in general. If this condition is not
fulfilled, the result will be very coarsely approximated and will
raise even bigger errors. However, the authors state that the
recognition process should be guided mainly by the shape of
the back surface, putting as little emphasis on the first approx-
imation as possible. This may be regarded as a more radical
approach to the analysis process, because recognition will
fail if anomalies are present. On the other hand, if more influ-
ence will be given to the mean model, which represents an aver-
age patient (i.e., healthy in a normal population), cases with an

actual deformation present will be regarded as closer to the aver-
age and the magnitude of the deformation will be diminished. It
is therefore a choice between a false positive and a false nega-
tive, which should be considered by specialists utilizing the sys-
tem [Fig. 12(b)]. In this study a balanced compromise was
presented, which may provide guidelines for future uses of
the developed algorithms. It has to be noted that the algorithm
was only tested on a small dataset and should be validated with a
larger amount of measurement data, with diverse distributions of
patients.

One of the considered directions of development may be the
incorporation of Eigen-analysis of the data (e.g., PCA), firstly, in
the analysis of landmarks indicated by the experts and secondly,
in the analysis of feature distribution for the corresponding mea-
surement data. Former path probably will not enhance much the
quality of recognition. However, it may turn out to be a useful
tool for further research into deformation type assessment based
on the anatomical landmarks, especially since it would cover all
three dimensions. This is a direct consequence of the analysis
method, since the resulting Eigen modes are dimensions con-
taining the most variability of the shape. Experts have to further
examine the modes of variability for correspondence with spe-
cific types of deformation or correlation techniques should be
used to filter out other, irrelevant variability, resulting from
sex, age or BMI. Similar approaches have already been tried,
but they were either not further developed55 or treated as raw
input for further stages of analysis without any interpretation
attempts.58 Additionally, the chosen shape alignment method
would have a great impact on this analysis as mentioned above.

In the latter case, dimensionality of the description could be
reduced using Eigen-analysis, but in this study manual localiza-
tion of the structures in the training set is determined with mod-
erately low accuracy, which could provide confusing results. In
case of a holistic approach the back shape would be analyzed as
a whole, which would introduce irrelevant information to the
description (as in the case of AAM). On the other hand if the
neighborhood of each landmark was to be analyzed separately, it

Fig. 12 (a) A distribution of the C1 parameter with average positions of landmarks indicatedmanually (in white, the radius corresponds to uncertainty of
indication). (b) Automatically located landmarks (in blue), extracted using influence factor of 0.1, found at the local extremum, and manually indicated
landmarks (in green); it is arguable which positions of the PSIS are more correct.
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would be difficult to choose the boundary of each structure (both
shape and size) containing information significant for that
particular structure.

An interesting aspect of the Active Appearance Model tech-
nique is that it takes into account not only the distribution of
object’s shape, but also the statistical model of its appearance
in space. If the appearance would be interpreted differently,
i.e., as the distribution of some feature on the surface, statistical
analysis of such distributions across the population can provide
a useful tool for building correspondence between the land-
marks and its actual position in the model. This however has
to be analyzed locally, not globally, which would be considered
a hybrid approach, connecting some of the approaches of ASM
and AAM.
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