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Abstract. The ability of combining serum surface-enhanced Raman spectroscopy (SERS) with support vector
machine (SVM) for improving classification esophageal cancer patients from normal volunteers is investigated.
Two groups of serum SERS spectra based on silver nanoparticles (AgNPs) are obtained: one group from patients
with pathologically confirmed esophageal cancer (n ¼ 30) and the other group from healthy volunteers (n ¼ 31).
Principal components analysis (PCA), conventional SVM (C-SVM) and conventional SVM combination with PCA
(PCA-SVM) methods are implemented to classify the same spectral dataset. Results show that a diagnostic accuracy
of 77.0% is acquired for PCA technique, while diagnostic accuracies of 83.6% and 85.2% are obtained for C-SVM
and PCA-SVM methods based on radial basis functions (RBF) models. The results prove that RBF SVM models are
superior to PCA algorithm in classification serum SERS spectra. The study demonstrates that serum SERS in combi-
nation with SVM technique has great potential to provide an effective and accurate diagnostic schema for
noninvasive detection of esophageal cancer. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO

.18.2.027008]
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1 Introduction
Esophageal cancer is one of the common malignant tumors
worldwide with an annual incidence of about 300 thousand
cases and a five-year survival rate of 10% to 25%. Early diag-
nosis and treatment is important to improve the survival rate.1

However, there are many disadvantages in conventional esopha-
geal cancer screening methods such as white-light endoscopy
and biopsy. For example, endoscopy check depends on visual
identification of gross morphological tissue changes. It is diffi-
cult to detect subtle early neoplastic changes, and the examina-
tion results are relevant to the skill of physician. Excision biopsy
is invasive and impractical for a high-risk patient with multiple
suspicious lesions. Therefore, it is urgently desirable to develop
a noninvasive means to early diagnose esophageal cancer.

In recent years, the Raman spectroscopy technique has
received a great deal of interest in the biomedical field.2–4 It
has been applied to differentiate normal and malignant tissues
of various body sites, include breast, bladder, lung, prostate, cer-
vix, skin, etc.5–8 Raman spectroscopy is a molecular vibration
spectral method discovered by the Indian scientist Raman
C.V. in 1928. It can provide fingerprinting type information
about the structure and conformation of macromolecules such
as proteins, lipids and nucleic acids. Compared with the

fluorescence spectroscopy and infrared absorption spectroscopy,
Raman spectroscopy has many advantages.4 For instance, there
is no photobleaching in Raman scattering, and Raman spectral
peaks are narrow.

However, two disadvantages of Raman spectroscopy make it
difficult to practical application in clinic diagnosis. One of draw-
backs is that the efficiency of Raman scattering is very low due
to its extremely small cross-section (10−30 to 10−25 cm2); the
other is that a strong fluorescence background of biological sam-
ples make it difficult to extract from the original signal. With the
discovery of surface-enhanced Raman spectroscopy (SERS) in
1974 by Fleischman et al., Raman spectroscopy technique
acquired a rapid development.9 Single molecule absorbing
onto a single silver nanoparticle has been successful probed
by SERS. This facilitates the application of SERS technology
in the detection of biological materials such as DNA, RNA,
and proteins. The most recent reports show that SERS has
been used for target detection of tumor markers in the blood or
on the cell surface by the immunoassay approaches.10–12

Blood samples are ideal disease screening materials for non-
invasive diagnosis. They are rich in proteins, fates, cholesterol,
etc. At the early stage of cancer, these components will undergo
subtle changes which can be revealed by SERS. Chen R. group
has researched several types of patients include gastric cancer,
nasopharyngeal carcinoma, colon tumor with blood SERS. They
successfully distinguish cancer patients from normal volunteers
with sensitivity and specificity of 90% or more.13–15
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However, the differences of Raman spectroscopy between
normal and pathologic tissues are usually tiny that it is difficult
to differentiate them with direct means. The powerful and robust
spectral data processing algorithms are much needed to extract
effective diagnostic information. Multivariate statistical tech-
niques such as principal component analysis (PCA), linear dis-
criminant analysis (LDA) and artificial neural networks (ANNs)
have been successfully used to develop diagnostic algo-
rithms.5,15,16 For example, Feng et al., use PCA-LDA technique
to distinguish serum SERS of nasopharyngeal cancer, they
acquire sensitivity 90.7% and specificity 100%.13

Another powerful multivariate technique, support vector
machine (SVM), which was introduced by Vapnik and
Burges, has attracted great attention due to its capability of rep-
resenting nonlinear features.17,18 The SVM technique has now
been applied to classify spectral data for tissue diagnose. For
instance, Huang et al., used PCA-SVM techniques to classify
multiclass Raman spectra from different types of pathological
colonic tissues.19 Lin et al., implemented linear and nonlinear
SVM methods for the classification of autofluorescence spec-
troscopy from nasopharyngeal carcinomas and normal tissues
with diagnostic accuracy higher than that of PCA-LDA.20 To
date, the application of SVM to distinguish serum SERS for
noninvasive cancer detection has not yet been reported. This
study aims to explore the potential of SVM technique combin-
ing with serum surface-enhanced Raman spectroscopy (SERS)
to detect esophageal cancer. Three multivariate statistic analysis
methods including principal components analysis (PCA), con-
ventional SVM (C-SVM) and conventional SVM combination
with PCA (PCA-SVM) methods were implemented to classify
the same spectra dataset. The diagnostic performance of all
SVM models were exhaustively optimized and evaluated by
leaving one out cross validation method.

2 Materials and Methods

2.1 Synthesis of AgNPs

AgNPs was synthesized following the reported method.21 First,
18 mg of AgNO3 were added to 100 ml water under strong stir-
ring. When the solution was boiling, 2 ml of citrate sodium
(1 wt.%) was slowly added into the solution. Then the solution
was boiled for 40 min and cooled in ambient conditions. The
AgNPs was characterized by an absorption maximum at
424 nm in Fig. 1. A transmission electron microscopy (TEM)
photograph of the prepared silver colloid was showed in the
inserted picture.

2.2 Preparation of Human Serum Samples

Serum samples were collected from 61 individuals consisting of
31 healthy volunteers and 30 esophageal cancer patients who
were confirmed clinically with histopathology. In these 30 can-
cerous patients, 24 cases were mid-cancers (II, III stage), 3 cases
early cancers (I stage) and 3 cases advanced cancers (IV stage).
All patients were from Sun Yat-sen University Cancer Center
and signed an informed consent to permit collection of blood
prior to research. After 12 h of overnight fasting, a single
3 ml peripheral blood samples were obtained from the study
subjects between 7:00 and 8:00 A.M. Serum was obtained by
extracting supernatant from blood samples centrifuged at
3500 rpm for 5 min.

Before SERS measurement, 20 μL silver colloidal nanopar-
ticles were mixed with 20 μL serum. The mixture was stirred
with the pipette tip and then incubated 1 h at room temperature.
Next, a drop of this mixture was transferred onto an aluminum
plate and dry naturally 1 h for SERS measurement.

2.3 SERS Measurements and Data Preprocessing

The Raman spectroscopy was recorded with a confocal Raman
microscopy (Renishaw, inVia, United Kingdom) in the range of
600 to 1800 cm−1 with a spectral resolution about 1 cm−1 under
a 785 nm diode laser excitation. The power of laser exposed on
sample is about 0.5 mw with a spot diameter about 5 μm. The
spectra were collected in back-scattered geometry using a Leica
DM2500 microscope equipped with objective 20×; The soft-
ware package WIRE 3.2(Renishaw) was employed for spectral
acquisition and analysis. Each Raman spectra was accumulated
two times with an integration time of 10 s. Each sample was
collected three spectra and then these three spectra were aver-
aged. All data were collected under the same conditions.

A fifth-order polynomial was employed to fit the autofluor-
escence background, and then this polynomial was subtracted
from original spectra. In order to compare the changes of spec-
tral shapes and relative peak intensities among different serum
samples, the area normalized of spectra under the curve was
employed. Vancouver Raman algorithm was used to spectra
smoothed and baseline correct.22 It is an automated autofluor-
escence background subtraction algorithm based on modified
multipolynomial fitting.

2.4 Support Vector Machine

Support vector machine (SVM) is a relatively young multivari-
ate data classification method and was first proposed by Vapnik.
It is based on the principal of minimization of structural risk by
the appropriate choice of function subset and discriminant func-
tion, ensuring the actual risk of learning machines to a mini-
mum. Thus, it is an excellent learning machine with optimal
classified ability and generalization ability. SVM has been
applied successfully in many fields, such as face recognition,
text categorization, gene selection, and so on.20,23–25

Compared with other multivariate statistical methods, SVM

Fig. 1 UV/visible absorption spectrum of the Ag colloid. The absorption
maximum is located at 424 nm. The inserted picture is the TEM micro-
graph of Ag colloidal surface.
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has many advantages: first, it is a powerful way to classify a
small size of datasets; second, it can give reproducible solutions;
third, it has the ability to deal with class boundaries with com-
plex conditions by replacing the kernel functions.

For linearly separable binary classification sample sets, SVM
finds an optimal hyperplane to maximize the margin between
them. When the sample sets are nonlinear nonseparable,
SVM maps the sample data to a higher dimensional feature
space to linearize the boundary of sample sets by specific kernel
functions. The three most frequently used kernel functions are:

Linear : Kðxi; xjÞ ¼ xi ⋅ xj þ 1; (1)

Polynomial kernel : Kðxi; xjÞ ¼ ðxi ⋅ xj þ 1Þd; (2)

Gaussian radial basis function ðRBFÞ∶ Kðxi; xjÞ

¼ exp

�
−kxi − xjk2

2σ2

�
; (3)

where xi and xj are the two generic sample data vectors.
To get a support vector machine classifier with good gener-

alization ability, choice of an appropriate kernel function which
projects data to the feature space is critical. For a given kernel
function, optimization of the corresponding parameter is also
important, such as the polynomial order d in the polynomial ker-
nel and Gaussian width σ in the Gaussian RBF kernel. Once the
data are mapped into the feature space an infinite number of
separating hyperplanes may exist, creating the risk of overfitting
the hyperplanes to the given data points. The overfit hyperplane
can perfectly separate training data, but it poorly predicts unseen
data. To overcome this problem, a penalty factor C is introduced
to allow some training data to be misclassified, the higher C the
lower misclassification rate.

In this work, conventional SVM technique (C-SVM) and
conventional SVM combining with PCA method (PCA-
SVM) are to be assessed. For every type of SVM technique,
linear and RBF kernel functions are employed to build two
classes of diagnostic algorithms. All diagnostic algorithms
are optimized with grid search and evaluated by leave one sam-
ple out cross validation method, which involves using one sam-
ple held out from dataset as the validation data, and the remain
samples as the training data, this process is repeated such that
each sample is used once as the validation data. The optimiza-
tion criterion is to maximize overall diagnostic accuracy
obtained from leave one out cross validation methods.

The optimized algorithms developed from the training set are
used to classify the withheld spectra measured from one subject.
This procedure is repeated until all 61 mean spectra measured
from 61 subjects are classified. The overall diagnostic accuracy
of a particular algorithm is calculated based on the classifica-
tions of the withheld spectra over 61 rounds of cross validation.
In order to compare the performance of SVM models, the same
dataset is used for the investigation of PCA. The leave one sam-
ple out cross validation is executed to test the performance of
PCA. The LIBSVM toolbox 3.1 created by Chang and Lin is
used for SVM classifications. All the procedure is implemented
with MATLAB language.

3 Results
We have measured the regular Raman spectra and surface-
enhanced Raman spectra of serum sample come from the
same esophageal cancer patient in order to assess the silver
colloid enhancement effects on the serum Raman scattering.
Figure 2(a) displays SERS spectra of the serum sample from
an esophageal cancer patient by mixing the serum with silver
colloid at a 1∶1 proportion, Fig. 2(b) the regular Raman spectra
of serum sample from the same patient without the Ag colloid. It
is clearly shows that there is almost no Raman peak observed for
the regular Raman spectra of serum sample without silver col-
loid, while there is a huge enhanced for the SERS spectra with
Ag colloid. The dramatic increase in many dominant vibration
bands indicates there is a strong interaction between AgNPs and
serum. Because of this interaction, biochemical substances of
serum sample absorb closely on the surface of silver particles,
resulting in a tremendous enhanced of Raman scattering.

A total of 61 serum SERS spectra were obtained, in which
30 Raman spectra were from cancerous patients and 31 from
normal subjects. Figure 3 shows normalized average SERS
spectra�1 standard deviations of esophageal cancer and normal
serum in the range from 600 to 1800 cm−1. The shade area
represents the standard deviations. Primary Raman peaks are
observed in normal and cancerous esophageal serum at
683 cm−1 (C-S twist), 722 cm−1 (C-H bending adenine, coen-
zyme), 858 cm−1 (C-C stretch of proline ring, ring breathing of
tyrosine), 915 cm−1 (C-C stretch of proline ring, glucose),
1020 cm−1 (C-H stretch of phenylalanine), 1130 cm−1 (C-N
stretch, D-mannos), 1219 cm−1 (C C6H5 phenylalanine, tryp-
tophan), 1314 cm−1 (CH3CH2 twisting collagen/lipids),
1346 cm−1 (CH3CH2 wagging, tryptophan adenine, guanine),
1445 cm−1 (CH2 bending, collagen/lipids), 1585 cm−1 (C C
bending, phenylalanine, acetoacetate, riboflavin). The strongest
peaks are at 1219, 1346, 1445, and 1585 cm−1.13,14,26,27 The
spectral differences between esophageal cancer and normal
serum are clearly displayed in Fig. 3(c). The distinct differences
imply that there is an enormous potential to diagnosis esopha-
geal cancer with serum SERS technique.

We employed linear and RBF kernel functions to develop
C-SVM diagnostic algorithms for classification serum SERS

Fig. 2 (a) SERS spectra of the serum sample from a patient with esopha-
geal cancer obtained by mixing the serum with Ag colloid at a 1∶1 pro-
portion. (b) The regular Raman spectra of serum sample from the same
patient without the Ag colloid.
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spectra of esophageal cancer patients from normal volunteers.
The linear C-SVM algorithm needs to be optimized to search
the optimal parameter C, which gives the best trade-off between
the training error and generalization ability. The search range for
parameter C is performed from 2−10 to 25 with step of power of
two. The overall diagnostic accuracy as a function of parameter
log2C is shown in Fig. 4. It is displayed that the largest diag-
nostic accuracy of 73.3% is acquired with the parameter C
value at 2−8. Table 1 shows the classification results of the
serum SERS spectra using the leave one out cross validation
with the linear C-SVM algorithm at parameter C ¼ 2−8. A
diagnostic sensitivity of 73.3% and specificity of 71.0% can
be obtained.

In the development of RBF kernel C-SVM algorithm, the
parameter C and Gaussian width σ are to be optimized to
build the efficient classifier. In this study the grid search is
implemented to exhaustively search optimal parameters by try-
ing various pairs of parameters. The range of C is from 2−10 to
215 and Gaussian width σ from 0 to 2−15. Figure 5 shows the

three-dimensional (3-D) map of overall diagnostic accuracy
as a function of parameter C and Gaussian radial width σ. It
is clearly exhibits that a smaller C or σ gives lower diagnostic
accuracy. The largest diagnostic accuracy of 80.0% locates at
C ¼ 28 and σ ¼ 2−14. Table 1 lists the cross validation results
of serum SERS spectra at the highest overall diagnostic accu-
racy in the RBF C-SVM. The diagnostic sensitivity of 83.3%
and specificity of 83.9% are achieved for differentiation
serum SERS spectra between esophageal cancers and normal
subjects in the using the RBF C-SVM algorithm.

In this study, the range of Raman spectra is from 600 to
1800 cm−1 with 1108 variables, such a high-dimensional spec-
tra would lead to a very complex calculation and time-consum-
ing in the application of C-SVM. In addition, the spectra also
contain many redundant data and noise. All these limit the effi-
ciency of SVM technique. It is significant to reduce the dimen-
sions of the spectral data by PCA technique to simplify the
implementation of the SVM algorithm and to improve the
performance.

PCA is a mathematical tool that reduces the dimensions of
dataset using an orthogonal transformation to convert the obser-
vations of possibly correlated variables into a set of values of
linearly uncorrelated variables called principal components
(PCs). The transformation is such that the first principal com-
ponent has the largest possible variance, and each succeeding
component has the highest variance possible under the con-
straint that it be orthogonal to the preceding components.
Therefore the principal components are normally arranged in
the order of their contributions to the variance of entire dataset.
Most of the information carried in the dataset is distributed in

Fig. 3 Normalized mean SERS spectra of 30 esophageal cancer and 31
normal serum sample. (a) Cancer, (b) normal, (c) difference spectra
(cancer-normal, the difference spectra intensity is enlarged five times
for clear display), shade area represents the standard deviations.

Fig. 4 Dependence of classification accuracy on parameter C for a lin-
ear SVM algorithm.

Table 1 Results of classification of serum SERS with different
algorithms.

Algorithm

C-SVM PCA-SVM

PCA-LDALinear RBF Linear RBF

Specificity (%) 71.0 83.9 77.4 86.7 77.4

Sensitivity (%) 73.3 83.3 76.7 83.3 76.7

Accuracy (%) 72.1 83.6 77.0 85.2 77.0

Fig. 5 3-D map of overall diagnostic accuracy as a function of param-
eter C and Gaussian radial width σ using the RBF C-SVM algorithm.

Journal of Biomedical Optics 027008-4 February 2013 • Vol. 18(2)

Li et al.: Study of support vector machine and serum surface-enhanced Raman spectroscopy. . .



first few principal components, and the contributions of the rest
of principal components are negligible. By this orthogonal trans-
formation, the dimensions of dataset can be significantly
reduced without losing important information.

When PCA is employed to process Raman spectra, it trans-
forms Raman shift into a set of PC spectra. Each PC loading
spectra is a combination of original Raman spectra. Figure 6
shows the contributions of eigenvalues of each principal com-
ponent to the total variance of all serum SERS spectra. As
shown in the figure, the eigenvalues drop off rapidly with
increasing PC numbers, and the first few PCs retain the maxi-
mum variance of the data. For instance, the first two PCs
account for 50.1% of the total variance; the first five PCs
account for 74.6%; the first 10 PCs account for 89.8%; and
the first 20 PCs account for 97.4%. In order to comparison
the classification performance of SVM algorithm and PCA tech-
nique, PCA combination with linear discriminant analysis
(PCA-LDA) is used to classify the same Raman dataset. The
classification accuracy of 77.0% is obtained with the first 20
PCs scores. This result is lower than that of RBF kernel
C-SVM algorithm.

Linear and RBF kernel functions are employed to develop
PCA-SVM algorithm. The first 20 projection scores of serum
SERS on PC loadings are used to build dataset for developing
PCA-SVM models. All the parameters of PCA-SVM models
need to be optimized to build efficient classifier. For linear
PCA-SVM algorithm, the range of parameter C is set from
2−10 to 25. Figure 7 exhibits dependence of classification accu-
racy on parameter C. It is found that largest overall diagnostic
accuracy of 76.7% is obtained with the parameter C of 0.25. The
cross validation results of serum SERS spectra at the parameter
C ¼ 0.25 in the linear PCA-SVM are listed in Table 1. The
diagnostic sensitivity of 76.7% and specificity of 77.4% are
obtained.

In the RBF kernel PCA-SVM classification, grid search
approach was implemented to find the optimum values of the
parameter C and Gaussian width σ. The range of parameter
C and σ is set from 2−10 to 215 and from 0 to 2−15. Figure 8
shows the 3-D map of overall diagnostic accuracy as a function
of parameter C and Gaussian radial width σ. It is clearly exhibit
that a smaller C gives lower classification accuracy. The largest
overall diagnostic accuracy of 83.3% locates at C ¼ 23 and

σ ¼ 2−10. Based on the optimal values of C and σ, the diagnostic
sensitivity of 83.3% and specificity of 86.7% are achieved in
Table 1 for differentiation serum SERS spectra between normal
volunteers and esophageal caner patients.

The performance of the RBF kernel PCA-SVM algorithm
using different numbers of principal components scores was
investigated. The results are displayed in Fig. 9. When the
first five PCs are used, the classification accuracy is 73.7%.
This result is higher than that of linear SVM algorithm with
full spectra (72.1%). With the PCs adding up to 15, the classi-
fication accuracy increases to maximum 85.2%. When PCs con-
tinue to add, the classification accuracy of RBF PCA-SVM
algorithm does not further increase. This illustrates that the
first five 5 PCs capture the information of linearly separable
samples, and the PCs from 5 to 15 seize the information of non-
linearly separable samples. With the PCA combination with
nonlinear SVM methods, the number of variables is reduced
from 1108 to 20. This shows that the PCA-SVM method con-
siderably simplifies calculations without sacrificing diagnostic
accuracy.

Fig. 6 Eigenvalues of principal components contributed to the total
variance of all serum SERS spectra. Fig. 7 Dependence of classification accuracy on parameter C for a

linear PCA-SVM algorithm.

Fig. 8 3-D map of overall diagnostic accuracy as a function of the
parameter C and Gaussian radial width σ using the RBF PCA-SVM
algorithm.
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4 Discussion
Raman spectroscopy is a unique noninvasive detection tech-
nique that can acquire abundant structural feature and compo-
sition information of biomacromolecule. It may become a
promising clinical diagnostic tool by probing subtle changes
of biomolecule relevant to tissue pathology. Raman scattering
signal is very weak, but with the appearance of SERS tech-
niques, the applications of Raman spectroscopy in biomedical
field are greatly advanced.9,10,28,29 In this study we have mea-
sured serum SERS of normal volunteers and esophageal cancer-
ous patients by Ag colloid. The dramatic increase in many
dominant bands in Fig. 2 implies there is a great potential to
diagnose the cancer by serum SERS technique. The specific
differences of SERS spectra between normal subjects and can-
cerous patients are observed in Fig. 3. It reflects the changes of
biochemical constitutes related to malignant transformation. For
instance, a considerable decrease of 1445 cm−1 (CH2 bending,
collagen/lipids) in cancerous serum illustrates that the propor-
tion of fat content is greatly reduced. The likely reason is
that amplified cancerous cells consume a lot of fat, resulting
in decrease of lipid molecules. This found is agreement with
other reports in many cancer tissues.30 The significant increase
of Raman bands from 1620 to 1670 cm−1 (C O stretch, amide
I, β-helix proteins) indicates a higher concentration of proteins
in the β-pleated sheet conformation for esophageal cancer,
which also had been found by Maziak et al., and Bergholt et al.31

The Raman spectral profiles of cancerous and normal tissues
are similar except there are subtle differences of some spectral
peaks. It is difficult to distinguish cancerous tissue from normal
subjects by directly contrast characteristic Raman peak. The
multivariate statistical analysis method is desirable to extract
a lot of useful information from Raman spectra. PCA is a con-
ventional multivariate statistical analysis method which converts
high dimensional Raman spectra into several unrelated variables
without loss of valid information by orthogonal transformation.
It has been widely applied to the medical diagnosis of Raman
spectroscopy.

SVM is another multivariate statistical analysis technique
presented recently. It can process binary classification problem
with nonlinear boundary by mapping to a higher dimensional
space. The main advantages are that it can efficiently classify
the small samples, regardless of the distribution nature of sam-
ples. In this work, we introduce C-SVM and PCA-SVM with

linear and RBF kernel to differentiate serum SERS spectra of
esophageal cancer patients from that of normal subjects. The
performances of these diagnostic algorithms based on SVM
techniques are comprehensively evaluated by leave one sample
out cross validation method. To compare with conventional
multivariate statistic methods, PCA-LDAwas employed to clas-
sify the same dataset. The results listed in Table 1 show that the
classification accuracy of RBF kernel SVM techniques (83.6%)
is better than that of PCA-LDA methods (77.0%). Similar
results are also proven by many other groups.17,27,32 Possible rea-
son maybe attribute to the fact that SVM utilizes nonlinear cor-
relations for spectra classification.17

In the course of implementing SVM algorithm, it is impor-
tant to select a proper parameter to acquire maximum diagnostic
accuracy. In this study, grid search and leave one out cross val-
idation method are employed to optimize the parameter C and
Gaussian width σ for the RBF kernel SVM algorithm. The range
of C is from 2−10 to 215 and Gaussian width σ from 0 to 2−15

with step of power of two. We obtain the maximum overall diag-
nostic accuracy of 80.0% for the RBF C-SVM algorithm at C of
29 and σ of 2−14, and 83.3% for the RBF PCA-SVM algorithm
at C of 24 and σ of 2−11. In order to confirm the optimization
results, the local optimization around the optimal point is imple-
mented further. For RBF C-SVM algorithm, the range of C is
from 28 to 210 and σ from 2−13 to 2−15 with step of 20.2; for RBF
PCA-SVM algorithm, the rang of C is from 22 to 24 and σ from
2−9 to 2−11 with step of 20.2. The results reveal that there is no
further increase for RBF C-SVM algorithm. This demonstrates
that the optimal methods are effective for the study.

The present study shows that the maximum diagnostic accu-
racy of linear C-SVM algorithm is 72.1%, which is lower than
that of linear PCA-SVM algorithm, 77.0%. The results indicate
that the linear PCA-SVM algorithm is superior to the linear
C-SVM algorithm in classification serum SERS spectra. The
main reason may be that the linear C-SVM algorithm uses the
entire spectra of 1108 variables, wherein there is some redun-
dant information which affects the classification results. On the
other hand, the linear PCA-SVM algorithm only employs 20
variables extracted from Raman spectra by PCA technique,
which can refine important information contained in spectra
and reduce redundant information. Similar results appear also
in RBF kernel SVM algorithm. The largest overall diagnostic
accuracy of RBF kernel C-SVM algorithm and RBF kernel
PCA-SVM algorithm is 83.6% and 85.2%, respectively, indicat-
ing more redundant information contained in RBF C -SVM
models than in RBF PCA -SVM.

The performance of PCA-SVM algorithm using different
numbers of PCs is investigated in Fig. 9. The overall diagnostic
accuracy of RBF kernel PCA-SVMmodels is higher than that of
linear PCA-SVM models in the same number of PCs, indicating
the existence of nonlinear boundary between cancerous and nor-
mal serum SERS spectra. The overall diagnostic accuracy of
72.1% for linear kernel PCA-SVM models in the first five
PCs is equal to that of linear C-SVM. This manifests that the
first five PCs contain all of linear classification information
for classifying linearly separable samples.

The data space of C-SVM models contains entire spectra
with 1108 variables. Such a high-dimensional data space will
inevitable lead to computational complexity and time-consum-
ing in optimizing and implementing SVM algorithm. For the
purpose of simplifying implementation of SVM algorithm,
the PCA method is introduced to reduce dimension of data

Fig. 9 Performance of PCA-SVM algorithm using principal component
scores.
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space. With the combination of PCA and SVM techniques, the
dimensions of serum Raman spectra are dramatically reduced
from 1108 variables down to 20 variables, thus the computation
is drastically decreased. This simplification is particularly
important for applications that require rapid processing of a
large amount of multivariate data, such as in real-time multi-
spectral imaging and optical processing systems.

As can be found from Table 1, the nonlinear SVM produces a
diagnostic accuracy higher than the linear SVM, especially
using RBF kernel which yielded an overall diagnostic accuracy
higher than the linear SVM in C-SVM and PCA-SVM models.
This reveals a fact that the optimal separating hyperplane of
serum SERS is nonlinear. Hu and Lin find that RBF kernel
is the most reasonable choice in SVM due to its simplicity
and ability to models data of arbitrary complexity.33 In fact,
the linear kernel is a special case of nonlinear kernel. Our
study and other reports confirm this conclusion.20

It is reported that the accuracy of endoscopic ultrasonogra-
phy in the determination of the T stage of esophageal cancer is
approximately 65% to 90%, with an average sensitivity of 75%
and specificity of 70%.1 In this study, we obtain a sensitivity of
83.3% and specificity of 86.7% by classifying serum SERS
spectra from normal volunteers and esophageal cancer patients
with RBF PCA-SVM technique. However, there are some defi-
ciencies for this preliminary study. For example, the data set are
too small, needing to expand the sample numbers. The research
of the variability of sample is absent. Maybe the SERS spectra of
a patient’s serum have been altered at different times. These fac-
tors need to be further studied in our future work.

5 Conclusion
In conclusion, the C-SVMmethods and PCA-SVMmethods are
successfully implemented for the classification of serum SERS
spectra from normal volunteers and esophageal cancer patients.
A number of effective diagnostic models based on C-SVM and
PCA-SVM techniques with different kernel functions are devel-
oped and the diagnostic performances are comprehensively
evaluated and compared. The PCA-SVM methods can consid-
erably simplify the complexity of calculation without sacrificing
the performance of the algorithm. The RBF PCA-SVM algo-
rithm is superior to PCA-LDA algorithm in classification
serum SERS spectra. Serum SERS combining with SVM has
great potential to provide an effective and accurate diagnostic
means for noninvasive esophageal cancer detection.
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