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1 Introduction
Monte Carlo (MC) methods are a category of computational
methods that involve the random sampling of a physical quan-
tity.1,2 The term “the Monte Carlo method” can be traced back to
1940s,1 in which it was proposed to investigate neutron transport
through various materials. Such a problem cannot be solved by
conventional and deterministic mathematical methods. Due to
its versatility, this method has found applications in many differ-
ent fields3 including tissue optics. It has become a popular tool
for simulating light transport in tissues for more than two dec-
ades4 because it provides a flexible and rigorous solution to the
problem of light transport in turbid media with complex struc-
ture. The MC method is able to solve radiative transport equa-
tion (RTE) with any desired accuracy,5 assuming that the
required computational load is affordable. For this reason,
this method is viewed as the gold standard method to model
light transport in tissues, results from which are frequently used
as reference to validate other less rigorous methods such as dif-
fuse approximation to the RTE.6,7 Due to its flexibility and
recent advances in speed, the MC method has been explored
in tissue optics to solve both the forward and inverse problems.
In the forward problem, light distribution is simulated for given
optical properties, whereas in the inverse problem, optical prop-
erties are estimated by fitting the light distribution simulated by
the MC method to experimentally measured values.

In this review paper, the principles of MC modeling for the
simulation of light transport in tissues, including the general
procedure of tracking an individual photon packet, common

light–tissue interactions that can be simulated such as light
absorption and scattering, frequently used tissue models,
common contact and noncontact illumination and detection set-
ups, and the treatment of time-resolved and frequency-domain
optical measurements, are described in detail to help interested
readers achieve a quick start. Following that, a variety of meth-
ods for speeding up MC simulations, including scaling methods,
perturbation methods, hybrid methods, variation reduction
techniques, parallel computation, and special methods for fluo-
rescence simulations, and their respective advantages and disad-
vantages are discussed. Then the biomedical applications of
MC methods, including the simulation of optical spectra, esti-
mation of optical properties, simulation of optical measurements
in laser Doppler flowmetry (LDF), simulation of light dosage in
photodynamic therapy (PDT), simulation of signal source in
optical coherence tomography (OCT) and diffuse optical tomog-
raphy (DOT), are surveyed. Finally, the potential directions for
the future development of MC methods are discussed, which are
based on their current status in the literature survey and the
authors’ anticipation. It should be pointed out that this review
is intended to give a general survey on the capability of MC
modeling in tissue optics while paying special attention on
methods for speeding up MC simulations since the time-
consuming nature of common MC simulations could limit its
applications.

2 Principles of MC Modeling of Light
Transport in Tissues

2.1 General Procedure of Steady State MC
Modeling of Light Transport in Tissues

In the general procedure of MC modeling, light transport in tis-
sues is simulated by tracing the random walk steps that each
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photon packet takes when it travels inside a tissue model. For
each launched photon packet, an initial weight is assigned as it
enters the tissue model, as illustrated in Fig. 1. The step size will
be sampled randomly based on the optical properties of the tis-
sue model. If it is about to hit a boundary, either of the following
two methods could be used to handle this situation. In the first
method, the photon packet will either transmit through or be
reflected from the boundary. In the second method, a fraction
of the photon packet’s weight will always be reflected and
the remaining fraction of the photon packet’s weight will trans-
mit through. The probabilities of transmission or reflection in
the first method, and the fraction of the photon packet’s weight
transmitting through or being reflected in the second method,
are governed by Snell’s law and Fresnel’s equations. At the
end of each step, the photon packet’s weight is reduced accord-
ing to the absorption probability; meanwhile, the new step size
and scattering angle for the next step will be sampled randomly
based on their respective probability distributions. The photon
packet propagates in the tissue model step by step until it exits
the tissue model or is completely absorbed. Once a sufficient
number of photon packets are launched, the cumulative distri-
bution of all photon paths would provide an accurate approxi-
mation to the true solution of the light transport problem and the
contribution averaged from all photons can be used to estimate
the physical quantities of interest.

2.2 Common Light–Tissue Interactions in MC
Modeling

Several types of common light–tissue interactions, including
light absorption, elastic scattering, fluorescence and Raman
scattering, have been simulated by the MC methods previously.
The absorption coefficient μa (unit: cm−1) and the scattering
coefficient μs (unit: cm−1) are used to describe the probability
of absorption and scattering, respectively, occurring in a unit
path length. The anisotropy factor g, which is defined as the
average cosine of scattering angles, determines the probability
distribution of scattering angles to the first-order approximation.
In addition, the refractive index mismatch between any two
regions in the tissue model or at the air–tissue interface will
determine the angle of refraction. The fraction of photon packet

weight that, after traveling in the medium, escapes from the
same side of the tissue model as the incident light is scored
as diffuse reflectance. In contrast, the fraction of photon packet
weight that travels through the medium and escapes from the
other side of the tissue model is scored as transmittance.5,8,9

To simulate fluorescence emission, one additional parameter,
which is fluorescence quantum yield,10,11 needs to be incorpo-
rated to describe the probability that the absorbed photon packet
weight can be converted to a fluorescence photon at a different
wavelength. If time-resolved fluorescence is simulated, the life-
time of fluorescence needs to be defined. The initial direction of
the fluorescence photon is isotropic due to the nature of fluores-
cence emission. As illustrated in Fig. 2, the MC modeling of
fluorescence propagation in tissues involves three steps.11–13

The first step involves a general MC simulation to simulate light
propagation with optical properties at the excitation wavelength.
In the second step, a fluorescence photon may then be generated
upon the absorption of an excitation photon with a probability
defined by the quantum yield and time delay defined by the life-
time of fluorescence. The third step again involves a general
MC simulation to simulate fluorescence light propagation with
optical properties at the emission wavelength. It is clear that
simulated fluorescence from a tissue model will be related to
the absorption and scattering properties of the tissue model
in addition to the fluorescence quantum yield and lifetime.
Fluorescence simulation is typically much more time-consuming
than the simulation of diffuse reflectance due to extra fluores-
cence photon propagation.

To simulate Raman emission, a parameter similar to fluores-
cence quantum yield, named as Raman cross-section,14–17 is
needed to describe the probability that a Raman photon will
be generated at each step. A phase function for Raman photons
needs to be determined. The MC simulation procedure for
Raman light propagation will be similar to that for fluorescence.

Bioluminescence refers to the phenomenon of living crea-
tures producing light, which results from the conversion of
chemical energy to bioluminescence photons18 and which has

Fig. 1 Flow chart for MCmodeling of the propagation of a single photon
packet, in which no wavelength change is involved.

Fig. 2 Flow chart for MCmodeling of the propagation of a single photon
packet, in which one set of wavelength change is involved. λexc indi-
cates the excitation wavelength and λemm indicates the emission wave-
length. The new photon packet with a different wavelength corresponds
to fluorescence or Raman light at a single emission wavelength.
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also been investigated using MC modeling. Because biolumi-
nescence does not need an external light source for excitation,
the first step in MC simulation of bioluminescence is to generate
bioluminescence photons package according to the distribution
of bioluminescence sources.19,20 After that, the simulation of
bioluminescence photon propagation in a tissue model is exactly
the same as the simulation of diffuse reflectance.

If the polarization property of light is considered in MCmod-
eling, the polarization of a photon can be represented by Stokes
vectors and the polarimetry properties of the tissue model can be
described by Jones matrix or Mueller matrices,21,22 which will
not be expanded in this review.

2.3 Common Tissue Models in MC Modeling

Common tissue models used in MC simulations include the
homogeneous and nonhomogeneous tissue models. The optical
properties in a homogeneous tissue model are equal every-
where.4,23 In contrast, the optical properties in a nonhomogene-
ous tissue model vary with the tissue region. The following
survey is focused on nonhomogeneous tissue models because
of its high preclinical and clinical relevance.

The most commonly used nonhomogeneous tissue model is
perhaps the multilayered tissue model,8,9,12,13,24–30 which is fre-
quently employed to mimic epithelial tissues. In a multilayered
tissue model, each tissue layer is assumed to be flat with uniform
optical properties and it is infinitely large on the lateral dimen-
sion. This assumption works fine when the source–detector
separation is small so that the spatial variation in the optical
properties within the separation is negligible. However, it could
cause significant errors if the optical properties change signifi-
cantly in a small area, such as in dysplasia or early cancer31 and
port wine stain (PWS) model.32 To overcome this limitation, tis-
sue models including heterogeneities with well-defined shapes
have been used to mimic complex tissue structures from differ-
ent organs. For example, Smithies et al.32 and Lucassen et al.33

independently proposed MC models in which simple geometric
shapes were incorporated into layered structures to model light
transport in PWS model. In their PWS models, infinitely long
cylinders were buried in the bottom dermal layer to mimic blood
vessels. Wang et al.34 reported an MC model in which a sphere
was buried inside a slab to model light transport in human
tumors. Zhu et al.31,35 proposed an MC model in which cuboid
tumors were incorporated into layered tissues to model light
transport in early epithelial cancer models including both squ-
amous cell carcinoma and basal cell carcinoma.

Voxelated tissue models have been also explored to simulate
irregular structures. Pfefer et al.36 reported a three-dimensional
(3-D) MC model based on modular adaptable grids to model
light propagation in geometrically complex biological tissues
and validated the code in a PWS model. Boas et al.37 proposed
a voxel-based 3-D MC model to model arbitrary complex
tissue structures and tested the code in an adult head model.
Patwardhan et al.38 also proposed a voxel-based 3-D MC code
for simulating light transport in nonhomogeneous tissue struc-
tures and tested the code in a skin lesion model. The three voxel-
based MC codes above showed great flexibility in a range of
applications. However, to model tissue media with curved boun-
daries in a voxel-based MC model, the grid density will have to
be increased, which requires more memory and computation. A
few other approaches have been explored to accommodate this
situation. Li et al.19 reported a public MC domain, named mouse
optical simulation environment, to model bioluminescent light

transport in a living mouse model. The mouse model consists of
several segmented regions that are extended from several build-
ing blocks such as ellipses, cylinders, and polyhedrons. This
platform is particularly suitable for small animal imaging.
Margallo-Balbas et al.39 and Ren et al.40 have developed triangu-
lar-surface-based MC methods to model light transport in com-
plex tissue structures. The triangular-surface-based approach
allows an improved approximation to the interfaces between
domains, but it is not able to model complex media with con-
tinuously varying optical properties. Moreover, it could be
time-consuming to determine ray–surface intersection because a
range of triangles will have to be scanned. To overcome the lim-
itations associated with triangular-surface-based MC method,
most recently, Shen et al.41 as well as Fang42 have presented
mesh-based MC methods, by which one can model much more
complex structures and situations.

2.4 Common Illumination and Detection Setups
in MC Modeling

One important advantage of MCmodeling, as compared to other
non-numerical methods such as diffuse approximation, is its
capability to faithfully simulate a variety of contact and noncon-
tact illumination and detection setups for optical measurements.
Note that the contact setup requires the direct contact between
the tip of an optical probe and tissue samples. In contrast, the
noncontact setup enables optical measurements from a tissue
sample without directly contacting it.

2.4.1 Contact setup for illumination and detection

Fiber-optic probes are commonly used in contact illumination
and detection configurations as demonstrated in many previous
reports.43 In general, these fiber-optic probes could be divided
into two groups. In the first group, the same fiber or fiber bundle
is used for both illumination and detection,30,44,45 while in the
second group, separate fibers are used for illumination and
detection.12,46–48 There is no difference in the treatment of these
two groups of fiber-optic probes from the point of view of mod-
eling because the first group of probes can be viewed as two
separate and identical fibers or fiber bundles for illumination
and detection that happen to locate at the same spatial position.

The key parameters in simulated fiber-optic probes include
the radii, numerical apertures (NA), tilt angles of illumination
and detection fibers, and the center-to-center distance between
the two sets of fibers (which is called the source–detector sep-
aration), as well as the refractive indices of these fibers relative
to that of the tissue model. The radius and NA of the illumina-
tion fiber in combination with the radial and angular distribu-
tions of photons coming out of the fiber define the locations
and the incident angles of incident photons. For a commonly
used multimode fiber, the spatial locations and incident angles
of launched photons are typically assumed to follow uniform
distribution and Gaussian distribution. Both spatial locations
and incident angles need to undergo spatial coordinate transfor-
mation when the tilt angle of the illumination fiber is larger than
zero. Here the tilt angle of a fiber refers to the angle of the fiber
axis relative to the normal axis of the tissue model. The incident
beam could be also assumed to be collimated or focused.

Light detection by a fiber usually contains two steps. The
first step is to determine whether an exiting photon could enter
the area defined by the radius of the detection fiber. If it is true,
the second step is to determine whether the exiting direction of
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the photon falls within the acceptable angle of the detection
fiber calculated from the NA and refractive index of the fiber.
If the tilt angle of the detection fiber is larger than zero, the
exiting location and angle are subject to spatial coordinate
transformation.

2.4.2 Noncontact setup for illumination and detection

Noncontact setups usually employ various lenses for illumina-
tion and detection. In these setups, an adjunct lens or a combi-
nation of lenses is usually placed between a fiber-optic probe
and the tissue sample to achieve noncontact measurements
while maintaining the well-defined illumination and detection
geometry. Jaillon et al.49 proposed a method to simulate a bev-
eled fiber-optic probe coupled with a ball lens to achieve depth-
sensitive fluorescence measurements from layered tissue mod-
els. Later, the same group incorporated a half-ball lens into the
beveled fiber-optic probe to achieve the same purpose with a
higher sensitivity.50 Zhu et al.51 proposed a method to simulate
a fiber-optic probe coupled with convex lenses to achieve non-
contact depth-sensitive diffuse reflectance measurements from
early tumors in an epithelial tissue model. By manipulating the
lens combination, an ordinary cone configuration and a special
cone shell configuration were investigated. It was found that the
cone shell configuration provides higher depth sensitivity to the
tumor than the cone configuration.

2.5 Time-Resolved and Frequency-Domain MC
Modeling

Time-resolved optical measurements such as fluorescence life-
time imaging (FLIM)52 and the complementary frequency-
domain measurements such as frequency domain photon migra-
tion have received increasing attention recently, which have also
been investigated in MC modeling. A time-domain technique
usually measures the temporal point spread function (PSF) or the
spreading of a propagating pulse in time.53,54 A frequency-domain
technique measures the temporal modulation transfer function
or the attenuation and phase delay of a periodically varying pho-
ton density wave.55,56 The two techniques are related by Fourier
transform. Several groups have developed time-domain MC
models37,57–60 and frequency-domain MC models61–65 to simulate
light transport in tissue. In the MC simulation of time-resolved
measurements, all the steps are the same as in steady-state
measurements, except that one additional parameter, i.e.,
time, is used to keep track of the time at which each event
occurs.37,57–60 The refractive index in each tissue region will in-
fluence the time that photons take to travel through. In the sim-
ulation of FLIM, it needs to be pointed out that the time delay
from photon absorption to fluorescence generation should fol-
low the probability density distribution defined by the fluores-
cence lifetime.66,67 In the frequency-domain measurements, the
modulation and/or phase delay of detected waves were ana-
lyzed. The modulation and phase delay can be simulated in
either a direct approach64 or an indirect approach, i.e., using
Fourier transformation from a time-domain MC simulation.65

3 Methods for the Acceleration of MC Simulation
While the MC method is the gold standard method to model
light transport in turbid media, the major drawback of the MC
method is the requirement of intensive computation to achieve
results with desirable accuracy due to the stochastic nature of
MC simulations, which makes it extremely time-consuming

compared to other analytical or empirical methods. Significant
efforts have been made to speed up the MC simulation of
light transport in tissues during the past decades. These accel-
eration methods can be roughly divided into several categories
as follows.

3.1 Scaling Methods

A typical scaling method requires a single or a few baseline MC
simulations, in which the histories of survival photons such as
trajectories or step sizes are recorded. Then, diffuse reflectance
or transmittance for a tissue model with different optical proper-
ties can be estimated by applying scaling relations on the
recorded photon histories. These methods take advantage of
the fact that the scattering properties determine photon paths
and the absorption property only influences the weights of sur-
vival photons. Graaff et al.68 proposed a limited scalable MC
method for fast calculation of total reflectance and transmittance
from slab geometries with different optical properties. It was
demonstrated that the trajectory information obtained in a refer-
ence MC simulation with a known albedo, i.e., μs∕ðμa þ μsÞ,
can be used to find the total reflectance and total transmittance
from slabs with other albedos. Kienle et al.69 extended Graaff’s
theory to simulate space- and time- resolved diffuse reflectance
from a semi-infinite homogeneous tissue model with arbitrary
optical properties. Their approach was based on scaling (for dif-
ferent scattering coefficients) and re-weighting (for different
absorption coefficients) a discrete representation of the diffuse
reflectance from one baseline MC simulation in a nonabsorbing
semi-infinite medium. It is powerful, but both the discrete rep-
resentation and interpolation could introduce errors that are
often amplified in scaling. Pifferi et al.70 proposed a similar
approach to estimate space- and time-resolved diffuse reflec-
tance and transmittance from a semi-infinite homogeneous
tissue model with arbitrary optical properties. Different from
Kienle’s method, the evaluation of reflectance and transmittance
in Pifferi’s approach is based on interpolation of results from
MC simulations for a range of different scattering coefficients,
and scaling is performed for absorption coefficients. This
approach increases the accuracy of results for different scatter-
ing coefficients at the cost of a significantly increased number of
baseline MC simulations.

The methods reviewed above are fast, but the binning and
interpolation involved introduce errors. In order to improve the
accuracy of these methods, Alerstam et al.60 improved Kienle’s
method by applying scaling to individual photons. In this method,
the radial position of the exiting location and the total path length
of each detected photon are recorded and the trajectory informa-
tion of each photon will be individually processed to find the sur-
vival photon weight for tissue media with other sets of optical
properties. Martinelli et al.71 derived a few scaling relationships
from the RTE, and their derivation showed that a rigorous appli-
cation of the scaling method requires rescaling to be performed
for each photon’s biography individually. Two basic relations for
scaling a survival photon’s exit radial position r and exit weight w
are listed in Eqs. (1) and (2) below.47

r 0 ¼ r ⋅
μt
μ 0
t
; (1)

w 0 ¼ w ⋅
�
α 0

α

�
N
; (2)
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in which r, w, μt, and α are the exit radial position, exit weight,
transport coefficients, and albedo in the baseline simulation, while
r 0, w 0, μ 0

t , and α 0 are those in the new simulations. N is the num-
ber of collisions recorded in the baseline simulation before the
photon exits. Two relations essentially assume that the same set
of random numbers sampled in the baseline simulation are also
used in the new simulation and everything remains unchanged in
two simulations, except the absorption and scattering coefficients.

Illumination and detection geometries have also been incor-
porated into the scaling procedure. Palmer et al.47 extended
Graaff’s scaling method from illumination by a pencil beam
to that by an optical fiber, and they also extended the original
scaling method from the total reflectance to the reflectance
detected by an optical fiber by combing scaling and convolution.
Wang et al.72 proposed two convolution formulas for the scaling
MC method to calculate diffuse reflectance from a semi-infinite
medium for a single illumination–detection fiber. Nearly all the
previous papers about scaling dealt only with a homogeneous
tissue model. Liu et al.73 developed a method that applies the
scaling method to multilayered tissue models. In this method,
the homogeneous tissue model in a single baseline MC simu-
lation is divided into multiple thin pseudo layers. The horizontal
offset and the number of collisions that each survival photon
experienced in each pseudo layer are recorded and used later
to scale for the exit distance and exit weight of the photon in
a multilayered tissue model with different set of optical proper-
ties. The method has been validated on both two-layered and
three-layered epithelial tissue models.

3.2 Perturbation MC Methods

Similar to the scaling method, the perturbation MC (pMC)
method requires one baseline simulation in which the optical
properties are supposed to be close to the optical properties
in the new tissue model so that the approximation made by per-
turbation is valid.74 The trajectory information including the exit
weight, path length, and number of collisions of each detected
photon spent in the region of interest will be recorded in the
baseline simulation. Then the relation between the survival
weight in the baseline simulation and that in the new tissue
model based on the perturbation theory,75,76 i.e.,

wnew ¼ w ⋅
�
μ 0
s

μs

�
j
⋅ exp½−ðμ 0

t − μtÞS�; (3)

is used to estimate diffuse reflectance from the tissue model in
which the optical properties of the interesting region are per-
turbed. In Eq. (3), w, μs, and μt are the exit weight, scattering
coefficient, and transport coefficient in the baseline simulation,
while wnew, μ 0

s, and μ 0
t are those in the new simulation. S and j

are the photon path length and the number of collisions that a
detected photon experienced in the perturbed region, respec-
tively, recorded in the baseline simulation. It should be pointed
out that the pMC is an approximation in nature, so its accuracy
depends on the magnitude of difference in the optical properties
between the perturbed optical properties in the new tissue model
and the original optical properties in the baseline simulation.

In contrast, the scaling method is precise in nature regardless
of the differences in optical properties because no approxima-
tion is made in scaling. One important advantage of the pMC is
its simplicity and fast speed when the perturbed region is small,
therefore it has been explored in the inverse problem of light

transport to estimate optical properties in the perturbed region
as surveyed below.

Sassaroli et al.75 proposed two perturbation relations to esti-
mate the temporal response in diffuse reflectance from a
medium, in which scattering or absorbing inhomogeneities
are introduced, from the trajectory information obtained from
the baseline simulation of a homogeneous medium. Hayakawa
et al.76 demonstrated that the perturbation relation can be
directly incorporated into a two-parameter Levenberg-Marquardt
algorithm to solve the inverse photon migration problems in a
two-layered tissue model rapidly. Recently, the same group77

demonstrated the use of this method for extraction of optical
properties in a layered phantom mimicking an epithelial tissue
model for given experimental measurements of spatially
resolved diffuse reflectance. This method was found effective
over a broad range of absorption (50% to 400% relative to
the baseline value) and scattering (70% to 130% relative to
the baseline value) perturbations. However, this method requires
both the thickness of the epithelial layer and the optical proper-
ties of one of the two layers.

Many other groups also proposed pMC-based methods for
the recovery of the optical properties in various tissue models.
Kumar et al.78 have presented a pMC-based method for recon-
structing the optical properties of a heterogonous tissue model
with low scattering coefficients and the method was validated
experimentally.29 Their results show that a priori knowledge
of the location of inhomogeneities is important to know in
the reconstruction of optical properties of a heterogeneous tis-
sue. More recently, Sassaroli et al.79 proposed a fast pMC
method for photon migration in a tissue model with an arbitrary
distribution of optical properties. This method imposes a min-
imal requirement on hard disk space; thus it is particularly suit-
able to solve inverse problems in imaging, such as DOT. Zhu et
al.35 proposed a hybrid approach combining the scaling method
and the pMC method to accelerate the MC simulation of diffuse
reflectance from a multilayered tissue model with finite-size
tumor targets. Besides the advantage in speed, a larger range
of probe configurations and tumor models can be simulated
by this approach compared to the scaling method or the pMC
method alone.

3.3 Hybrid MC Methods

Hybrid MC methods incorporate fast analytical calculations
such as diffuse approximation into a standard MC simulation.
Flock et al.80 proposed a hybrid method to model light distribu-
tion in tissues. In this model, a series of MC simulations for
multiple sets of optical properties and geometrical parameters
were performed to create a coupling function. Then, this cou-
pling function was used to correct the results computed by dif-
fusion theory. Wang et al.81 proposed a conceptually different
hybrid method to simulate diffuse reflectance from semi-infinite
homogeneous media. Wang’s method combined the strength of
MC modeling in accuracy at locations near the light source and
the strength of diffusion theory in speed at locations distant from
the source. Wang et al.82 later extended this method from semi-
infinite media to turbid slabs with finite thickness, which is more
useful than the previous method in practice. Alexandrakis et al.62

proposed a fast diffusion-MC method for simulating spatially
resolved reflectance and phase delay in a two-layered human
skin model, which facilitates the study of frequency-domain
optical measurements. This method has been proven to be
several hundred times faster than a standard MC simulation.
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Hayashi et al.83 presented a hybrid method to model light propa-
gation in a head model that contains both high-scattering regions
and low-scattering regions. Light propagation in high-scattering
regions was calculated by diffusion approximation and that in
the low-scattering region, i.e., the cerebrospinal fluid layer, was
simulated by the MC method. Since the time-consuming MC
simulation is employed only in part of the head model, the com-
putation time is significantly shorter than that of the standard
MC method. Donner et al.84 presented a diffusion-MC method
for fast calculation of steady-state diffuse reflectance and trans-
mittance from layered tissue models. In their method, the
steady-state diffuse reflectance and transmittance profiles of
each individual layer were calculated and then convolved to gen-
erate the overall diffuse reflectance and transmittance to elimi-
nate the need of considering boundary conditions. Luo et al.85

introduced an improved diffusion model derived empirically.
Then the modified diffusion model was combined with the MC
method to estimate diffuse reflectance from turbid media with a
high ratio of the absorption coefficient to the reduced scattering
coefficient, which can be as large as 0.07. Di Rocco et al.86 pro-
posed a hybrid method to speed up MC simulations in slab
geometries including deep inhomegeneities. In this approach,
the tissue model was treated as two sections, i.e., the top
layer with a thickness of d in which there is no inhomogeneity
and the bottom layer with inhomgeneity. Propagation up to the
given depth d, i.e., the top layer, is replaced by analytical cal-
culations using diffusion approximation. Then photon propaga-
tion is continued inside the bottom layer using MC rules until
the photon is terminated or detected. Tinet et al.58 adapted the
statistical estimator technique used previously in the nuclear
engineering field to a fast semi-analytical MC model for simu-
lating time-resolved light scattering problems. There were two
steps in this approach. The first step was information generation,
in which the contribution to the overall reflectance and transmit-
tance was evaluated for each scattering event. The second step
was information processing, in which the results of first step
were used to calculate desired results analytically. Chatigny
et al.87 proposed a hybrid method to efficiently model the time-
and space-resolved transmittance through a breast tissue model
that was divided into multiple isotropic regions and anisotropic
regions. In this hybrid method, the standard MC method incor-
porated with the isotropic diffusion similarity rule was applied
to the area that contains both isotropic and anisotropic regions,
while the analytical MC, which is similar to Tinet’s method, was
used for the area that contains isotropic regions only.

3.4 Variance Reduction Techniques

In addition to hybrid methods reviewed above, multiple variance
reduction techniques, which were initially applied in modeling
neutron transport,88 have also been investigated in the MC mod-
eling of light transport in tissues. For example, the weighted
photon model and Russian roulette scheme have been employed
in the public-domain MC code, Monte Carlo modeling of pho-
ton transport in Multi-Layered tissues.8 Liu et al.89 have used
one of the oldest and the most widely used variance reduction
techniques in MC modeling, i.e., geometry splitting, to speed up
the creation of an MC database to estimate the optical properties
of a two-layered epithelial tissue model from simulated diffuse
reflectance. In this strategy, the tissue model is separated into
several volumes, and the technique can reduce variances in cer-
tain important volumes by increasing the chance of sampling in
important volumes and decreasing the chance of sampling in

other volumes. Chen et al.90 proposed a controlled MC method
in which an attractive point with an adjustable attractive factor
was introduced to increase the efficiency of trajectory generation
by forcing photons to propagate along directions more likely to
intersect with the detector, which is similar to geometry splitting
in principle. They first demonstrated this approach in transmis-
sion geometry90 and then in reflection geometry.91 Behin-Ain
et al.92 extended Chen’s method for the efficient construction
of the early temporal PSF created by the visible or near-infrared
photons transmitting through an optically thick scattering
medium. More recently, Lima et al.93,94 incorporated an
improved importance sampling method into a standard MC for
fast MC simulation of time-domain OCT, by which several hun-
dred times of acceleration has been achieved.

3.5 Parallel Computation-Based MC Methods

Parallel computation has received increasing attention recently
in the study of speeding up MC simulations due to advances in
computer technology. The acceleration due to parallel compu-
tation is independent of all previous techniques and thus could
be used in combination with them to gain extra benefit. Kirkby
et al.95 reported an approach by which one can run an MC sim-
ulation simultaneously on multiple computers, aiming to utilize
the unoccupied time slots of networked computers to speed up
MC simulations. This method has reduced simulation time
appreciably. However, it can be time-consuming to wait for all
computers to update the result files in order to get the final
result. Moreover, the requirement of saving disk space imposes
the use of binary files, and this raised compatibility issues across
in various types of computers. Colasanti et al.96 explored a dif-
ferent approach to address the limitations associated with
Kirkby’s method. They developed an MC multiple-processor
code that can be run on a computer with multiple processors
instead of running on many single-processor computers. The
results showed that the parallelization reduced computation
time significantly.

Considerable efforts have also been made to implement MC
codes in graphics processing unit (GPU) environment to speed
up MC simulations. Erik et al.97 proposed a method that was
executed on a low-cost GPU to speed up the MC simulation
of time-resolved photon propagation in a semi-infinite medium.
The results showed that GPU-based MC simulations were
1000 times faster than those performed on a single standard cen-
tral processing unit (CPU). The same group98 further proposed
an optimization scheme to overcome the performance bottle-
neck caused by atomic access to harness the full potential of
GPU. Martinsen et al.99 implemented the MC algorithm on
an NVIDIA graphics card to model photon transport in turbid
media. The GPU-based MC method was found to be 70 times
faster than a CPU-based MC method on a 2.67 GHz desktop
computer. Fang et al.100 reported a parallel MC algorithm accel-
erated by GPU for the simulation of time-resolved photon
propagation in an arbitrary 3-D turbid media. It has been dem-
onstrated that GPU-based approach was 300 times faster than
the conventional CPU approach when 1792 parallel threads
were used. Ren et al.40 presented an MC algorithm that was
implemented into GPU environment to model light transport
in a complex heterogeneous tissue model in which the tissue
surface was constructed by a number of triangle meshes. The
MC algorithm has been tested and validated in a heterogeneous
mouse model. Leung et al.101 proposed a GPU-based MC model
to simulate ultrasound modulated light in turbid media. It was

Journal of Biomedical Optics 050902-6 May 2013 • Vol. 18(5)

Zhu and Liu: Review of Monte Carlo modeling of light transport in tissues



found that a GPU-based simulation was 70 times faster com-
pared to CPU-based approach on the same tissue model. Most
recently, Cai et al.102 implemented a fast perturbation MC
method proposed by Angelo79 on GPU. It has been demon-
strated that the GPU-based approach was 1000 times faster com-
pared to the conventional CPU-based approach.

Besides using GPU to speed up the MC simulations, some
researchers have explored using field-programmable gate arrays
(FPGA) to accelerate MC simulations. For example, Lo et al.103

implemented an MC simulation on a developmental platform
with multiple FPGAs. The FPGA-based MC simulation was
found to be 80 times faster and 45 times more energy efficient,
on average, than the MC simulation executed on a 3 GHz Intel
Xeon processor.

Recently, Internet-based parallel computation has gained
increasing attention for fast MC modeling of light transport
in tissues. Pratx et al.104 reported a method for performing
MC simulation in a massively parallel cloud computing environ-
ment based on MapReduce developed by Google. For a cluster
size of 240 nodes, an improvement in speed of 1258 times was
achieved as compared to the single threaded MC program.
Doronin et al.105 developed a peer-to-peer (P2P) MC code to
provide multiuser access for the fast online MC simulation of
photon migration in complex turbid media. Their results showed
that this P2P-based MC simulation was three times faster than
the GPU-based MC simulations.

3.6 Acceleration of MC Simulation of Fluorescence

The methods reviewed above are all about the acceleration of
MC simulation of diffuse reflectance or transmittance. Compared
to diffuse reflectance, fluorescence simulation is more complex
and much more time-consuming due to the generation of fluo-
rescence photons upon each absorption event of an excitation
photon. A number of groups11–13,30,57,106–108 have employed MC
modeling to simulate fluorescence in tissues due to the growing
interest in fluorescence spectroscopy or imaging for medical
applications.109–112 As a consequence, multiple groups have
investigated various methods to speed up the MC simulation
of fluorescence in biological tissues. Swartling et al.13 proposed

a convolution-based MC method to accelerate the simulation of
fluorescence spectra from layered tissues. Their method
exploited the symmetry property of the problem, which requires
the multilayered tissue model to be infinite in the radial dimen-
sion. Different from the conventional fluorescence MC code,
this method computed the excitation and emission light profiles
separately, from which the spatial distribution of absorption and
emission probabilities were obtained. Then a convolution
scheme will be applied on the absorption probability and emis-
sion probability data to get the final fluorescence signals.
Swartling’s method has been used by Palmer et al.113,114 to cre-
ate an MC database for fluorescence spectroscopy to estimate
the fluorescence property of a breast tissue model from fluores-
cence measurement using a fiber-optic probe. Liebert et al.57

developed an MC code for fast simulation of time-resolved fluo-
rescence in layered tissues. In this method, both the spatial dis-
tribution of fluorescence generation and the distribution of times
arrival (DTA) of fluorescence photons at the detectors were cal-
culated along the excitation photons’ trajectories. Then the dis-
tribution of fluorescence generation inside the medium and DTA
as well as the fluorescence conversion probability were used to
calculate the final fluorescence signal. It should be noted that the
reduced scattering coefficients at the excitation and emission
wavelengths have to be approximately equal in this method.

3.7 Comparison of Methods for MC Acceleration

Most methods surveyed in the previous sections have been
compared and summarized in Table 1 with respect to their accel-
eration performance, relative error in simulated optical measure-
ments, respective advantages, and limitations. It should be noted
that those parallel computation-based methods were not listed in
this table because its performance highly depends on the com-
puting architecture, and all the methods summarized in this table
can be further accelerated by applying parallel computation.

4 Applications of MC Methods in Tissue Optics
The most common application of MC method in tissue optics is
the simulation of optical measurements such as diffuse reflec-
tance, transmittance, and fluorescence for a given tissue

Table 1 Comparison of various methods in MC acceleration.

Methods
Acceleration relative
to standard MC

Relative error in
simulated optical
measurements Advantages Limitations

Scaling MC ∼200 (Ref. 73) Less than 4% (Ref. 73) No approximation is made,
and it is accurate and fast.

Applicable to layered tissue
models only so far.

Perturbation MC ∼1300 (Ref. 79) Can be less than 4%
depending on the
magnitude of
perturbation (Ref. 79)

It is applicable to tissue
with complex structures.

Sensitive to perturbation in
scattering properties.

Hybrid MC ∼300 (Ref. 82) Around 5% (Ref. 82) It has a larger applicable
range than pMC.

Relatively complicated
computation. The particular
region has to be homogeneous.

Variance
reduction

∼300 (Refs. 93 and 94) Around 5% (Refs. 93
and 94)

There are a variety of
choices available.

Limitation varies with the
specific technique.

Note: The improvement relative to standard MC was defined as the fold of improvement in computation speed compared to a standard MC simulation
in order to obtain results with comparable variance. GPU-based methods were not listed in this table because all the methods summarized in this table
can be further accelerated by GPU.
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model and illumination/detection geometry, which is considered
as a forward problem. In this situation, MC simulations could
provide guidelines for the selection of optimal illumination/
detection geometry for selective optical measurements.46,49,115–118

In contrast, MC simulations can also provide data to estimate
the optical properties of a tissue model from optical measure-
ments, which is considered as an inverse problem. Solving an
inverse problem typically involves the use of a nonlinear least
square error algorithm47,89 or a similar algorithm to find a set of
optical properties that would yield optical measurements in MC
simulations best matching the actual measurements. Due to the
slow speed of traditional MC simulations, a database is frequently
created a priori in such an inverse problem to speed up the inver-
sion process.119 Most of the acceleration methods discussed
above can be employed in the creation of such an MC database.

The MC method has been frequently used to find the optimal
optical configuration in LDF, one of the oldest techniques in
biomedical optics during the past decade. Jentink et al.120,121

used MC simulations to investigate the relationship between
the output of laser Doppler perfusion meters and the optical
probe configuration as well as the tissue scattering properties.
Stern et al.122 used MC modeling to simulate the spatial Doppler
sensitivity field of a two-fiber velocimeter, by which an optimal
fiber configuration was identified. Similar applications can also
be found in Refs. 123 through 125. Recently, MC method has
been incorporated into LDF to estimate blood flow126,127 or the
phase function of light scattering.128

The MC method plays an important role in the selection of
optimal configuration for PDT because it can generate light dis-
tribution in a complex tissue model for PDT dosage determina-
tion. Barajas et al.129 simulated the angular radiance in tissue
phantoms and human prostate model to characterize light
dosimetry using the MC method. Liu et al.130 used the MC
method to simulate the temporal and spatial distributions of
ground-state oxygen, photosensitizer, and singlet oxygen in a
skin model for the treatment of human skin cancer. Valentine
et al.131 simulated in vivo protoporphyrin IX (PpIX) fluores-
cence and singlet oxygen production during PDT for patients
with superficial basal cell carcinoma. Later, the same group132

used the MC method to identify optimal light delivery configu-
ration in PDT on nonmelanoma skin cancer.

The MC method has also been investigated to simulate the
OCT signals133,134 and images135–137 during past years due to its
flexibility and high accuracy. Moreover, with the development
of efficient MC methods, researchers have started to explore the
MC method for image reconstruction in DOT.138,139

5 Discussion on the Potential Future Directions
Due to advances in computing technology, it is expected that the
applications of the MC method will be expanded in the near
future. A few potential directions in the development of the
MC method are discussed below.

5.1 Phase Function of Raman Scattering

Raman spectroscopy has been explored extensively for tissue
characterization15,17,140,141 including cancer diagnosis.14,142–149

Depending on whether the excitation light is coherent or inco-
herent, Raman scattering can be broken down into two catego-
ries, i.e., spontaneous Raman scattering or coherent Raman
scattering. The signal generated out of spontaneous Raman
scattering is typically very weak, in which the probability of
generating a Raman photon for every excitation photon is

lower150,151 than 10−7. Different from that, coherent Raman
techniques utilize laser beams at two different frequencies to
produce a coherent output, which result in much stronger coher-
ent Raman signals compared to spontaneous Raman scattering.
Because of the high chemical specificity of Raman spectros-
copy, it is anticipated that there will be more studies using
the MCmethod for Raman spectroscopy to optimize experimen-
tal setup. One important issue in these studies is that, the phase
function of Raman scattering from biological components in tis-
sues have not been systematically studied. Recent MC studies
on Raman scattering14,15 assumed isotropic Raman emission.
This assumption should work fine for spontaneous Raman
scattering according to a numerical study.152 However, this
assumption is not valid for coherent Raman scattering since
the angular distribution of Raman emission is affected by
both the wavelength of the pump light source and the propagat-
ing beam geometry.152–154 A systematic study on the phase func-
tion of Raman scattering on the molecule level for Raman active
biological molecules such as protein and DNA and on the sub-
cellular level for organelles such as mitochondria will be very
helpful, in which one or a couple of key parameters similar to
the anisotropy factor in elastic scattering could accurately
describe the angular distribution of Raman scattering in most
common cases. The use of such validated phase functions in
MC simulations will yield more useful information than the sim-
plistic treatment in the current literature.

5.2 Incorporation of More Realistic Elastic Light
Scattering Model into the MC Method

Despite the exploration of various inhomogeneous tissue models
discussed above, including the multilayered tissue model, voxel-
based and mesh-based tissue models, these tissue models are all
based on a few simple optical coefficients including the scatter-
ing coefficients and anisotropy factor to characterize optical
scatterers. A complete phase function could be used to provide
the comprehensive information related to the morphology of
optical scatterers, but it is inconvenient for use and its physical
meaning is not straightforward. From these scattering proper-
ties, the scatterer size and density can be derived47,155 if they
are assumed to be uniformly distributed spheres with homo-
geneous density. In many scenarios, these assumptions are
not valid. For example, it is commonly known that the size
and shapes of cells vary significantly with the depth from the
tissue surface, and they also change with carcinogenesis.
From this point of view, the superposition of multiple phase
functions156 or the fractal distribution of the scatterer size157

have been proposed to accommodate special situations. An
equiphase-sphere approximation for light scattering has also
been proposed by Li et al.158 to model inhomogeneous micro-
particles with complex interior structures. Later, the same group
reported two stochastic models,159 i.e., the Gaussian random
sphere model and the Gaussian random field model, to simulate
irregular shapes and internal structures in tissues. The incorpo-
ration of these more realistic elastic light scattering models into
the MC method will expand its capability and offer more accu-
rate information about light scatterers in tissues.

5.3 Exploration of the MC Method in Imaging
Reconstruction

In most current applications of the MC method, the tissue model
is assumed to be a simple layered model or determined a priori,
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which does not fully exploit the potential of the MC method in
preclinical or clinical imaging/spectroscopy. When the MC
method becomes adequately fast in the near future, which might
be mostly attributed to the combination of the accelerated MC
methods and parallel computing discussed above, the MC
method could be used to reconstruct the optical properties of
a complex tissue in optical tomography, in which the morpho-
logical structure could be obtained in real time by fast imaging
techniques such as OCT for superficial regions of interest or
magnetic resonance imaging for deep regions of interest in a
large tissue volume. Those voxelated tissue models,19,36–42

which are more realistic than simplified homogeneous or lay-
ered tissue models, can be readily used in such reconstruction.
The speed of reconstruction might be comparable to that using
diffusion approximation reported in the current literature, but the
accuracy would be considerably higher in a tissue model on the
millimeter scale.

6 Conclusion
In this review, the principles of MC modeling for the simulation
of light transport in tissues were described at the beginning.
Then a variety of methods for speeding up MC simulations were
discussed to overcome the time-consuming weakness of MC
modeling. Then the applications of MC methods in biomedical
optics were briefly surveyed. Finally, the potential directions for
the future development of the MC method in tissue optics were
discussed. We hope this review has achieved its intended pur-
pose to give a general survey on the capability of MC modeling
in tissue optics and other relevant key techniques for those read-
ers who are interested in MC modeling of light transport.
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