Dynamic optical projection of acquired luminescence for aiding oncologic surgery

Pinaki Sarder
Kyle Gullicksrud
Suman Mondal
Gail P. Sudlow
Samuel Achilefu
Walter J. Akers
Dynamic optical projection of acquired luminescence for aiding oncologic surgery

Pinaki Sarder, Kyle Gullicksrud, Suman Mondal, Gail P. Sudlow, Samuel Achilefu, and Walter J. Akers

Washington University, School of Medicine, Department of Radiology, 4525 Scott Avenue, St. Louis, Missouri 63110
Washington University, School of Medicine, Department of Biochemistry & Molecular Biophysics, 4525 Scott Avenue, St. Louis, Missouri 63110
Washington University, School of Medicine, Department of Biomedical Engineering, 4525 Scott Avenue, St. Louis, Missouri 63110

Abstract. Optical imaging enables real-time visualization of intrinsic and exogenous contrast within biological tissues. Applications in human medicine have demonstrated the power of fluorescence imaging to enhance visualization in dermatology, endoscopic procedures, and open surgery. Although few optical contrast agents are available for human medicine at this time, fluorescence imaging is proving to be a powerful tool in guiding medical procedures. Recently, intraoperative detection of fluorescent molecular probes that target cell-surface receptors has been reported for improvement in oncologic surgery in humans. We have developed a novel system, optical projection of acquired luminescence (OPAL), to further enhance real-time guidance of open oncologic surgery. In this method, collected fluorescence intensity maps are projected onto the imaged surface rather than via wall-mounted display monitor. To demonstrate proof-of-principle for OPAL applications in oncologic surgery, lymphatic transport of indocyanine green was visualized in live mice for intraoperative identification of sentinel lymph nodes. Subsequently, peritoneal tumors in a murine model of breast cancer metastasis were identified using OPAL after systemic administration of a tumor-selective fluorescent molecular probe. These initial results clearly show that OPAL can enhance adoption and ease-of-use of fluorescence imaging in oncologic procedures relative to existing state-of-the-art intraoperative imaging systems. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.18.12.120501]

Keywords: fluorescence-guided surgery; near-infrared dye; digital light processing technology; sentinel lymph node; peritoneal metastases.

Paper 130721LR received Sep. 30, 2013; revised manuscript received Oct. 22, 2013; accepted for publication Oct. 23, 2013; published online Nov. 27, 2013.

Biomedical imaging continues to advance our capability to detect cancer and investigate associated biological events. Anatomical imaging with computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound remain the primary imaging modalities in oncologic imaging. Functional and molecular imaging with radioactive contrast agents can provide whole-body information about tumor metabolism, proliferation, and hypoxia relative to healthy tissues. These modalities use noninvasive imaging to guide treatment selection along with diagnostic pathology of biopsy. However, relatively low sensitivity of anatomic modalities and poor spatial resolution of molecular imaging limit the ability of noninvasive imaging modalities for guiding surgery, which is the primary treatment option in many cancers. Optical imaging with colored or fluorescent contrast agents complements noninvasive imaging by providing high resolution and real-time visualization during endoscopic and surgical procedures.

Intraoperative fluorescence imaging provides real-time visualization of signal from fluorescent reporters over a large field of view (FOV) with exceptional sensitivity and resolution. Fluorescence imaging is used during surgery to assess patency of blood vessels and ureters. Near-infrared (NIR) fluorescence (700 to 900 nm) is often preferred for deep tissue imaging due to its higher depth of penetration and lower background fluorescence. However, NIR fluorescence is invisible to the human eye, and emitted light levels are typically low for the human eye to see, requiring camera-based detection. Clinical optical imaging systems typically consist of highly sensitive, scientific digital cameras with appropriate illumination source and optical filters for fluorescence detection. Fluorescence image information is acquired via attached computer, processed to reduce background signal and enhance contrast, then displayed on an adjacent digital monitor alongside or overlaying the reference brightfield image. We hypothesized that surface projection of fluorescence information on the surgical field will improve the detection and removal of tumor tissue.

Digital light processing (DLP) technology enables fast, high resolution, and high contrast digital image projection. DLP systems utilize digital micromirror arrays to project bright and high resolution color images over large areas. Due to the increase in computer speed and economics of scale, DLP technology has been adapted for use during medical procedures. Herein we report a novel DLP-based strategy, optical projection of acquired luminescence (OPAL), for automated fluorescence imaging and direct super-imposition onto the surgical field.

We constructed a small prototype system to demonstrate proof-of-principle for OPAL applications in oncologic procedures. A white light-emitting diode (LED) light source (KL200 LED, Leica, Buffalo Grove, Illinois) provided illumination continuously during all procedures. Excitation light for fluorescence was provided by high power 760-nm LED (M780L2 and LED181B, Thorlabs, Maryland) with 769 ± 20.5 nm band-pass filter (FF01-769/41, Semrock, Rochester, New York). A 0.33-MP monochrome complementary metal-oxide semiconductor (CMOS) camera (FireFly MV FMVU-03MTM-CS, Point Grey Research, Canada) with 16-mm fixed focal lens [17HD (2/3" 16 mm F/1,4 C-Mount, Tamron, Japan)] and 785-nm long-pass edge filter (BLP01-785R, Semrock) was used for fluorescence detection. A 20 lumen, 608 x 684 pixel resolution pico projector kit (DLP LightcrafterTM, Texas Instruments, Dallas, Texas) was used to project images.

The OPAL system was positioned vertically, 30 cm above the operating field. This position gave a 3.5 x 5 cm2 camera FOV for the camera (about 13 pixels/mm) and 7.5 x 5.5 cm2 (about 10 pixels/mm) for the projector. Image acquisition, processing, and projection were controlled using MATLAB.
The OPAL strategy will be best used in open surgeries that provide a relatively flat FOV and do not require significant magnification. These procedures include sentinel lymph node biopsy and cyoreduction in breast and ovarian cancer. Fluorescence imaging during endoscopic procedures, including robotic surgeries, requires attention to a digital display and would not benefit from direct image projection. Although NIR imaging has the potential for greater depth detection relative to visible wavelengths, fluorescence imaging systems based on a planar reflectance geometry have maximum reported depth of penetration of 4 cm and typically <2 cm. Our system leverages these advantages and combines them with DLP technology to achieve real-time reprojection of NIR fluorescence images correctly aligned with anatomical structures.

Further work is in progress to improve the sensitivity of fluorescence detection and optimize the contrast enhancement.
Fluorescence molecular imaging methods and targeted contrast agents are progressing steadily toward use in oncologic surgical procedures. Clinical imaging systems are already in place for detection of fluorescence contrast during endoscopy and open surgery. The fluorescence image projection method demonstrated through this prototype OPAL system represents a promising method for utilizing fluorescence molecular imaging to improve outcomes in oncologic surgery.

Acknowledgments

This study was supported by grants from the National Institutes of Health Office of Research Infrastructure Programs (K01RR026095), National Cancer Institute R01 CA171651 and U54 CA136398 (Network for Translational Research), and the Barnes-Jewish Hospital Foundation BJHF-7583-55. Thank you to Jan Winter for Lightcrafterm code used as the basis of the MATLAB code for controlling the Lightcraftert.

References