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Abstract. Computational methods are presented that can automatically detect the length and width of meibomian
glands imaged by infrared meibography without requiring any input from the user. The images are then automa-
tically classified. The length of the glands are detected by first normalizing the pixel intensity, extracting stationary
points, and then applying morphological operations. Gland widths are detected using scale invariant feature trans-
form and analyzed using Shannon entropy. Features based on the gland lengths and widths are then used to train a
linear classifier to accurately differentiate between healthy (specificity 96.1%) and unhealthy (sensitivity 97.9%)
meibography images. The user-free computational method is fast, does not suffer from inter-observer variability,
and can be useful in clinical studies where large number of images needs to be analyzed efficiently. © 2012 Society of

Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.8.086008]
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1 Introduction
Clinical research on dry-eye syndrome is currently receiving
much attention.1–12 In particular, in the study of meibomian
gland dysfunction, which is a major cause of dry-eye,1 gland
dysfunction can be diagnosed by directly observing the mor-
phology of the meibomian glands using meibography.
Recently,2–4 a noncontact, patient-friendly infrared meibography
method was developed that is fast and greatly reduced discom-
fort to the patient. This advance allows meibography to be used
routinely in clinical research.

When analyzing meibography images, it is important
to quantify the area of meibomian gland loss. Grades are
then assigned to the image based on the area of gland loss,
which in turn serve as an indicator of meibomian gland dysfunc-
tion. The loss of meibomian glands in the upper and lower
eyelids have been studied by Arita et al.,2 Pult et al.,5and
Srinivasan et al.9 Pult and Reide-Pult have also assessed the sub-
jective and objective grading of meibography images,8 and Pult
and co-workers have also demonstrated that precise calculation
of the area of meibomian gland loss using a computer software
can lead to greatly improved repeatability in the application of
grading scales.5–7 In addition, other meibomian gland features
such as the width and tortuosity of the glands can be accurately
computed and analyzed. Similar progress have also been
reported by Srinivasan et al.9 These recent works demonstrated
the advantages of a computerized approach to analyzing meibo-
mian glands in meibography images.

In these recent works on computerized classification of
meibomian gland loss, the images were analyzed using the

image editing software ImageJ (National Institute of Health;
http://imagej.nih.gov/ij). The user needs to be involved in iden-
tifying the gland region on the image. In other words, the user
needs to tell the software where the glands are. If a large number
of images is involved, this process is tedious and time consum-
ing. Also, different examiners may draw the gland region dif-
ferently, leading to inter-observer variability. Hence, it is
desirable to have a method of processing meibography images
that is fast, less laborious for the clinician, and is less dependent
on the subjectiveness particular examiner.

A fully automated, computational approach of analyzing
meibography images can address many of the difficulties
mentioned, and has the potential to aid ophthalmologists in
the study of meibomian glands using meibography. The purpose
of this paper is to take a first step in this direction by presenting
algorithms that can detect meibomian glands and classify
meibography images with minimal user input. Image editing
software such as ImageJ and Photoshop that require input
from the user are not used. Instead, algorithms that cater speci-
fically to the detection of meibomian glands are specially
developed.

Meibography images exhibit a wide range of gland morphol-
ogies. To be of practical help to ophthalmology, one should try
to sample from a wide range of images when developing the
detection and classification algorithm. In particular, of most
concern to clinicians is identification of images with winding
glands or other complex gland patterns, because these represent
cases which are intermediate between the healthy and unhealthy,
and hence require the most clinical attention. However, although
identification of complex gland pattern is easy for trained
experts, it is a challenging task for an algorithm without
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help from a human user. Hence, this paper focuses on the easiest
healthy and unhealthy (criteria defined in Sec. 2.1 below) cases,
two examples of which are shown in Fig. 1(d) and 1(e). There
are many images of clinical interest that are neither healthy nor
unhealthy according to our criteria, and we exclude these from
our computational analysis in this paper.

As shown in Fig. 1(d) and 1(e), glands form a zebra-strip
pattern in a healthy eye, whereas this pattern is absent in an
unhealthy eye. The approach is to detect the lines along the
center of and between the glands (which will be called the
gland and inter-gland lines), and also the width of the glands,
and then define features based on them to train a classifier to
differentiate the images.

2 Methods

2.1 Subjects, Equipment, and Grading

Fifty-five patients were recruited from the dry-eye clinic and the
general eye clinic of Singapore National Eye Center, including
both symptomatic and nonsymptomatic dry-eye patients.
Patients were aged 21 to 70 years. Written informed consents
were obtained. The study was approved by the Singhealth

Centralized Institutional Review Board and adhered to the tenets
of the Declaration of Helsinki.

The patient’s chin was positioned on the chin rest with the
forehead against head rest of a slit-lamp biomicroscope Topcon
SL-7 (Topcon Corporation, Tokyo, Japan). This was equipped
with an infrared transmitting filter and an infrared video camera
(XC-ST5CE0, Sony, Tokyo, Japan). The upper eyelid of
the patient was everted to expose the inner conjunctiva and
the embedded meibomian glands. This is a standard procedure
and causes no pain to the patient. Images were acquired using a
10x slit-lamp magnification. Care was taken to obtain the best
focus as well as to avoid reflections on the inner eyelid surface.
The lower eyelid was not imaged in this report because in the
authors’ experience, it was easier to uniformly focus the image
of the tarsal plate in the upper eyelid.

The images are manually graded by experts into 26 ‘healthy’
and 29 ‘unhealthy’ images. The clinical graders was masked to
the computational classification of the images. Healthy images
are those whose glands satisfy the following three criteria:
1. exhibit a zebra-like pattern, 2. are evenly long and thick,
and 3. are evenly spaced and distributed along the entire eyelid
margin. Unhealthy images are those that have at least 50% loss
in glands in the area of interest. Images that can neither be
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Fig. 1 Extracting gland and inter-gland lines. (a) Lines along the centers of the glands can be located by computing the local maxima. The maxima are
separated into the shown colored groups using a clustering algorithm. (b) Pixel intensity profile (after Gaussian smoothing) for one row of the image
shown in (a). Gland centers are located at the local maxima. (c) Steps to process a cluster of local maxima points into a continuous curve. (d) and (e) The
gland (red) and inter-glands (green) lines obtained for a healthy and an unhealthy image.
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classified as healthy nor unhealthy according to the above cri-
teria are excluded from the analysis.

2.2 Detection of Gland Length

Meibography images present difficult challenges for image
processing. Apart from low contrast, nonuniformly illuminated,
and out-of-focus images, frequently there are artifacts such as
specular reflections and intruding eyelashes that can interfere
with the detection of the glands. In this paper, a pre-processing
step was taken to first manually edit away the artifacts. Then,
the following computational methods are applied to detect the
gland lines and widths.

2.2.1 Normalization of nonuniform illumination

Depending on the direction and focus of the infrared light
source, meibography images may be nonuniformly illuminated.
Figure 2(a) and 2(b) shows examples where these artifacts
can be observed. If the raw image Fig. 2(a) is just enhanced
using histogram equalization,13 the nonuniform illumination
inherent in the raw image results in an image Fig. 2(b) that
is bright at the center but dark at the edges. Although the sta-
tionary points (cf. Sec. 2.2.2 below) can be located in the bright
region, this is difficult in the dark regions. Hence, a preproces-
sing step to normalize the nonuniform image intensity is needed
so as to extract the stationary points in the darker regions as well.
The result of normalization followed by enhancement is shown
in Fig. 2(c). The stationary points obtained from Fig. 2(c) are
added to those obtained from Fig. 2(b) (cf. the full algorithm
in Fig. 3).

To normalize the image intensity, the nonuniform light illu-
mination is modeled as

IðxÞ ¼ bðxÞJðxÞ þ nðxÞ; (1)

where IðxÞ is the observed image intensity at pixel x, JðxÞ is the
original signal to be restored, bðxÞ is the unknown nonuniform
illumination field, and nðxÞ is the noise. The goal is to recover
the original signal JðxÞ by estimating bðxÞ. bðxÞ is estimated
using fuzzy c-means clustering method16 and the original signal
is estimated as JðxÞ ¼ IðxÞ∕bðxÞ. After getting JðxÞ, a 2D con-
trast enhancement method17 is applied to improve the contrast.
The result is shown in Fig. 2(c).

2.2.2 Extracting gland and inter-gland lines

To detect the gland and inter-gland lines, the enhanced images
[e.g., Fig. 2(b) and 2(c)] are smoothed using a Gaussian kernel
(45 × 45 window, σx ¼ σy ¼ 7.25).* Consider the intensity pro-
file of the smoothed image in the horizontal direction [Fig. 1(b)].
The gland centers and inter-gland points are located at the local
maxima and minima of this profile, where the gradient of the
pixel intensity vanishes. The colored pixels of Fig. 1(a) show
that the maxima points lie along the centers of the glands. To
separate the maxima points into different groups [as shown
in Fig. 1(a), where pixels belonging to the same group are

represented using the same color], two maximum points are con-
sidered as belonging to the same group if they are separated by a
Euclidean distance of lesser than 10 pixels.† After grouping the
points, to transform each group of points into one continuous
line, the morphological processing steps in Fig. 1(c) are applied.
The idea is to first dilate all the pixels so as to merge them into
one connected component [Fig. 1(c) ii, merging], fill up any
inner holes [Fig. 1(c) iii, filling], thin it to one pixel thick
[Fig. 1(c) iv, thinning], and finally remove side branches
[Fig. 1(c) v, pruning]. The full algorithm is summarized
in Fig. 3.

Figure 1(d) and 1(e) shows the gland (maxima, red) and
inter-gland (minima, green) lines obtained for a sample healthy
and unhealthy image. By visual inspection, it is observed that
there is a tendency for the lines in the healthy image to be longer
than those in the unhealthy one. The arclength of a gland line is
used as an approximation for the length of the corresponding
gland, and the average arclength of all the lines (both gland
and inter-gland lines) in an image is used as a feature of that
image for classification.‡

2.3 Detection of Gland Width Using SIFT-Shannon
Entropy

Scale invariant feature transform (SIFT)18 is an algorithm to
detect and describe local features in images. For meibography
images, the scale feature in SIFT is used to represent the thick-
ness or width of the glands. Figure 4(a) shows an example of the
so-called SIFT key points (red circles) computed by applying
SIFT on a histogram equalized image (no normalization).
The size of the key point (its scale) detects the width of the
gland and the inter-gland distance [blue box in Fig. 4(a)].

Figure 4(a) and 4(b) compares the key points of a healthy and
an unhealthy image. For an unhealthy image, the scales are gen-
erally smaller than those of a healthy image. The average width
of all the glands in an image is approximated by the average of
the scales of the key points. Let sσ be the scale of the key point σ
on the image. Then the average scale s̄ is defined as

s̄ ¼ 1

N

X

σ

sσ; (2)

where N is the total number of SIFT key points and
P

σ means
sum over all the key points.

It was also observed that for the healthy glands, because of
the zebra-strip gland patterns, neighboring key points have the
same scale, and are located in an orderly manner along the cen-
ter of and between the glands [blue box in Fig. 4(a)]. For an
unhealthy image, because there are no gland patterns, the key
points are randomly scattered and have nonuniform scales.
This difference in local scale distribution can be captured
using Shannon entropy, which is a measure of the uniformity

*σx and σy are determined as σx;y ¼ ð0.5 · nx;y − 1Þ · 0.3þ 0.8, where nx;y are the
sizes of the window widths in the x, y directions, as given in Ref. 8. It was found
that if nx;y < 45, the pixel intensity profile is not smooth enough, resulting in many
spurious stationary points which do not lie along the gland and inter-gland lines. If
nx;y > 45, some of the thinner glands will merge together, resulting in lost of infor-
mation. By visual inspection, it was found that nx;y ¼ 45 is the optimum window
size.

†By visual inspection, it was found that a threshold distance of 10 pixels gives the
best grouping result. Most of the groups will merge together if more than 10 pixels
are used, whereas there will be many small groups if lesser than 10 pixels are
used.
‡The observation that all the gland lines are longer in healthy images than in
unhealthy ones does not hold strictly for all the images studied. To check
the computational calculations, the authors drew manually and analyzed the
gland lines of all the images used in this study. It was found that although
the shortest glands are significantly shorter in unhealthy compared to healthy
eyes, the longest ones are not significantly longer. Hence, the average length
of the gland lines is used as a feature. The usefulness of this measure can partly
be justified by its effectiveness in classifying the images (cf. Sec. 3.2).
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of a distribution. Let sσi be the scale of the i’th nearest key point
to the key point σ. Define the normalized scale pσ

i for the ith
nearest key point as

pσ
i ¼

ðsσi Þ2P
n
i¼1 ðsσi Þ2

; (3)

where n is the number of nearest neighbor SIFT points consid-
ered (we use n ¼ 20). The Shannon entropy of the key point σ,
SðσÞ, is defined as,

SðσÞ ¼ −
Xn

i¼1

pσ
i ln pσ

i : (4)

SðσÞ is maximized only when all the pσ
i are equal (i.e., uniform).

The average entropy of the image S̄ is

S̄ ¼ 1

N

X

σ

SðσÞ: (5)

S̄ should be high for a healthy image because of its uniform local
distribution of scales, and low for an unhealthy one because its
scales are randomly and nonuniformly distributed.

The average arclength, s̄, and S̄ will be used in the next sec-
tion as features for classification.

3 Results

3.1 Separation Healthy and Unhealthy Images

Figure 5(a) shows how the healthy and unhealthy images are
distributed according to their average arclength. The x-axis is
the average arclength of the lines in an image and, to aid visua-
lization, the y-axis shows the coefficient of variation of the lines
[i.e., (standard deviation)/(mean)]. Each image is represented as
a point. The healthy images (blue points) are well-separated
from the unhealthy images (red points) along the x direction,
meaning that the average arclength is a good feature for separ-
ating the healthy and unhealthy class. Figure 5(b) shows the dis-
tribution of the healthy and unhealthy images according to their
s̄ (y-axis, average scale) and S̄ (x-axis, average entropy). Once
again, the healthy and unhealthy points are well-separated,
meaning that they are also good features.

3.2 Accuracy of Classification

The three features (average arclength, s̄, and S̄) are used to train
a linear support vector machine (SVM).19 Half of the images (13

Fig. 3 Flowchart outlining steps for extracting gland and inter-gland lines. Reference for specific algorithm: FIFO, dilation,13 floodfill,13 skeletoniza-
tion,14 and pruning.15

(1)
(2) (3)

(a) (b) (c)

Fig. 2 (a) Raw meibography images have low contrast, making it difficult to visually recognize the meibomian gland structures. Specular reflections
(red arrow) interfere with conventional enhancement methods. (b) Effects of nonuniform illumination on histogram equalization. The resultant image is
brighter at the center [green arrow (1)] and darker at the sides [purple arrows (2) and (3)], making it difficult to detect glands at different locations.
(c) Enhanced image after compensating for nonuniform illumination.
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healthy and 15 unhealthy) are randomly selected as training data
set to train the SVM, and the remaining half (13 healthy and 14
unhealthy) are used as the testing set. The success rate, defined
as the number of times the SVM correctly predicts the correct
label (i.e., healthy or unhealthy), is calculated for both the train-
ing set and testing set. This is repeated 100 times, where each
time a different set of training and testing images are chosen
randomly. The success rates are averaged over the 100 repeti-
tions, and the results are shown in Table 1. For the training
data, the classifier has an average specificity of 97% for predict-
ing the healthy images, and sensitivity of 100% for predicting
the unhealthy ones. For the testing data, the result is a specificity
of 96% and sensitivity of 98%.

4 Discussion
In this paper, meibography images are classified using criteria
based on gland lines and width, which are different from the
well-established criteria based on the area of meibomian
gland loss.7 In order to compute the area of meibomian gland
loss, the gland region needs to be segmented from the back-
ground nongland region. Without any input from the user,
this is computationally challenging because the image pixel
intensity changes gradually between the borders and edges of
the glands, making it difficult for the algorithm to decide the
appropriate bounderies between glands. Gland lines and
width, on the other hand, are easier to detect without the
user, and the results presented in this paper can be considered
as successful first steps based on these simpler features. In future
work, these two features will be combined to segment the indi-
vidual glands. This will allow the gland area to be computed,
which will then allow images to be graded according to the
established criteria.

This study focused on images of the upper eyelids because it
was easier to obtain a uniformly focused image of the tarsal
plate. Clinically, however, it is sometimes easier to work with
the lower lids because they are less uncomfortable for the
patients. The methods presented here have also been tested
on 10 healthy lower lid images. It was found that the gland
and inter-gland detection algorithm is effective for the lower
lid images. For the detection of gland widths, the bright and
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Fig. 5 Separation of healthy and unhealthy images in feature space. Each point represents an image.

Table 1 Success rate of predicting the correct label (healthy or
unhealthy) using a linear SVM. The results are obtained by averaging
over 100 different random selections of training and testing data sets.

Specificity
(� stand.err.) (%)

Sensitivity
(� stand.err.) (%)

Training data 96.8� 0.4 100.0� 0.0

Testing data 96.1� 0.4 97.9� 0.6

(a) Healthy (b) Unhealthy

Fig. 4 SIFT key points (red circles) of a healthy and an unhealthy image. Radius indicates the scale of the key point. Blue box: The scales detect the
gland widths and inter-gland distances.
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dark strips of the zebra-strip pattern are different from the upper
lids, with the dark strips being very narrow and the bright strips
being much wider and frequently touching. Width detection for
the bright and dark strips should be done separately, and using
different scales. The calculated features for the lower lids are
also different compared to the upper lids, so classification of
upper and lower lids should be performed separately. Overall,
the techniques here are applicable to both upper and lower lids.

In addition to gland length and width, meibomian glands can
also be characterized by other morphological features such as
shape, contour, and tortuosity.5–7,9 Such features are important
when grading images that are intermediate between the healthy
and unhealthy ones. A limitation of the current study is that
these features were not assessed. The healthy and unhealthy
glands images considered here are extreme cases, and, although
easy for any trained examiner, is challenging for an automated
algorithm. This paper focuses on them because any algorithm
working without user input should first be able to classify
these simplest cases before addressing more difficult intermedi-
ate cases. It is shown here that based on the detected gland lines
and width, the classification performed by the algorithm agrees
closely with that done by human experts.

When applied to the classification of intermediate images,
the current algorithm utilizing only gland length and width
failed to produce satisfactory result. Instead of being distinctly
separated in feature space like the healthy and unhealthy cases
(Fig. 5), the intermediate cases overlaps with the healthy and
unhealthy points. This makes it difficult for the SVM to classify.
However, this is expected because studies have already shown
that the meibomian gland structure of intermediate cases must
be described by additional morphological features such as tor-
tuosity,5–7,9 whereas in the current computational method, only
the length and width of the gland are considered. To treat the
intermediate cases, additional morphological features can be
computed based on the gland lines already obtained, and be
used to expand the dimension of the feature for the SVM.
The assessment of these morphological features and their appli-
cation to the grading of intermediate images will be reported in
future work.

An important difficulty encountered in this work concerns
how images are taken. Slightly different ways of taking an
image will not influence the gland structure. But because it
introduces complication during the computational analysis,
the final conclusions might be affected. This problem is impor-
tant in this paper because the objective is to have a user-free
assessment of the gland structure, so any error caused by detec-
tion of errorneous artifacts present in the image will not have the
chance to be corrected by the user. This ultimately introduces
errors into the final results. To be specific, there may be artifacts
such as intruding eyelashes, specular reflections from the tear
film, and misalignment of the gland region in the image. In
this paper, the primary concern is to demonstrate the ability
of the proposed algorithms in detecting meibomian glands,
and so the computational difficulty of handling artifacts was
dealt with heuristically. An image editing software was used
to edit away parts of the image not directly related to the
gland region by manually drawing out the region of interest
in an image. The gland detection algorithm are then applied
to the identified region. Although this process of drawing out
gland region manually may appear similar to what has already
been done in previous studies,5–7,9 the important difference is
that here the region inside the identified area is subjected to

gland detection by the algorithm, whereas in previous studies
the area of interest are drawn by the user with the intention
of locating the glands.

As the ultimate objective is to achieve completely automated
detection of gland regions without any user input, it is important
to also develop an algorithm for locating the area of interest. It is
found that this can be achieved by a simple change in the ima-
ging protocol. The magnification when taking an image should
be lowered such that the upper eyelid margin and the edge of the
upper tarsal plate are both visible on the image; the margin and
edge can then be used as references lines to define the gland
region. This two lines can be detected using image processing
techniques,13 and then the area of interest is obtained. Such a
user-free way of locating the area of interest is desirable because
it eliminates the subjectiveness introduced by clinicians when
drawing the area of interest. Different examiners may draw
the area differently; an algorithmic method, on the other
hand, will always produce the same region everytime. In the
current study, images analyzed were collected from an earlier
clinical study where the need to include the upper eyelid margin
and upper tarsal plate in the images was not foreseen. In sub-
sequent studies, this precaution will be taken and the area of
interest will be automatically identified. This work will be
reported in a future paper.

5 Conclusion
In this paper, a use-free computational approach to detecting
meibomian glands and classifying meibography images was
presented. The gland and inter-gland lines, and gland width
were detected algorithmically, and then used as features for clas-
sification of the images. The classification results by the com-
putational approach agrees closely with that done by human
experts, with a specificity of 96% for healthy images, and sen-
sitivity of 98% for unhealthy ones.

Acknowledgments
We thank Ivy Law and Choon Kong Yap for their comments.
This work is supported in part by the Agency for Science, Tech-
nology, and Research (A*STAR) of Singapore, Biomedical
Research Council/Translational Clinical Research Programme
2010 Grant 10/1/06/19/670, and National Medical Research
Council individual grants NMRC/1206/2009, NMRC/CSA/
013/2009, and NMRC/CG/SERI/2010.

References
1. L. Tong et al., “Screening for meibomian gland disease: its relation to

dry eye subtypes and symptoms in a tertiary referral clinic in singapore,”
Investigat. Ophthalmol. Vis. Sci. 51(7), 449–3454 (2010).

2. R. Arita et al., “Noncontact infrared meibography to document age-
related changes of the meibomian glands in a normal population,”
Ophthalmology 115(5), 911–915 (2008).

3. R. Arita et al., “Contact lens wear is associated with decrease of mei-
bomian glands,” Ophthalmology 116(3), 379–384 (2009).

4. R. Arita et al., “Proposed diagnostic criteria for obstructive meibomian
gland dysfunction,” Ophthalmology 116(11), 2058–2063 (2009).

5. H. Pult, B. H. Riede-Pult, and J. J. Nichols, “Relation between upper
and lower lids’ meibomain gland morpohology, tear film, and dry eye,”
Optomet. Vis. Sci. 89(3), E310–E315 (2012).

6. H. Pult and B. H. Riede-Pult, “Non-contact meibography: keep it simple
but effective,” Cont. Lens Anterior Eye 35(2), 77–80 (2012).

7. H. Pult and J. J. Nichols, “A review of meibography,” Optomet. Vis. Sci.
89(5), 760–769 (2012).

8. H. Pult and B. H. Riede-Pult, “An assessment of subjective and objec-
tive grading of meibography images,” (To be presented at ARVO 2012).

Journal of Biomedical Optics 086008-6 August 2012 • Vol. 17(8)

Koh et al.: Detection of meibomian glands and classification of meibography images

http://dx.doi.org/10.1167/iovs.09-4445
http://dx.doi.org/10.1097/OPX.0b013e318244e487
http://dx.doi.org/10.1016/j.clae.2011.08.003
http://dx.doi.org/10.1097/OPX.0b013e3182512ac1


9. S. Srinivasan et al., “Infrared imaging of meibomian gland structure
using a novel keratograph,” Optomet. Vis. Sci. 89(5), 1–7 (2012).

10. T. Kamao et al., “Screening dry eye with newly developed ocular sur-
face thermographer,” Am. J. Ophthalmol. 151(5), 782–791 (2011).

11. T. Y. Su et al., “Noncontact detection of dry eye using a custom
designed infrared thermal image system,” J. Biomed. Opt. 16(4),
046009 (2011).

12. J. J. Nichols et al., “An assessment of grading scales for meibography
images,” Cornea 24(4), 382–388 (2005).

13. G. R. Bradski and A. Kaehler, Learning OpenCV - computer vision with
the OpenCV library: software that sees, O’Reilly (2008).

14. L. Lam, S.-W. Lee, and C. Y. Suen, “Thinning methodologies-a com-
prehensive survey,” IEEE Trans. Patt. Anal. Mach. Intell. 14(9),
869–885 (1992).

15. A. Niemistö et al., “Robust quantification of in vitro angiogenesis
through image analysis,” IEEE Trans. Med. Imag. 24(4), 549–553
(2005).

16. M. Ahmed et al., “A modified fuzzy c-means algorithm for bias field
estimation and segmentation of MRI data,” IEEE Trans. Med. Imag.
21(3), 193–199 (March 2002).

17. T. Celik and T. Tjahjadi, “Contextual and variational contrast
enhancement,” IEEE Trans. Imag. Process. 20(12), 3431–3441
(2011).

18. D. G. Lowe, “Object recognition from local scale-invariant features,”
Proc. ICCV 2, 1150–1157 (1999).

19. N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods, Cambridge
University Press, Cambridge (2000).

Journal of Biomedical Optics 086008-7 August 2012 • Vol. 17(8)

Koh et al.: Detection of meibomian glands and classification of meibography images

http://dx.doi.org/10.1097/OPX.0b013e318253de93
http://dx.doi.org/10.1016/j.ajo.2010.10.033
http://dx.doi.org/10.1117/1.3562964
http://dx.doi.org/10.1097/01.ico.0000148291.38076.59
http://dx.doi.org/10.1109/34.161346
http://dx.doi.org/10.1109/TMI.2004.837339
http://dx.doi.org/10.1109/42.996338
http://dx.doi.org/10.1109/TIP.2011.2157513

