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Abstract. Optical coherence elastography (OCE) provides deformation or material properties, mapping of soft
tissue. We aim to develop a robust speckle tracking OCE technique with improved resolution and accuracy. A
digital image correlation (DIC)-based OCE technique was developed by combining an advanced DIC algorithm
with optical coherence tomography (OCT). System calibration and measurement error evaluation demonstrated
that this DIC-based OCE technique had a resolution of ∼0.6 μm displacement and <0.5% strain measurement in
the axial scan direction. The measured displacement ranged from 0.6 to 150 μm, obtained via phantom imaging.
The capability of the DIC-based OCE technique, for differentiation of stiffness, was evaluated by imaging a can-
dle gel phantom with an irregularly shaped stiff inclusion. OCE imaging of a chicken breast sample differentiated
the fat, membrane, and muscle layers. Strain elastograms of an aneurysm sample showed heterogeneity of the
tissue and clear contrast between the adventitia and media. These promising results demonstrated the capability
of the DIC-based OCE for the characterization of the various components of the tissue sample. Further improve-
ment of the system will be conducted to make this OCE technique a practical tool for measuring and differen-
tiating material properties of soft tissue. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
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1 Introduction
Optical coherence elastography (OCE) provides deformation or
the material property mapping of soft tissue.1,2 The addition of
elastographic contrast may improve the inherent ability of opti-
cal coherence tomography (OCT) to differentiate the composi-
tion and structure of soft tissue.3 Moreover, the mechanical
information extracted from OCE is important for analysis and
identification of pathological changes in soft tissue. For exam-
ple, OCE may provide high-resolution characterization of
strains in arterial walls, which would be important complemen-
tary information for determining the stability of atherosclerotic
lesions.4 There are two main categories of OCE techniques,
phase-based methods5,6 and speckle tracking techniques,7–9

which rely on the structure of the speckle pattern when it is
fixed. In general, speckle-tracking based OCE can measure
greater deformation than phase-based OCE methods as
phase-based OCE is limited by the phase stability of OCT sys-
tem10 and the phase wrapping induced by large physical defor-
mations or high detected particle velocities within the imaging
volume. Although phase unwrapping could extend the measure-
ment range of the phase-based method, it is difficult to apply
due to noise corruption or discontinuity of the wrapped phase
maps in OCT imaging.6,11 The principle of speckle tracking

techniques has been previously described by Schmitt.1

Briefly, the speckle can be temporally tracked by quantifying
the displacement via cross correlation of the OCT images of pre-
stressed and stressed tissue samples. However, the resolution for
the displacement calculation was limited to 1 pixel and no strain
elastograms were given, as the process of strain calculation by
differentiating the displacements was very sensitive to noise.
Kirkpatrick et al.12 demonstrated that a maximum likelihood
speckle shift estimator is superior than cross correlation,
when the tissue motion between frames is less than 0.8 pixels.
However, in practice, it is difficult to estimate the pixel shift a
priori. Moreover, if the deformation values have a wide range
from subpixels to pixels, the maximum likelihood will not be
effective. Another drawback of the existing speckle tracking
methods is the use of numerical differentiation of displacements
to obtain strains. This procedure is noise sensitive as any error in
the displacement measurement will be amplified in its strain cal-
culation.13 Due to these complications, the large majority of
the present speckle-tracking based OCE techniques has not
been verified for their measurement accuracy. Therefore, more
advanced algorithms are required to improve the measurement
resolution and accuracy. We aim to develop a robust speckle-
tracking based OCE methodology with subpixel resolution
and improved strain measurement accuracy.

Digital image correlation (DIC)14–16 is widely accepted for
mechanical testing. The basic principle of DIC includes the
tracking of the same points (or pixels) between the two images
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recorded before and after deformation. When DIC is applied to
continuum mechanics, strains can be simultaneously obtained
with displacements.17 Simultaneous computation of displace-
ment and strain differentiates DIC from regular speckle tracking
algorithms employed in image processing when compared to
pattern recognition algorithms. DIC has been used to measure
the material properties of biological tissues and biomaterials.18

This was accomplished by employing artificial speckle patterns
on the surface of the specimen. DIC can be implemented if the
speckle pattern deforms together with the specimen surface as a
carrier of deformation. Under the condition of small perturba-
tions due to time or mechanical loading where the changes
of the speckle pattern between frames are small and free of dis-
continuities, we hypothesize that the DIC algorithm can be
applied to OCT images, resulting in optical coherence elasto-
grams. Such a hypothesis can be tested via static loading
using low-frame rating imaging systems and when in practice,
it will require high-frame rate devices to address dynamic
loading conditions. Furthermore, DIC requires high-spatial-
frequency information of the speckle to optimize the cross-
correlation calculation. Therefore, image contrast and non-
uniform distribution of speckle may affect the resolution and
accuracy of the results.19,20 The contrast and brightness of OCT
images decrease with imaging depth, which may also result in
a decreasing correlation coefficient as a function of depth. The
prerequisite for the effectiveness of this DIC-based OCE is that
the speckle patterns are correlated. The correlation stability of
the OCT speckle images free of load is evaluated. The focus of
this article is to present this novel DIC-based OCE technique for
deformation imaging of soft tissue. The technique was evaluated
in terms of system error and differentiation of various biological
composite materials. Advantages, limitations, and further devel-
opment are also discussed.

2 Materials and Methods

2.1 Theory

DIC is fundamentally a cross-correlation or speckle tracking
technique. As such it requires a reference image of the object
before deformation and an image after deformation. At each
pixel point, the DIC processing chooses a subset of pixels cen-
tered at the point and searches for a subset with a maximum
correlation coefficient on the deformed image. Applying the
theory of deformation of continuum mechanics, the differences
in the positions of the reference subset center from the correlated
subset center on the deformed image yield six deformation
parameters including displacements and the displacement gra-
dients. Theoretical derivation of DIC for simultaneous deforma-
tion and strain measurement can be found in Ref. 14. Here, we
used a normalized cross-correlation criterion, which is insensi-
tive to overall frame intensity fluctuations. The normalized
cross-correlation equation is expressed as
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where C is the correlation coefficient; u; v are displacements in
lateral and axial directions, respectively, and ∂u

∂x ;
∂u
∂y ;

∂v
∂x ;

∂v
∂y are the

displacement gradients, from which normal strains in the lateral
and axial direction and shear strain can be calculated; s is a sub-
set in an undeformed image, s� is a subset in the deformed
image; fðx; yÞ and gðx�; y�Þ are the intensity of a random
point within the subset before and after deformation, respec-
tively; f̄ and ḡ are the mean intensity values of the subsets.
When the two subsets are fully correlated, the correlation coef-
ficient C equals 1. Equation (1) is usually converted to an opti-
mization problem where the minimization of 1-C provides the
solution to the six unknowns. The six deformation parameters
are independent variables of function C, which avoids numerical
derivation of displacements for strain calculations.

The maximum correlation searching process includes two
steps. First, a simple search scheme is applied which yields inte-
ger pixel resolution. Second, a subpixel displacement registration
is applied. In this article, bilinear interpolation is applied to obtain
gray level information between pixels, and the Newton–Raphson
algorithm is applied for high-accuracy subpixel registration.17,21,22

The results of the first step serve as initial approximation for the
Newton–Raphson iteration, which continues in the subpixel
domain about that integer pixel to obtain precision of 0.01 pixels
or higher. When convergence is achieved, the six parameters are
solved simultaneously. We set the downward displacement in the
axial direction as positive in our software algorithm.

2.2 OCE Procedure and System Calibration

The OCE system consists of a custom polygon-based swept-
source OCT (SSOCT) system and a loading structure. A dia-
gram of the OCT system is shown in Fig. 1(a). The OCT system
has a 36-kHz A-scan frequency, ∼15-μm axial resolution in air,
and ∼25-μm lateral resolution determined by the focal spot size
of the imaging lens (LSM03, Thorlabs, Newton, New Jersey).
A photo of the loading structure under the scanning lens is
shown in Fig. 1(b).

The loading structure shown in Fig. 1(b) is made of a plate
fixed to a linear translation stage. A 20-mm-diameter hole was
fabricated on the plate, and a 1.2-mm-thick cover slip was glued
to the bottom of the plate to allow the transmission of light and
application of the load. Static load was applied by adjusting the
translation stage downwards. DIC calculations were performed
on two consecutive frames of OCT images of a sample before
and after deformation. A schematic diagram of OCE procedure
is shown in Fig. 2. The sample was cut into ∼5 × 5 mm2 pieces
and covered with solution to match the refractive index if nec-
essary. Preload was applied while the first OCT image was
taken.8 Preloading was applied to ensure that the glass window
was in contact with tissue and decrease the correlation noise.23

It was applied by moving the compression plate down a certain
distance, usually in the range of a few microns depending on the
shape of the sample, beyond the point of first contact. The two
frames of OCT images taken under preload and compressive
load were then computed by DIC to obtain displacement distri-
bution maps and elastograms of normal strains and shear strain
simultaneously.

We first evaluated the system error by processing two con-
secutive images of a phantom without applying a load. The
phantom was ∼10-mm thick and made of RTV silicone
(ELASTOSIL RT 601 A/B, WACKER, Germany) with TiO2

as an optical scatter. The concentration of TiO2 was
25 mg∕ml, and the mixing ratio of A/B was 15:1, resulting
in elastic modulus of ∼3060 KPa.24 The two frames of OCT
image of the phantom were taken at an interval of ~1 s. One

Journal of Biomedical Optics 121515-2 December 2013 • Vol. 18(12)

Sun et al.: Digital image correlation–based optical coherence elastography



of the images is displayed in Fig. 3(a). The displacements and
strains in this sample were expected to zero as no load was
applied. Therefore, the resultant OCE images indicate the inher-
ent measurement error of the system. Figure 3(b) demonstrates
the correlation coefficient in a region of interest (ROI).
Correlation coefficients >0.92 were observed throughout the
ROI indicating a high correlation in the speckle pattern. The dis-
placement in the axial and lateral direction is shown in Figs. 3(c)
and 3(d), respectively, from which it can be seen that the system
error for displacement measurement was <0.1 pixels in axial
direction and <0.2 pixels in lateral direction. The measurement
error is slightly greater in the lateral direction, possibly due to
jitter in the Galvo scanning mirror, subject to feedback mech-
anisms in its control loop. The normal strains in the axial direc-
tion and lateral direction are shown in Figs. 3(e) and 3(f), which
demonstrate a measurement error of <0.5%. We also evaluated
the correlation changes of the speckle patterns with time. The
phantom free of load was imaged with various time intervals
of 0 to 15 min. The average and standard deviation of the cor-
relation coefficients within the ROI was plotted with time in
Fig. 3(g). The error bars demonstrated that the variations of
the coefficient within the ROI are not significant. Although
the correlation coefficient varies with time in general, it
seems to be of a random nature. This random change could
be explained by the random characteristics of speckles. The
speckle pattern is sensitive to the system unstableness, such
as minor vibrations in the optical table or jitter in the Galvo
scanning mirror. The lowest correlation coefficient was 0.75
within the 15-min timeframe. A C > 0.6 was defined as strong
correlation as per previous publication.25 Thus, results obtained
when C < 0.6 were considered to be poor data as decorrelation
between the speckle patterns existed.

Due to light absorption of tissue, the intensity of the image
decreases with depth. In this experiment, the total imaged depth
was ∼1.2 mm representing 300 pixels in the axial direction. The

changes of the root mean square (RMS) contrast26 and correla-
tion coefficient with depth were evaluated and plotted in
Figs. 3(h) and 3(i). As estimated, the correlation becomes
weaker with the decreasing of image contrast.

To calibrate the relationship between physical deformation
and pixel shift in the OCE image domain, a homogeneous phan-
tom made of candle gel and TiO2, with a thickness of ∼10 mm,
was tested. The resultant relationshipwas termed as the μm∕pixel
ratio. A series of compressions ranging from 1 to 150 μm was
applied to deform the phantom. The compressions were applied
by adjusting the translation stage. The measurement results are
shown in Fig. 4. One OCT image is shown in Fig. 4(a). The axial
displacements of the sample undergoing 10-μm compression are
overlaid on a structural image and shown in Fig. 4(b). The width
of the ROI was ∼0.6 mm, assuming that the refractive index of
the sample was 1.4. The ROI includes 800 and 240 pixels in the
horizontal and vertical directions, respectively. The 300 pixels
evenly distributed within the ROI with 8-pixel interval were cal-
culated by Eq. (1). The values of the pixels that are not directly
calculated were obtained by interpolation. The displacement
inflicted via the translation stage was 10 μm on the top surface
of the phantom, which gradually decreased with depth. The
measurement results in Fig. 4(b) do not show a gradual decreas-
ing pattern in the axial direction as the variations of the displace-
ment in the ROI were too small to be resolved by the DIC-based
OCE algorithm. Figure 4(c) shows that the pixel shift in images
linearly increases with the increasing of the compression. The
horizontal coordinate of the “x” is the average displacement
applied in the ROI, and the vertical coordinate is the average
value in the ROI measured by OCE. For example, at 150-μm
compression, the displacement distribution of the phantom is
from 150 μm on the top surface linearly dropping to 0 at the bot-
tom of the phantom. Thus, the average value within the ROI can
be calculated by

½displacement on top surface�
þ ðdisplacement at the bottom of the ROIÞ∕2

¼
�
150 μmþ

�
150 μm −

150 μm

10 mm
· 0.6 mm

��
∕2

¼ 145.5 μm

neglecting the thickness above the ROI. There was ~9 μm dis-
placement variation within the ROI under 150-μm compression.

Fig. 1 (a) Schematic diagram of the swept-source optical coherence tomography (SSOCT) system.
(b) Photo of the loading structure. Symbols on (a): BD, balanced photodetector; C, collimator; CIR, cir-
culator; D, photodetector; FBG, fiber bragg grating; GVS, galvoscanner; L1 and L2, lenses; PC, polari-
zation controller; SOA, semiconductor optical amplifier. The list of parts in (b): (1) OCT galvoscanner with
an imaging lens. (2) Optical window. A tissue sample is underneath it. (3) Compression plate.
(4) Translation stage. Compression load is applied by translating the compression plate downwards.

Fig. 2 Diagram of the optical coherence elastography (OCE)
procedure.
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Taking the average value in the curve fitting in Fig. 4(c) for the
calibration will improve the calibration accuracy. The μm∕pixel
ratio was calculated to be 5.8 based on the linear curve fitting.
More specifically, one pixel shift between the two OCT images
was caused by 5.8 μmdeformation of the sample. The correlation
coefficient decreases with the increasing of the displacement as
shown in Fig. 4(d). The correlation coefficient was about 0.6 at
150 μm, which was considered to be the maximum measurable
displacement. Maps of displacement in lateral and axial direc-
tions of the phantom under 150-μm compression are shown in
Figs. 4(e) and 4(f). In the lateral direction, the scanned length
was 5 mm including 1024 pixels and resulted in 4.9 μm∕pixel.
Negative values demonstrate that the ROI is on the left side of the
center of the phantom. The axial displacements in Fig. 4(f) show
a decreasing trend with depth as expected.

2.3 Evaluation of OCE for Material Differentiation

A candle gel and TiO2 phantom including a small stiff part
made of silicon and TiO2 were tested by the DIC-based OCE
technique. To estimate the elastic modulus of the candle gel
and the silicon inclusion, compression tests were conducted.

Samples of ∼25 mm2 × 3 mm thick were resected from the
candle gel and silicon material, respectively. A load cell
(FSH01045, FUTEK, Irvine, California) was fixed at the bottom
of the loading structure as shown in Fig. 1(b). The 100-μm com-
pression was applied to each sample by the translation stage
while the load was recorded by the load cell. Then, the elastic
modulus was estimated by E ¼ σ

ε assuming linear elastic
material, where E is the Young’s modulus, σ is the stress,
and ε is the strain in the equation. The Young’s modulus (E)
was experimentally derived to be 8.98 MPa for the small silicon
inclusion and 2.99 MPa for the surrounding candle gel material.
To make the candle gel phantom with stiff silicon inclusion, a
few random sized pieces of the silicon phantom were cut off and
embedded to the candle gel before it solidified. A photo of the
phantom is shown in Fig. 5(a). A small piece enclosed by a rec-
tangle on Fig. 5(a) was cut off for OCE experiment. The stiffer
piece is vaguely visible in the OCT images of Figs. 5(b) and
5(c), which are taken before and after compression. The phan-
tom was compressed by ~20 μm. Displacements and strains in
the axial direction of an ROI obtained by the DIC-based OCE
are shown in Figs. 5(d) and 5(e). It can be seen that the stiff
block deforms less than the surrounding region. From the strain

Fig. 3 OCE system evaluation by comparing two frames of optical coherence tomography (OCT) images
taken at ∼1-s time interval. (a) One of the OCT frames (nearly identical to the second frame); (b) corre-
lation coefficient distribution between the two frames within a region of interest (ROI); (c) displacement in
the axial direction; (d) displacement in the lateral direction; (e) normal strain in the axial direction; (f) nor-
mal strain in the lateral direction; (g) plot of the average and standard deviation of correlation coefficients
within the ROI with time; (h) plot of the root mean square (RMS) contrast of the OCT image with depth;
(i) plot of the correlation coefficient with depth. Scale bars on (a)–(f) ¼1 mm.
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elastogram displayed in Fig. 5(e), the boundary of the stiff block
is clearly visible. The strains generated on the block are sig-
nificantly smaller than the strain on the surrounding material.
A strain distribution map obtained by numerical derivation of
the displacement is shown in Fig. 5(f), which is severely
corrupted by noise. As it is difficult to estimate the strain dis-
tribution of the phantom which has such a nonregular shape
inclusion, we conducted a finite element simulation using
COMSOL4.3 to verify the OCE results. Isotropic linear elastic
models were used in the simulation. Poisson’s ratio for both
materials is 0.499 and Young’s modulus is 8.98 and
2.99 MPa, respectively, as per the experimental measurements.
Under 20-μm compression, the normal strain distribution in the
axial direction was displayed in Fig. 5(g). The pattern of the
strain distribution matches well with the experimental results
in Fig. 5(e). A large strain region above the inclusion is
shown in green–blue in Fig. 5(e) and blue in Fig. 5(g).
Discrepancy of the values between Figs. 5(g) and 5(e) is due
to a few factors including: (1) shape: the geometry of the phan-
tom in the simulation is not identical to the actual phantom,
because the actual phantom, especially the stiff inclusion,
does not have perfectly straight edges; (2) material of the phan-
tom may not be homogeneous, as suggested by Fig. 5(d);

(3) two-dimensional simulation was conducted while the actual
phantom is a three-dimensional object; and (4) the material
properties used in the simulation may differ from the actual
values.

3 Biological Tissue Imaging
The DIC-based OCE technique was applied to image biological
tissues. Unlike the phantoms, where the fundamental shape
could be reasonably controlled, the biological tissue did not
have regular shapes. Thus, the load applied may not be uni-
formly distributed, resulting in complicated stress analysis.
Therefore, only the strain distributions of these samples through
the DIC-based OCE were investigated without detailed confor-
mational analysis of stress distributions.

A chicken breast sample was imaged by the DIC-based OCE
algorithm. A small piece containing a layer of fat on the top, a
soft membrane in the middle, and a muscle layer at the bottom
was imaged. The sample was compressed by 10 μm. Imaging
results are shown in Fig. 6. Figure 6(a) is an OCT image of
the sample. The three layers are labeled as F for fat, Me for
membrane, and Mu for muscle, based on estimation, as clear
boundaries are not visible on the OCT image. Due to the non-
regular shape of the sample, the cover slip was only in contact

Fig. 4 System calibration. (a) An OCT image of a phantom. (b) Map of displacement in axial direction of
the phantom under 10-μm compression. (c) Plot of measured pixel shift in images versus given displace-
ment where x indicates pixel shift obtained by digital image correlation (DIC)-based OCE at each given
compression and straight line is the linear fitting of the data. This plot shows that 5.8-μm displacement
induces 1 pixel change on OCT images. (d) Plot of correlation coefficient versus displacement. (e) Map of
displacement in the lateral direction of the phantom under 150-μm compression applied from the top.
Negative values demonstrate that the ROI is on the left side of the center of the phantom. (f) Map of
the displacement in the axial direction of the phantom under 150-μm compression, demonstrating
the gradual decrease of deformation from top of the ROI to the bottom. Scale bars ¼1 mm.
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with the right part of the top surface. Figure 6(b) shows the map
of displacement in the axial direction. The displacement distri-
bution varies from 9 to 10 μm. Figure 6(c) is the elastogram of
normal strain in axial direction, which shows that the softer
membrane has higher strain of ∼1% comparing with almost
zero strain on the top and bottom layers.

A cerebral aneurysm is a blood-filled dilation (balloon-like
bulge) in the wall of the cerebral artery. Rupture of the cerebral
aneurysm can cause hemorrhage to the brain with potentially
fatal consequences. It is essential to understand the mechanical
conditions and consequent stress distribution in arterial walls
that involved in aneurysmal rupture. Local variations in the
anisotropy and inhomogeneity of arterial tissues have not
been examined in detail due to limitations of imaging and exper-
imental approaches. Walraevens et al.27 suggest that a compres-
sion test could be able to discriminate healthy from calcified
aortic vascular wall tissue. In this work, a cerebral aneurysm
sample using the DIC-based OCE was imaged as a feasibility
study. The aneurysm sample was obtained under discarded
human tissue exemption and had been fixed in formalin for sev-
eral months before the OCE test. A photo of an aneurysm is
shown in Fig. 7(a). The upper right corner of the sample was
resected for the OCE test, which is shown in Fig. 7(b). The aim-
ing beam indicates the imaged cross-section. One OCT image of
the cross-section of the sample is shown in Fig. 7(c). Figure 7(d)
is the histology of the cross-section correlating to Fig. 7(c). A
dashed rectangular region is zoomed in Fig. 7(f). Figure 7(e) is
the elastogram of normal strain in the axial direction overlaid on

Fig. 5 OCE imaging of a phantom that has a stiff inclusion. (a) A photo of the phantom with stiff inclu-
sions. The part in red rectangle was cut off for OCE test. (b) and (c) Two frames of OCT images of the
phantom before and after compression. (d) Displacement in the axial direction overlaid on a structural
image. (e) Axial strain elastogram overlaid on a structural image where the strain values on the stiffer
block are between 0 and −0.5%, which is smaller than the strains on the material surrounding it. The
boundary of the stiff block is clearly visible. (f) Axial strain distribution obtained by numerical derivation of
the displacement measured in (d). (g) Simulation of strain in the axial direction. The dashed line rectan-
gular indicates the ROI in the OCE measurement. Scale bars on (b)–(g) ¼1 mm.

Fig. 6 OCE imaging of a chicken breast sample. (a) OCT image of the
sample. F: fat layer, Me: membrane, Mu: muscle. (b) Displacement
distribution in the axial direction. (c) Elastogram of normal strain in
the axial direction, which shows the softer membrane in the middle.
Scale bars¼1 mm.
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the OCT image. The ROI indicated by white arrows in Fig. 7(e)
is correlated to the region indicated by black arrows in Fig. 7(d)
where the adventitia and media have different structures. OCE
image clearly shows the boundary of the adventitia layer, which
is not clearly identified in OCT structural image in Fig. 7(c). The
region indicated by a red asterisk is not processed because the
speckle patterns are decorrelated. The sample was also imaged
from the bottom side of Fig. 7(d). The elastogram of axial nor-
mal strains overlaid on an OCT image is shown in Fig. 7(g). A
high strain region in blue indicated by a black arrow correlates to
the local heterogeneity in the fibrotic aneurismal wall shown in
the histological image in Fig. 7(f), as indicated by a black arrow.
Although microcalcification is shown in Fig. 7(f) indicated by a
red arrow, it is difficult to correlate it to the strain elastogram in
Fig. 7(g). The small red regions in Fig. 7(g) pointed by a red
arrow might be induced by noise.

4 Discussion
While the error sources in the DIC measurement include OCT
imaging noise, out-of-plane displacement, and error in the sub-
pixel registration process, the most troublesome factor affecting
OCE was speckle decorrelation. Speckle patterns may become
decorrelated with time especially speckle images of a sample
with a fluid component. The lowest correlation coefficient
observed was 0.75 within the 15-min test shown in Fig. 3(g),
which demonstrated that the decorrelation induced by random
speckle changes was not an issue within a reasonably long (15-
min) time interval. However, correlation stability varies with
various stiffness of tissue under loading condition.28 In all

experiments performed during this work, the correlation coeffi-
cient was >0.6 in the ROI to ensure robust results. Subset size
directly determines the area of the subset being used to track the
displacements between the reference and target subsets, which
are critical to the accuracy of the displacement measurement.
The subset size should be chosen based on images to ensure
sufficient distinctive intensity patterns are contained in the sub-
sets.29 A 49 × 49-pixel subset was chosen for most of the experi-
ments conducted in this article. The subset size determined the
top surface of ROI, which has to be at least half of the width of
the subset below the top of the image to perform correlation cal-
culation. In this case, the upmost boundary of the ROIs is row 25
(in pixels). For phantom experiments shown in Figs. 3–5, the
ROIs are below 25 pixels. For random-shaped samples in
Figs. 6 and 7, a structural OCT image-based mask was used
to create ROIs. From the system evaluation and calibration in
Figs. 3 and 4, the resolution for axial displacement was mea-
sured to be 0.1 pixels, which correlated to ∼0.6 μm. However,
the calibration was dependent on the medium refractive index,
as the axial resolution of the OCT image depends on the medium
refractive index. Thus, if the refractive index is unknown, each
sample should be calibrated to improve measurement accuracy.
The resolution for lateral displacement measurement was about
0.2 pixels, equivalent to ∼1 μm as demonstrated in Fig. 3(d).
The accuracy for axial displacement measurement is <1 μm,
as demonstrated in Fig. 4(f). More homogeneous phantoms
and well-designed experiments will be conducted to further
evaluate the accuracy of the system for displacement and strain
measurements in two dimensions.

Fig. 7 OCE imaging of a resected cerebral aneurysm sample. (a) A photo of a cerebral aneurysm; the top
right corner was resected for OCE imaging. (b) A photo of the sample under OCE testing. (c) An OCT
image of the sample. (d) Histology of the imaged cross-section. (e) Elastogram of the normal strain in
axial direction of the top side of the sample. The ROI indicated by white arrows in (e) correlates to the
region indicated by black arrows in (d). Speckles in the region indicated by a red asterisk are decorre-
lated. (f) Zoom-in of the region enclosed by a rectangle in (d). (g) Elastogram of the normal strain in the
axial direction of the bottom side of the sample. There is a small blue region indicated by a black arrow
with the strain value of ∼2%, which correlates to the heterogeneity of tissue indicated by a black arrow in
(f). Scale bars in (c), (f), and (g) ¼1 mm.
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The maximum OCE measurable deformation tested in Fig. 4
was ∼150 μm before speckle decorrelation occurred. Factors for
achieving large deformation measurements include (1) a larger
subset of 69 pixels is used for >100-μm deformation (for uni-
form distribution of speckle, larger subsets will provide higher
accuracy); (2) the phantom material is relatively stiff; and (3) a
phantom with thickness of ∼10 mm was tested. At 150-μm
deformation, only 1.5% of strain is generated. Similar amounts
of compression applied to a thin sample will generate larger
strains. The correlation between two speckle patterns of an
object, before and after deformation, is more affected by the
strain than the displacement. However, when imaging thick
samples, the strain may be too small to be within the resolution
of the DIC-based OCE. Under this situation, numerical deriva-
tion will be required to calculate strains. The phase-sensitive
technique has the ability of measuring deformation in nanometer
scale.6 It would be advantageous to small strain measurement.

Soft-tissue images rarely have uniform speckle distribution
where speckle decorrelates under small compressions. The com-
pression that was applied in the soft-tissue experiments was usu-
ally <20 μm. In addition, as the tissue samples had irregular
shapes, it was almost impossible to have ideal contact between
the top surface of the sample and the compression plate. For
example, in both Figs. 6 and 7, the glass plates were in contact
with only a part of the top surface. In both experiments, speckle
in the region under direct compression decorrelated, whereas on
the other region, correlation remained. Therefore, OCE could be
applied to the region without direct compression. This may pro-
vide some information for future experimental designs of load-
ing schemes, although the stress analysis under this type of
nonuniform compression may be quite complicated. In the
case of Figs. 6 and 7, the regions in contact with the compres-
sion glass are either at the edge of the sample or too small [a
point (<1 mm) contact]. Those regions were not in the interest
of our analysis. Therefore, greater compressions (10 to 20 μm)
were applied. However, it is completely possible to apply a
small amount of compression and analyze the strain distribution
in the region right under such compression. As a glass window
has to be used to transmit light and apply load, the artifact due to
reflection of the glass window, as shown in Fig. 6(c), can be
destructive for image correlation. Such artifact should be elim-
inated by setting the imaging beam on optimal imaging angle of
∼60 to 75 deg.

The experiment shown in Fig. 5 demonstrated the capability
of the DIC-based OCE for identifying structural features and
strains of various compositions of soft tissue. The three-layer
structure could be differentiated in Fig. 6, even though a non-
uniform compression was applied. However, to interpret the
results, care should be given to the geometrical shape of the sam-
ple and the loading condition. For example, there is always
strain concentration in the vicinity of structural discontinuities,
where materials can not be differentiated simply based on strain
maps. As the tissue samples and various composites included
did not have regular shapes, interpretation of the strain elasto-
grams must be careful. Strain elastogram in the axial direction
alone is usually enough for the purpose of differentiation of vari-
ous components of a sample. Normal strains in both axial and
lateral directions and shear strain have all been obtained simul-
taneously through the DIC-based OCE. These data will be used
for quantitative analysis of material properties in the future
where constitutive models of the sample may have to be built
and inverse problem solving be applied.30

In general, the speckle-based OCE methods are limited to
measure large deformations (>0.6 μm for this DIC-based
method) and affected by speckle decorrelation. However, the
mechanical setup, control of the loading system, and data
acquisition are generally simpler than phase-sensitive methods,
which usually employ mechanical or acoustic waves to deform
a tissue sample with potential advantage in terms of dynamic
range.6,11,31,32 For speckle-tracking based methods, a loading
plate with an optical window allowing the optical beam to
pass is sufficient. Speckle/echo-tracking based ultrasound elas-
tography has been successfully used in clinical applications by
applying a slight pressure through the ultrasound probe.33

Similarly, this DIC-based speckle tracking algorithm has the
potential to be integrated with a forward-viewing OCT
probe34 to perform elastography.

OCE experimental results in Fig. 7 showing the displace-
ments and strains of local components of the aneurysm wall
had the potential to provide additional contrast for aneurysm
characterization, despite the fact that formalin fixation could
alter the aneurysm samples’ mechanical property. Although
the stress condition of the samples was not completely analyzed,
the strain elastograms were exciting. The stress failures of aneu-
rysms will be studied next, which may provide crucial informa-
tion for understanding the pathophysiology in the future.

5 Conclusions
The DIC-based OCE included interpolation and Newton–
Raphson algorithms in the computation to solve 2-D displace-
ments and strains simultaneously. This process avoided the
numerical derivation of displacements for strain calculation.
It greatly improved the measurement resolution and accuracy
than normally used cross-correlation techniques in image
processing. The DIC-based OCE showed promise for tissue
deformation and strain measurement. The resolution of this
DIC algorithm can reach 0.01 pixels, under ideal conditions.
With our SSOCT system and 49 × 49 subset size, the resolution
for displacement measurement was ∼0.6 μm (0.1 pixels) in the
axial direction and 1 μm (0.2 pixels) in the lateral direction. The
resolution for strain measurement was 0.5% in both the axial
and lateral directions. The maximum measurable value was
determined by the correlation status of speckle patterns.
Displacements as high as 150 μm could be measured by the
OCE system. More sophisticated data analysis algorithms
will be developed by including the displacements and strains
in two dimensions obtained from the DIC-based OCE.
Information about the load applied will also be included to
study the material properties, such as Young’s modulus, quan-
titatively in the future. Interesting chicken breast tissue layers
are revealed by the OCE tests. Elastograms of aneurismal
wall show strong contrast corresponding to features in histology
including local heterogeneity and the layers of media and adven-
titia. More vascular samples will be measured and correlated
with histology to verify the OCE findings. Benefiting from
our technique’s inherent high resolution, the DIC-based OCE
approach has a potential for characterization of atherosclerotic
plaques and aneurysms,35 as well as other lesions.
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