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Abstract. The mode of operation and theoretical concept behind a type of near-infrared spectrometer is discussed,
which is used to measure concentrations of glucose, ethanol, CaCl2, and KCl solutions in water, respectively. The
main features of the instrument are its potential for short time-to-measurement resolution on the order of tens of
milliseconds, its broad spectral bandwidth from 1.0 to 2.4 μm, and its ruggedness. These features allow the device to
operate remotely in field applications and to utilize a wide variety of optical interfaces based on state-of-the-art fiber
optic technology. Also, they provide a straightforward path to miniaturization with the concomitant enhancement
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1 Introduction
Current trends in spectroscopy are oriented toward the develop-
ment of instrumentation that can be used outside the laboratory
in applications such as in a surgery room, a primary-care clinic,
or even a primary-care physician’s office.1 This framework
imposes severe conditions on the performance of spectroscopic
systems in terms of ruggedness, simplicity, and speed of oper-
ation. At the same time, device sensitivity and specificity is
expected to be comparable with laboratory-grade instrumenta-
tion. Added to this is the need to assess a multiplicity of
components for every sample, either because each of these
components is important for a given clinical configuration or
because some of these components may interfere in the correct
assessment of the signal as spurious background and need to be
subtracted out.

This article presents the concept and realization of an instru-
ment that is designed to satisfy the above requirements. The
development of the instrument comprises a computational algo-
rithm and a hardware associated with it. The algorithm compo-
nent of the instrument is a discretized version of multivariate
linear regression (dMLR). The hardware component is based
on a rotary optical switch developed and patented by Neptec
Optical Solutions, Inc. (NOS, Fremont, California) and referred
to as RadiaLight® switch.2 Both dMLR and RadiaLight® are
intimately related, but the dMLR algorithm has a broader
range of applicability, whereas the hardware may adopt different
configurations in future developments.

2 Discrete Multivariate Linear Regression
Analysis

In the most general mode, a set of nmeasurements performed on
m different samples can be organized in the form of an n ×m
matrix, P. In MLR, the matrix, P, is factorized in the form:3

P ¼ R · C: (1)

In Eq. (1), R is an n × r matrix, representing the calibration
of the system with known values of the experimental setup, and
C is an r ×m matrix, representing the unknown composition of
the principal components in the sample being measured. The
elements of matrix C are the actual properties of the sample
that need to be measured. For practical reasons, matrix C
will be referred to as the “concentrations”matrix. The r columns
of matrix R are called “loading vectors” and correspond to the
invariant properties of the measurement platform. Equation (1)
establishes that a linear relationship exists between the “concen-
trations” in the experiment, C, and the measurement results, P.
This is a fundamental hypothesis of MLR, and its validity needs
to be verified in each case where it is applied. This will be here-
after referred to as the “linear hypothesis.” Once matrix R is
determined, then solving Eq. (1) for C is straightforward, as in:

C ¼ ðRT · RÞ−1 · RT · P: (2)

In Eq. (2), it is assumed that the matrix, ξ ≡ ðRT · RÞ, is
nonsingular (otherwise, matrix R is ill-defined, and the meas-
urement strategy needs revision). Note that the procedure
described by Eqs. (1) and (2) is quite general and involves a
measurement that can be as detailed as desired, since the dimen-
sions of matrices P and C are arbitrary. Matrix R is formed by
previous knowledge of the experimental conditions in which the
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number of sampling measurements or calibrations with known
concentrations, C̃. An example is the measurement of glucose
concentrations in aqueous solutions using near-infrared (NIR)
spectroscopy. A calibration procedure starts by measuring a con-
trol set of glucose solutions in water, e.g., 70 different samples
with monotonically increasing, known glucose concentrations,
and everything else remains the same in the experiment.
Labeling the calibration concentrations and calibration measure-
ments as C̃ and P̃, respectively, we can find the matrix R from
Eq. (1), as

R ¼ P̃ · C̃tðC̃ · C̃tÞ−1: (3)

Figure 1 shows the NIR spectra of glucose and water solu-
tions with varying glucose concentrations from 10 mg∕dL up to
35 g∕dL. The spectra were collected using a grating-based spec-
trometer having a 6-nm spectral resolution (Ocean Optics, Inc.,
Dunedin, Florida) with a 256-pixel InGaAs photodetector array.
The resolving power of the instrument is thus approximately
250. The Ocean Optics spectrometer requires the collection
of the spectrum in two patches to correct for second-order dif-
fraction effects from the grating: the spectrum from 1750 to
2500 nm is collected using a long-pass filter with transmission
edge at 1700 nm. The samples were placed in a glass cuvette
with a 2-mm optical path, and the optical source is a broadband
emission lamp emitting a total of 7 Wof power (HL2000 Ocean
Optics, Inc.) with a UV-visible filter to prevent the water from
heating during the measurements.

The ordinate in Fig. 1 represents a normalized differential
spectrometer signal using distilled water as a baseline. To obtain
the baseline, a spectrum of distilled water was collected at a
reference temperature. For every glucose solution measurement,
the temperature of the solution was measured using a thermo-
couple. The reference water spectrum (“w”) was “corrected” for
temperature (see Appendix B), and then it was subtracted from
the glucose solution spectrum (“g”) to yield a differential spec-
trum (“g − w”). Temperature correction of the glucose solution

spectrum consists of transforming the reference water spectrum
from a reference temperature to the glucose measurement tem-
perature. The result is normalized to the sum of the glucose and
the water spectra (“gþ w”). Thus, the ordinate “y” in Fig. 1
is y ¼ ðg − wÞ∕ðgþ wÞ.

Temperature is one of the factors that strongly affects NIR
water spectra even for T fluctuations of about 0.1°C. Thus, tem-
perature needs to be taken into account for any measurement
involving aqueous solutions.4 One way of doing this is by col-
lecting the calibration spectra using a thermal bath, ensuring a T
fluctuation of less than 0.1°C (in the case of aqueous solutions of
glucose5). The procedure followed in the present work uses the
previous recording of the spectra of pure water as a function of
temperature to build a calibration chart that can be compared
against each sample spectra. This requires measuring tempera-
ture for every spectrum collected. Details about the procedure
will be discussed in Appendix B.

3 Discretization
Mathematically, the process of discretization can be viewed sim-
ply as a weighted summation of matrix components over a cer-
tain number, d, of elements. This is described in Eq. (4) below:

R̃ik ¼
Xd−1
j

βi · Rði·dþjÞk: (4)

The factor βi is a weighting parameter to be adjusted in the
process of optimization, also defined herein as training or cal-
ibration of the instrument in question. This optimization pro-
cedure is based on a given measure of performance for the
system, e.g., minimization of the measurement error for glucose
concentrations, as described in detail in Appendix A. The
dimensionality of the MLR problem is then reduced from n
to n 0 ¼ n∕d, reducing the computational time and the hardware
requirements concomitantly. However, an operation such as the
one described in Eq. (4) carries the cost of information loss due
to reduced precision. On the other hand, discretization reduces
data “graininess,” increasing information content of the reduced
dataset. The balance between these competing effects can be
quantified in different ways: one useful procedure is through
the use of the relative entropy matrix (REM).6 In REM, a var-
iable is defined that quantifies the information content of a given
dataset. This is called the “entropy of the pooled dataset.” In the
case of MLR analysis, the pooled dataset is matrix C, which
contains information of the instrument calibration. The entropy
is defined as

EnðkÞ ¼ −
1

ln n

Xn
j¼1

Rjk lnðRjkÞ: (5)

By maximizing the entropy, En, the dataset is guaranteed to
carry the maximum possible information content.7 Equation (5)
actually refers to a “relative” entropy measure, assuming a maxi-
mum normalized value of EnðkÞ ¼ 1. The parameter k is a
counting index given by 1 ≤ k ≤ m, and m is the total number
of different records of data available, which in the case of matrix
R would be the total number of loading vectors to be used. A
variance in the average relative entropy, or entropy variance, is
then defined as
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Fig. 1 Near-infrared (NIR) spectra of aqueous solutions of glucose with
varying concentration: from 10 up to 500 mg∕dL in increments of
10 mg∕dL; thereafter, in increments of 500 mg∕dL up to 10 g∕dL;
and thereafter in increments of 5 g∕dL up to 35 g∕dL. Each spectrum
is centered about its mean and has been corrected for temperature
fluctuations.
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δRðnÞ2 ¼ 1

M − 1
·
Xm
k¼1

ðEnðkÞ − hEnðkÞinÞ2: (6)

Since entropy becomes indeterminate for extreme values of
the data size, n, such as n ¼ 1 or n approaching infinity, a more
convenient criterion to characterize the information content of a
given dataset is the minimization of the entropy variance,
δRðnÞ [Eq. (6)].

Figure 2 shows the result of applying the concept in Eqs. (5)
and (6) to the problem of using NIR spectroscopy for measuring
glucose concentration in aqueous solutions. In this case, the var-
iable M [Eq. (6)] expresses the aqueous solutions with different
concentrations of glucose. The goal is to find the number of
measurement channels, n, that maximizes the information con-
tent, while keeping device cost and complexity at a minimum.
The spectra used in the calculations are shown in Fig. 1. The
data consists of arrays, Rk, with 256 data points, each point rep-
resenting the signal level on a specific pixel of the InGaAs
photodetector array for a given wavelength dispersed by a dif-
fraction grating. The data points can be “binned” together (aver-
aged) in sets of different sizes, resulting in a varying number of
channels or (bins) into which the data is distributed. As the
binned array size is reduced (thus, increasing the number of
channels), according to Eq. (4), the variance in the entropy
shows a pattern analogous to that of the well-known Allan vari-
ance plots.8 Based on this analysis, the conclusion is that to
determine glucose concentration in an aqueous solution by
using NIR spectra in the 850 to 2500-nm wavelength range,
the ideal number of data binning (i.e., the number of measure-
ment channels required in the instrument) should be somewhere
between 10 and 20. Other authors have used the ideas of infor-
mation entropy and MLR in order to optimize the sensitivity and
specificity of a spectroscopic system,9 but not within the frame-
work of the data discretization algorithm proposed here.

The calculations used to obtain an optimized set of filters
involve the use of a stochastic scan of the 24-dimensional
parameter space that spans all possible sets of eight interference
filters, each with a given center wavelength, bandwidth, and
weight factor (λc, Δλc, and κ, respectively). Note that the weight
factor, κ, can be any real number, positive or negative, and it is
applied to the integrated signal coming from any given filter.
This weight factor, κ, is analogous to the factor, βi, in Eq. (4),
except that the latter implies the validity of the linearization
hypothesis. Using a statistically significant set of sample spectra

with glucose concentrations ranging from 10 up to 500 mg∕dL
(a subset of the spectra shown in Fig. 1), the optimization routine
selects the filter set that minimizes the relative variance in the
data. The result of the optimization routine is shown in Figs. 3
and 4, where a linear correlation is found between a suitable
variable, S, and the glucose concentration of the solution, [g].
The variable, S, is a combination of operations performed on
the “discretized,” eight-dimensional signal produced by the
electromagnetic radiation detected through the eight interfer-
ence filters using a single photodetector. This will be discussed
in detail in the next section.

Figure 5 shows a histogram of the error between the calcu-
lated and the actual concentrations of glucose in the samples
used. The calculated glucose concentrations are obtained
using the eight interference filters illustrated in Fig. 3. The stan-
dard deviation from the straight line in Fig. 4 shows that more
than 80% of the data points lay within an error of 50 mg∕dL
in concentration measurement. The average error in the meas-
urement is 25 mg∕dL for aqueous solutions of glucose with
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Fig. 2 Entropy variance as a function of the array size for “m” sets of NIR
spectra of glucose solutions (m ¼ 71). The optimal array size, n, is
between 10 and 20 channels or bins.
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Fig. 3 Eight interference filters selected for glucose/water discrimina-
tion. The routine can be implemented assuming different profiles for
the filters; the case illustrated is a flattened Gaussian. The continuous,
gray curve shows the features of the glucose/water difference spectra
that the optimization routine uses to maximize the discrimination
(glucose concentration, ½g� ¼ 35 g∕dL). The left vertical axis shows
a weighting factor, κ, and the right shows a spectral weight for the
glucose/water mixture.
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Fig. 4 Result of the discretized version of multivariate linear regression
(dMLR) optimization procedure in terms of a linear correlation between
the parameter S and the glucose concentration of the samples. The
resulting linear fit is shown in the figure. The modeled instrument
uses eight signal channels with their corresponding interference filters,
as shown in Fig. 3.
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concentration ranging from 10 to 500 mg∕dL. These results
are within clinical validity for the diagnosis and treatment of
diabetes and compare satisfactorily with state-of-the-art optical
instrumentation for this purpose.10–22 More importantly, the sig-
nificance of this result is that a dMLR-based instrument would
be able to perform the measurement within a 10-s time resolu-
tion, and even less time if simple improvements in the hardware
are introduced. Details of the hardware and instrumentation will
be described in the next section. The stochastic parameter scan

routine used to optimize the performance of the discretized
channel set will be described in Appendix A.

4 Spectrometer
The architecture of the device is depicted in Fig. 6. The concept
is analogous to a previous work by NOS, where the goal was to
measure cholesterol, collagen, and elastin concentrations for
cardiovascular angiography applications.23 The instrument
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Fig. 5 Histogram of the error in the data samples shown in Fig. 4 (mg∕dL). The aggregated plot at the bottom shows that in the ideal case, this instrument
would produce an error of less than 50 mg∕dL in more than 75% of the samples.
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Fig. 6 Glucose sensor architecture. The lamp provides broadband electromagnetic radiation that is passed through a number of filters, f i, in each
channel of the rotary switch (RadiaLight®). The output from the rotary switch is split between the glucose sample solution (detector A) and a pure water
reference signal (detector B). The signal is processed by subtracting the measurements in detector B to that in detector A for each filter and normalizing
the measurement to the sum of the two signals.
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makes use of interference filters and homogeneous integration
of the signal across the filter pass-band with a single photodetec-
tor. In the actual experiments, a total of nine interference filters
were selected to maximize the measurement accuracy for an
aqueous glucose solution.

To place the glucose measurement technique within the
framework of dMLR, as detailed in Eqs. (1)–(3), it is useful
to define a new variable, S, as in Eq. (7):

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

½1 − κi · ðAi − BiÞ∕ðAi þ BiÞ�2
r

. (7)

In Eq. (7), Ai is the signal in filter “i” (denoted fi, cf. Fig. 6)
related to the sample (e.g., a given concentration of glucose in
pure water solution), and Bi is the signal in fi related to a refer-
ence sample (e.g., pure water). The glucose concentration, [g], is
obtained from S by a linear expression,

½g� ¼ Kg · Sþ b: (8)

In Eq. (8), Kg and b are regression coefficients. Equations (7)
and (8) express [g] as a nonlinear function of the signal mea-
sured from the sample, ~At ¼ ðA1; A2; : : : ; AnÞ. This clearly con-
tradicts the basic assumption of MLR, as stated in Eq. (1). It is
well known, however, that under low-glucose concentration
conditions, ~A ≈ ~B, Eq. (7) can be approximated as

S ≈
ffiffiffi
n

p
·

�
1þ

~BT · ~v
2

−
~AT · ~v
2

�
: (9)

In Eq. (9), the vector, ~v, is given by

~vt ¼ ðκ1∕B1; κ2∕B2; : : : ; κn∕BnÞ: (10)

Making the following associations,

b ¼ −Kg ·
ffiffiffi
n

p
; (11)

ðRT · RÞ−1 · RT ¼ Kg

2
½~vt� (12)

P ¼ ½ ~B − ~A� (13)

C ¼ ½g�; (14)

it turns out that Eq. (8) can be written for C ¼ ½g� as

C ¼ ðRT · RÞ−1 · RT · P: (15)

Matrix R in this case is a matrix having only one dimension
corresponding to the principal component in the problem at
hand (the glucose concentration). In other words, R in the
present problem is a vector that can be extracted from
Eq. (12) as

R ¼
�

2

Kg

�
· ð~v · ~vtÞ−1 · ½~v�: (16)

In essence, the dMLR procedure here consists of finding the
values of (fi, δfi, κi) such that the linearity in Eq. (8) is satisfied
and such that the error (variance) in the measurement, σmax, is

minimized. This is equivalent to finding suitable values of βi
in Eq. (4).

5 Experiment and Results
Figure 7 shows the spectral profiles of the nine interference fil-
ters used in the instrument described in Fig. 6. The filter set cov-
ers a wavelength range in the NIR domain from 0.9 to 2.3 μm.
Note that the band-pass filters used in the instrument do not
match exactly the band-pass filters specified by the stochastic
method (shown in Fig. 3) and used in the theoretical calculations
that generated Figs. 4 and 5. The reason for this is the stronger
photodetector signal provided by broader pass-band filters, at
the cost of reducing specificity in the measurement. The results
of the experiments performed using an instrument with the
architecture shown in Fig. 6 and the filters from Fig. 7 are illus-
trated in Figs. 8–10. Figure 8 shows the time trace of the signal
measured through each of the nine channels. The device oper-
ated at 300 RPM, and data were averaged 50 times, leading to a
total time-to-measurement resolution of 7.5 s. The signal-to-
noise ratio (SNR) obtained for the detector used is ∼103.
The SNR is not the same for all the filters used, as can be
seen from Fig. 8. The highest SNR is obtained for the filter
with broadest bandwidth, namely filter no. 2 centered at
1235 nm (cf. Figs. 7 and 8). Using the current instrument,
the speed of the RadiaLight® motor can be increased by a factor
of 20 for a time-to-measurement resolution of 375 ms. Further
noise-reduction techniques like Kalman filtering24 and auto-bal-
ance feedback circuitry25 can be used to completely eliminate
the need for averaging the signal. This would bring the achiev-
able time-to-measurement resolution down to less than 10 ms.

The traces in Fig. 8 correspond to five different aqueous sol-
utions, including glucose (at 35 g∕dL), all of them relevant for
biomedical applications. Figure 9 shows the Sð½g�Þ correlation
curves obtained for one set of aqueous glucose solutions mea-
sured on 4 different days. For each correlation curve, the sample
set was measured in a random sequence relative to sample con-
centration. The linear nature of the data points shown in Fig. 9
for each of the sample set collections proves the validity of prin-
cipal component analysis when used with the architecture
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depicted in Fig. 6 for the measurement of glucose in water. The
reason for the difference between the correlations shown in
Fig. 9 and that obtained theoretically (cf. Fig. 4) is the different
filter set used. Notice that, as expected, the broader pass-band of
the filters used in the experiment results in a reduced specificity
of the correlation, leading to a reduced measurement accuracy of
about 1 g∕dL. The slope of the correlations obtained experimen-
tally (Fig. 9) is about 50 times lower than that shown in Fig. 4.
This is a reflection of the lower specificity obtained from using
broadband-pass filters, and a result of the nonlinear nature
of electromagnetic radiation absorption, considering the fact
that Fig. 4 relates to low-glucose concentration levels
(<0.5 g∕dL), whereas Fig. 9 relates to glucose concentrations
1 to 2 orders of magnitude greater. Each data collection
set in Fig. 9 was performed within a day difference from
one another. Specifically, the dataset with the highest slope
(Kg ¼ 0.0026) is the earliest data collection set, corresponding
to the freshly prepared samples. The next collection set corre-
sponds to the second largest slope (Kg ¼ 0.0023), one day after
the first collection set. The third collection set corresponds to the

third largest slope (Kg ¼ 0.0020), one day after the second; and
the fourth collection set corresponds to the lowest slope
(Kg ¼ 0.017), one day after the third. During the four data
collection sequences, the sample set was stored in polystyrene
cups under refrigeration at about 3°C. The data show sample
degradation, which may be due to ambient water condensation
in the sample container or glucose diffusion into the polystyrene
container walls. The offset value “b” [cf. Eq. (8)] does not show
a consistent pattern in terms of the time of measurement; thus,
it is not possible with the present data to establish the origin of
the change in offset values. In practical terms, the day-to-day use
of an instrument as presented in Fig. 9 hinges on the linear
response across the large dynamic range demonstrated. For
routine measurements, two or three reference points may be
needed as a calibration to find the linear regression curve. For
example, two, three, or more reference samples with known
glucose concentrations may be placed in photo-detector A
(PD A) port (Fig. 6) for every measurement event. Given the
speed of every single measurement (e.g., 10 ms per data
point), the addition of the reference sample calibration steps
is not deleterious to the overall measurement protocol. The
reference samples may be calibrated periodically: once a day,
once a week, or less often, according to the conditions of storage
and other environmental factors. In a further development, the
use of blood samples would be interesting. In this case, a new
filter set needs to be determined using detailed spectroscopic
analysis similar to what is described in Figs. 1–4.

The use of a filter set that has been optimized for the meas-
urement of glucose in water does not preclude the application
of the same filter set for the measurement of other solutions of
relevance in biomedical research. Figure 10 shows the perfor-
mance of the instrument for the measurement of water solutions
of CaCl2, KCl, and ethanol. The differential solution measure-
ments with a water baseline were temperature-corrected just
like the glucose measurements ½g� above (also, see Appendix B).
The differential measurement scheme using distilled water as a
baseline is as depicted in Fig. 6. The linear correlations obtained
are quite remarkable, considering the fact that the filter set was
optimized for glucose solutions. In particular, it is seen that the
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Fig. 8 Time sequence of signals from nine channels representing the photodetector output signal as a function of time from five different solutions
containing: (1) glucose in water (35 g∕dL), (2) pure ethanol, (3) cholesterol in water (100 mg∕dL), (4) KCl in water (1 g∕dL), and (5) CaCl2 in water
(1 g∕dL). Signal-to-noise ratio (SNR) is 1000.
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where S is as defined in Eq. (8) and where the data used was obtained
with an instrument as shown in Fig. 6. Four datasets collected in
different days from the same sample set were used.
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ethanol correlation renders a precision of ∼2% in concentration
measurement. This is an upper bound for the measurement error,
since it includes the sample preparation error which cannot be
estimated due to the lack of a separate, more precise measure-
ment technique in our lab when this testing was conducted.
Other instruments have achieved a better sensitivity,26 but
with a highly reduced measurement speed of tens of seconds.
In the case of CaCl2 and KCl, the measurement error, including
sample variability, is in the range of clinically relevant electro-
lyte concentrations in blood.27 For CaCl2, for example, 80% of
the measurements are within 0.5 g∕dL of the sample preparation
value, and for KCl, 80% of the measurements lie within
0.4 g∕dL of the sample preparation value. While the present
ion-concentration measurements are not taken simultaneously,
nor correlated with a corresponding parallel calibration, it is
noteworthy that the accuracy for each analyte is better than the
other values reported in the literature (e.g., results in Ref. 22).
While it might be argued that the results in Ref. 22 were
collected from real blood samples, it is also true that the FT-
spectrometer used in Ref. 22 has a resolving power of 16,000
in the spectral region from 400 to 1162 nm and 8000 in the spec-
tral region 833 to 2631 nm. Again, results are hard to compare
on a one-to-one basis, but the overall comparison with our
device is at least encouraging.

6 Discussion
The first issue to tackle is the validity of the linearity assumption
implicit in the analysis used to interpret the data. Equations (7)–
(16) demonstrate that the linear approach is valid, at least for
situations in which the effect of the analyte in the optical signal
is a perturbation relative to the reference signal. This means:
j1 − kAk∕kBkj ≪ 1, with A and B as used in Eq. (7). More
generally, the use of a broadband signal and a suitably selected
channel set guarantees that the linearity of Eq. (1) is kept well
beyond the linearity requirement for a single channel in the

instrument. Such requirements are set forth by physical models
like the Beer–Lambert law of absorption, which are meaningful
across narrow wavelength bands. In Appendix B, it will be dem-
onstrated that the ability to select different spectral regions of the
signal, across a wide spectral range with suitable weight factors,
βi [Eq. (4)], largely increases the linear range of the parameter,
S [cf. Eq. (7)]. Suffice to say that, as Fig. 9 demonstrates, the
dynamic range for glucose concentration measurements extends
for almost 3 orders of magnitude. This result, to the best of the
authors’ knowledge, has no precedent in the literature of glucose
sensors. While perhaps the detection range for glucose lies
well beyond clinically sensitive values, the reader may
realize that such a broad dynamic range is not dependent on
the analyte. Figure 11 shows loading vectors for the aqueous
solutions depicted in Fig. 10 (namely, CaCl2, KCl, ethanol,
and glucose).
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Fig. 10 Linear correlations, S, obtained with the instrument depicted in Fig. 9 for water solutions of (a) CaCl2 (mean error 0.2 g∕dL), (b) KCl (mean error
0.2 g∕dL), and (c) ethanol (mean error 2%).
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To discuss Fig. 11 in more detail, we will focus on the glu-
cose case. The NIR spectrum of aqueous glucose solutions has
been extensively studied in the past decade, concurrently with
efforts to develop noninvasive optical methods for the treating
and monitoring of diabetes.10–22,28

The NIR absorption in the overtone band (approximately
from 1100 to 1800 nm) consists mostly of water lines (cf.
Fig. 1) including a very strong band at ∼1450 nm and a
much weaker glucose band at ∼1680 nm. In the combination
band region (1900 to 2500 nm), there is a very strong water
band at ∼1990 nm and two or three weaker glucose absorption
features (1900 to 2300 nm). Notably, the presence of glucose in
solution produces a profound effect in the spectral signature of
water absorption lines, both in the overtone and in the combi-
nation band regions. This effect is associated with line shifting
and broadening of the main water lines, together with the “sub-
stitution” effect, whereby water absorption is reduced in certain
ranges as water molecules are replaced by glucose in the solu-
tion. The contribution of refractive effects to the spectra shown
is minimal, as demonstrated in Appendix B.

The use of glucose absorption lines in the NIR-combination
band range (1.9 to 2.3 μm) for noninvasive diabetes monitoring
has been implemented by several authors.4,5,10,19 Prior attempts
faced the problem of weak absorption with varying degrees of
success. Furthermore, the absorption lines in the NIR range may
be overwritten by the strong water absorption band at 1990 nm.
Some groups have attempted to overcome this problem by using
stronger glucose absorption bands in the mid-IR region (9 to
10 μm).17,20 However, the instrumentation for this wavelength
range becomes more complex, and scattering issues still per-
meate the data analysis process. Interestingly, Ref. 17 presents
a spectroscopic system having a plurality of 25 discrete filters in
the mid-IR spectral domain. The results reported in Ref. 17 are
comparable with the model data fit for glucose described above
(cf. Fig. 4), while it omits a discussion of how the filters were
selected. The analysis presented herein suggests that the authors
in Ref. 17 presumably could reduce their filter set by about half.
Albeit the spectral ranges between Ref. 17 (mid-IR) and our
results (NIR) are different, it is expected that the information
content in the mid-IR be higher due to the presence of stronger
glucose absorption peaks in this region. Thus, the “knee” of the
Allan variance plot shown in Fig. 2 should occur at a lower value
of “n” for the mid-IR data, relative to the NIR-data.

The instrument presented in this article measures the optical
signal across a broad spectral band and is able to include over-
tone and combination bands in the measurement. Therefore, the
instrument takes advantage not only of the absorption bands
specific to glucose, but also of the effect that glucose produces
in the absorption bands of water. In this manner, a precise meas-
urement of glucose concentration in solution is obtained.

The correlation curves shown in Fig. 9 and the loading vector
for glucose in Fig. 11 represent a combination of absorption
effects in both glucose and water. Three absorption bands are
clearly defined: one for water (1440 nm, filter f3) and two
for glucose (1688 nm, filter f5 and 2202 nm, filter f9). The
effects are shown in Fig. 12. In the case of water absorption,
it is seen that the presence of glucose in solution increases
the measured signal. The opposite effect occurs for lines that
correspond to an absorption band of glucose.

A figure of merit, Q, may be defined for a device that uses
spectral information over bandwidth Δλ in a time Δt with
a SNR, as

Q ¼ log10

�
1

c
Δλ
Δt

· SNR

�
.

The apparatus described in this article achieves a quality
value Q ¼ −10.6, which compares well with state-of-the-art
Fourier transform interferometer devices such as described by
Palchetti and Lastrucci29 (Q ¼ −11.4) and Bradley30 (Q ¼
−10.0). A larger value of Q is indicative of a more desirable
spectroscopy apparatus.

7 Conclusion
The instrument and techniques described above are particularly
useful for measuring the concentration of glucose in blood, an
important measurement in connection with the control and treat-
ment of diabetes. The results presented here constitute spec-
troscopic measurements that comprise a bandwidth of about
1.3 μm (from 950 nm to 2.2 μm) scanned during a time interval

0

50

100

150

200

0.05 0.08 0.11 0.14 0.17 0.2 0.23 0.26 0.29 0.32 0.35

F
re

qu
en

cy
0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

6

(a)

6

5 

Water

Glucose 35g

Signal F3 (1440 nm)

0

20

40

60

80

Water

Glucose 35g

F
re

qu
en

cy
Signal F9 (2202 nm)

Signal F (1688 nm)

0

20

40

60

6.
09

6.
18

6.
27

6.
36

6.
45

6.
54

6.
63

6.
72

6.
81 6.
9

6.
99

7.
08

7.
17

7.
26

7.
35

7.
44

7.
53

7.
62

7.
71 7.
8

7.
89

7.
98

Water

Glucose 35g

F
re

qu
en

cy

(b)

(c)

Fig. 12 Absorption effects from glucose (35 g∕dL in water, gray histo-
grams) and water (black histograms) in three different NIR bands
centered at: (a) 1440 nm (water absorption), (b) 2202 nm (glucose
absorption), and (c) 1688 nm (glucose absorption).

Journal of Biomedical Optics 117001-8 November 2013 • Vol. 18(11)

Claps and Virojanapa: Fast, broadband, rugged spectrometer for near-infrared measurements. . .



of 160 ms. The bandwidth speed-form factor of such spectro-
scopic measurement is better than 1.12 × 1015 Hz2. The use of
a discretized algorithm for principal component calculation
reduces dramatically the computation time for a single measure-
ment. Thus, the main limitation for time resolution is hardware
driven, e.g., the direct current (DC) motor used.

To our knowledge, the current instrument features the highest
bandwidth speed-form factor achieved by a spectrometer other
than a Fourier transform-based instrument. The speed of the
device could be increased by a factor of 20 using current com-
ponents. Furthermore, using state-of-the-art technology for DC
motor fabrication, the speed could be improved by 3 orders of
magnitude, bringing the time resolution of the device to the
microsecond domain without compromising spectral band-
width. The broadband approach presented in the present article
makes use of a judicious combination of refraction and absorp-
tion effects in order to establish a simple, linear correlation
between the concentration of a given substance in a water sol-
ution and the signal from a single photodetector.

Appendix A Stochastic Genetic Algorithm
Figures 13–15 show schematically the mechanism of a “cloud-
shell” genetic algorithm used to obtain an optimized set of filters
for the problem of measuring glucose concentration in water sol-
utions. Each channel set of size, n, is associated with a point in
an L-dimensional set, QL, which is a subset of RL, the
Euclidean space of dimension L ¼ f ⊗ n, where f is the num-
ber of characteristics associated with a single channel. The opti-
mization consists in scanning QL to find the point such that the
determinant of matrix, ξ, defined in Eq. (2), is maximized. The
point thus selected will represent the characteristics of a channel
set of size, n, that maximizes the performance of the measure-
ment device. In the specific case of the measurement of glucose
in water, n ¼ 8 channels are used (cf. Fig. 2). The channels cor-
respond to spectroscopic filters, each filter having three
characteristics [i.e., f ¼ 3 corresponding to center wavelength
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Fig. 13 Flow diagram for the software routine implemented for the shell-cloud genetic discretization algorithm.

Fig. 14 Principle of construction of a single shell in the genetic algo-
rithm to find the point within parameter space QL that optimizes the
performance of the spectrometry device.
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(λc), filter bandwidth (Δλc), and weight factor (κ)], the
set QL has dimension L ¼ 24. Therefore, each point in QL is
given by a set of 24 numbers as follows: fðλ1c;
Δλ1c; κ1Þ; : : : ; ðλ8c;Δλ8c; κ8Þg. Notice that the geometry of
the set QL ⊂ RL is determined by the physical constraints for
the channels in the actual instrument. In the specific case of
the measurement of glucose in water using n ¼ 8 channels,
these 24 numbers are subjected to physical constraints such
as: (1) sensitivity of the photodetector in the NIR range:
1000 nm < λi � ðΔλi∕2Þ < 2500 nm for all channels,
i ¼ 1; : : : ; 8; (2) bandwidth: Δλi > 0, for i ¼ 1; : : : ; 8; and
(3) nonoverlapping of the spectral range among all filters: λi þ
ðΔλi∕2Þ ≤ λiþ1 − ðΔλiþ1∕2Þ for i ¼ 1; : : : ; 7. The procedure to
scan the set QL consists of a two-step scan routine. The flow
diagram of this routine is shown in detail in Fig. 13. The routine
is called a “genetic, shell-cloud” scan procedure and comprises
three-nested loops of operations. At each stage, a random “muta-
tion” is introduced to each of the dimensions on the trajectory
being followed, and the resulting point is tested against a quali-
fying criterion. The loops are related to what is defined as a
“cloud,” embedded within a “shell,” and a series of shells com-
prises a “trajectory.”

The initial step consists of the choice of starting parameters
~r0, Σ, ρ, Ω, Nshell, and Ncloud. The point ~r0 ⊂ QL is the initial
point of the trajectory; Σ and ρ are the fixed radii of shells and
clouds, respectively; Ω is the solid angle of aperture of a cone
which is embedded within any given shell, as will be described
below; Nshell and Ncloud are the number of points to be used for
each shell and cloud, respectively. These parameters are fixed
throughout the computations.

In the first step, called the “shell-scan,” a number of points,
Nshell, are randomly selected around an initial parameter point,
~ri, within a sphere of a fixed radius, Σ, centered at ~ri, as shown
schematically in Fig. 14. This sphere is referred to as a “shell.”
The “shell-points” selected follow a normal distribution of
directions around the center point, ~ri. This normal distribution
has a fixed angular width, Ω, around a specific direction, θi. The
direction, θi, is selected as the angle formed between vectors,
~ri − ~ri−1 and ~ri. The vector, ~ri−1, is the center of the “shell”
used in the previous iteration of the routine. For each of the
shell points selected, the second step is called the “cloud-
scan.” This consists of the selection of a new set of Ncloud points
in QL, clustered around each of the shell points, within a sphere
of fixed radius, ρ. This sphere will be herein referred to as a
“cloud.” The points within a cloud are selected randomly, but
uniformly distributed around each of the shell points. The
first level of computation consists in selecting, for each shell
point, the point within the corresponding cloud that maximizes
DetðξÞ. Then, the point that maximizes DetðξÞ among all the
different clouds within a shell is selected. This point in param-
eter space will become point ~riþ1. Finally, the direction formed
between vectors ~riþ1 − ~ri and ~ri is selected as θiþ1, and the proc-
ess can be repeated a number of times, P, until DetðξÞ converges
to a maximum value. Figure 15 shows schematically the final
trajectory of the optimization routine in the set QL. The starting
point is shown as ~r0 and the final point is ~rP.

For the starting point in the iteration sequence, no cone
of fixed angular width, Ω, can be used to select the shell
points; therefore, in this step the distribution of shell points
around, ~r0, is uniform. The shells used in the calculation are
also depicted, and a fragment of the resulting trajectory is
shown.

Appendix B:
Water Temperature Correction
In this appendix, a model will be presented that closely resem-
bles the broadband spectral features of water and aqueous
solutions as a function of a single parameter. The model will
be used to demonstrate the assertion that the linearity of an
operation, such as described in Eqs. (1) and (8), is preserved
for a wide range of parameter values. This parameter can be
interpreted as temperature, saline concentration, or glucose
concentration depending on the application sought. We start
by presenting the linear frequency response equations for a
system of n-forced harmonic oscillators:

χ ¼ χR þ iχI; (17)

χR ¼
Xn
i¼1

ðω2
i − ω2Þ

½ðω2
i − ω2Þ2 þ ω2Γ2

i �
· Ai; (18)

χI ¼
Xn
i¼1

ω · Γi

½ðω2
i − ω2Þ2 þ ω2Γ2

i �
· Ai; (19)

where R and I stand for the real and imaginary parts of the
function, respectively, and the sum takes place for all the, n,
resonance frequencies in the system (e.g., absorption lines).
The wave vector of a propagating electromagnetic field through
the medium, k, is obtained from the response function, χ,
according to Maxwell’s equations as:

k ¼ ω

c
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4π · χ

p
; (20)

with the electromagnetic field assumed to be propagating along
the z-axis and obeying an expression as follows:

Eðz; tÞ ¼ E0 · ei·ðkz−ωtÞ.

Interference effects produced by multiple reflections across a
slab of material of thickness, d, and an interface reflectivity
given by, r, can be modeled as

Eðd;ωÞ ¼ Eo · e−iω·t ·

�
eik·d þ 1

1 − r · e2ik·d

�
. (22)

To obtain a match for the water spectrum in the NIR domain
from 850 to 2500 nm, a number of five absorption features were
included in the model. The frequency, ω0i, bandwidth, Γ0i, and

Table 1 Water absorption features.

Expression

Line

0 1 2 3 4

Ai ¼ α · A0i þ α · A1 · T 0.1 0.1 2 0.02 0.01

ωi ¼ φ · ω0i þ φ · ω1 · T 1.32 1.60 2.12 2.60 3.15

Γi ¼ φ · Γ0i þ φ · Γ1 · T 0.10 0.50 0.15 0.10 0.10

Note: α¼ 2.6× 1024 st∕g; φ¼ 2π · 1014 Hz; A1 ¼ −0.002; ω1 ¼ 0.005;
Γ1 ¼ 0.002.
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strength, A0i, for each of these features are listed in Table 1. All
the frequencies correspond to the observed absorption bands in
liquid water.31,32 Linewidth and strength of the peaks have been
adjusted to better match the measured spectra, as shown in
Fig. 16.

In order to simulate the effect of temperature changes in the
spectrum, a linear dependence is assumed with respect to tem-
perature.32 In principle, each of the five absorption bands would
have a different rate constant. Since the goal of this article is not
to develop a model for water absorption, we have simply
assumed that the rate constants are the same for all absorption
bands. The values chosen are those that provide a better match to
the spectrum and are listed in Table 1.

Defining vectors B and A with components corresponding
to a particular pass-band filter as in Eq. (7) and a nonlinear
variable, yðTÞ:

Bi ¼
Z

λiþΔi∕2

λi−Δi∕2
Eðd;ωÞ · E�ðd;ωÞ

����
T¼T0

· dλ (23)

Ai ¼
Z

λiþΔi∕2

λi−Δi∕2
Eðd;ωÞ · E�ðd;ωÞ

����
T
· dλ (24)

yðTÞ ¼ 1 − eT∕τ; (25)

where the index, i, represents a given pass-band of width Δλi,
and Eðd;ωÞ is defined in Eq. (22). The parameter T is as appears
in Table 1, and τ is a “critical” value of that parameter. When,
T > ≈τ, then the expressions for each component, Ai and Bi,
taken independently, become highly nonlinear.

Figure 17 shows a series of simulated spectra with
T ¼ 0; 1; : : : ; 50 and τ ¼ 10; the nonlinear nature of the spectral
shifts is clear. Superimposed on Fig. 17 is the spectral profile of
eight filters with their corresponding set of characteristics
fðλc;Δλc; κÞ1; : : : ; ðλc;Δλc; κÞ8g. This particular filter set is
such that the expression SðyÞ is very close to a straight line
(see the inset in Fig. 17), where the value of “S” is obtained
from the filter selection [cf. Eq. (7) in the text]. Figure 17
demonstrates the power of the shell-cloud stochastic routine to
produce a linearized outcome, even though the physically
meaningful linearity conditions are overwhelmed.

Finally, we will briefly review the procedure used to correct
for the effect of T fluctuations in the spectral signature of the
samples. Figure 18 shows differential spectra of water for

temperatures varying from 22 to 40°C. The reference is the
water spectrum at 22°C. The inset in the figure shows that
the area swept by the spectral features, as they are stretched
due to the increase in temperature, follows a linear behavior
in the temperature range considered. The ordinates in the
inset in Fig. 18 are the integrated area under the absolute
value of each spectrum in the figure, as a percentage of the entire
area of the spectrum. Since the range of temperature fluctuations
in any given data collection procedure never exceeded 2°C, we
can safely assume that the impact of these fluctuations is linear.
The implication of this is that the effect of temperature and glu-
cose concentration in water can be treated independently.

The procedure starts by measuring the temperature, T,
at which each glucose spectrum is collected. Then, a water
spectrum at temperature, T, is fabricated, Wðλ; TÞ, by using
the water spectra at the extreme temperatures, Wðλ; T0Þ and
Wðλ; TAÞ with T0 < T < TA, and a reference water spectrum,
Wrefðλ; TrefÞ, collected at the beginning of every data sampling
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sequence. The construction of Wðλ; TÞ is taken by assuming
a linear stretch between points T0, TA, and Tref :

Wðλ; TÞ ¼
n
1þ 2 · ξ ·

h
Wðλ;TAÞ−Wðλ;T0Þ
Wðλ;TAÞþWðλ;T0Þ

io
n
1þ 2 · ξref ·

h
Wðλ;TAÞ−Wðλ;T0Þ
Wðλ;TAÞþWðλ;T0Þ

io · Wrefðλ; TrefÞ.

(26)

With the coefficients ξ and ξref defined as

ξ ¼ T − T0

TA − T0

; (27)

ξref ¼
Tref − T0

TA − T0

. (28)

With Wðλ; TÞ, the differential spectrum of glucose and pure
water at temperature T will only include the effect of glucose in
the sample to a linear approximation. This procedure can be
implemented with data collected using a grating-based spec-
trometer using a photodetector array or with an instrument
like the one described in this article using architectures as
the one shown in Fig. 6.
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