17 July 2013 Use of Split Bregman denoising for iterative reconstruction in fluorescence diffuse optical tomography
Author Affiliations +
Abstract
Fluorescence diffuse optical tomography (fDOT) is a noninvasive imaging technique that makes it possible to quantify the spatial distribution of fluorescent tracers in small animals. fDOT image reconstruction is commonly performed by means of iterative methods such as the algebraic reconstruction technique (ART). The useful results yielded by more advanced l 1 -regularized techniques for signal recovery and image reconstruction, together with the recent publication of Split Bregman (SB) procedure, led us to propose a new approach to the fDOT inverse problem, namely, ART-SB. This method alternates a cost-efficient reconstruction step (ART iteration) with a denoising filtering step based on minimization of total variation of the image using the SB method, which can be solved efficiently and quickly. We applied this method to simulated and experimental fDOT data and found that ART-SB provides substantial benefits over conventional ART.
© 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Judit Chamorro-Servent, Juan F. Abascal, Juan Aguirre, Simon R. Arridge, Teresa M. Correia, Jorge Ripoll, Manuel Desco, Juan Jose Vaquero, "Use of Split Bregman denoising for iterative reconstruction in fluorescence diffuse optical tomography," Journal of Biomedical Optics 18(7), 076016 (17 July 2013). https://doi.org/10.1117/1.JBO.18.7.076016
JOURNAL ARTICLE
9 PAGES


SHARE
Back to Top