Open Access
29 July 2013 Enzyme-activatable imaging probe reveals enhanced neutrophil elastase activity in tumors following photodynamic therapy
Author Affiliations +
Abstract
We demonstrate the use of an enzyme-activatable fluorogenic probe, Neutrophil Elastase 680 FAST (NE680), for in vivo imaging of neutrophil elastase (NE) activity in tumors subjected to photodynamic therapy (PDT). NE protease activity was assayed in SCC VII and EMT6 tumors established in C3H and BALB/c mice, respectively. Four nanomoles of NE680 was injected intravenously immediately following PDT irradiation. 5 h following administration of NE680, whole-mouse fluorescence imaging was performed. At this time point, levels of NE680 fluorescence were at least threefold greater in irradiated versus unirradiated SCC VII and EMT6 tumors sensitized with Photofrin. To compare possible photosensitizer-specific differences in therapy-induced elastase activity, EMT6 tumors were also subjected to 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH)-PDT. NE levels measured in HPPH-PDT-treated tumors were twofold higher than in unirradiated controls. Ex vivo labeling of host cells using fluorophore-conjugated antibodies and confocal imaging were used to visualize Gr1 + cells in Photofrin-PDT-treated EMT6 tumors. These data were compared with recently reported analysis of Gr1 + cell accumulation in EMT6 tumors subjected to HPPH-PDT. The population density of infiltrating Gr1 + cells in treated versus unirradiated drug-only control tumors suggests that the differential in NE680 fold enhancement observed in Photofrin versus HPPH treatment may be attributed to the significantly increased inflammatory response induced by Photofrin-PDT. The in vivo imaging of NE680, which is a fluorescent reporter of NE extracellular release caused by neutrophil activation, demonstrates that PDT results in increased NE levels in treated tumors, and the accumulation of the cleaved probe tracks qualitatively with the intratumor Gr1 + cell population.
CC BY: © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Soumya Mitra, Kshitij D. Modi, and Thomas H. Foster "Enzyme-activatable imaging probe reveals enhanced neutrophil elastase activity in tumors following photodynamic therapy," Journal of Biomedical Optics 18(10), 101314 (29 July 2013). https://doi.org/10.1117/1.JBO.18.10.101314
Published: 29 July 2013
Lens.org Logo
CITATIONS
Cited by 16 scholarly publications.
Advertisement
Advertisement
KEYWORDS
Tumors

Luminescence

Control systems

Photodynamic therapy

In vivo imaging

Imaging systems

Confocal microscopy

Back to Top