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Abstract. We present a cluster spatial analysis method using nanoscopic dSTORM images to determine changes in
protein cluster distributions within brain tissue. Such methods are suitable to investigate human brain tissue and will
help to achieve a deeper understanding of brain disease along with aiding drug development. Human brain tissue
samples are usually treated postmortem via standard fixation protocols, which are established in clinical labora-
tories. Therefore, our localization microscopy-based method was adapted to characterize protein density and
protein cluster localization in samples fixed using different protocols followed by common fluorescent immuno-
histochemistry techniques. The localization microscopy allows nanoscopic mapping of serotonin 5-HT1A receptor
groups within a two-dimensional image of a brain tissue slice. These nanoscopically mapped proteins can be con-
fined to clusters by applying the proposed statistical spatial analysis. Selected features of such clusters were sub-
sequently used to characterize and classify the tissue. Samples were obtained from different types of patients, fixed
with different preparation methods, and finally stored in a human tissue bank. To verify the proposed method,
samples of a cryopreserved healthy brain have been compared with epitope-retrieved and paraffin-fixed tissues.
Furthermore, samples of healthy brain tissues were compared with data obtained from patients suffering from men-
tal illnesses (e.g., major depressive disorder). Our work demonstrates the applicability of localization microscopy
and image analysis methods for comparison and classification of human brain tissues at a nanoscopic level.
Furthermore, the presented workflow marks a unique technological advance in the characterization of protein
distributions in brain tissue sections. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
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1 Introduction
Recent developments in fluorescence microscopy methods
allow for the localization of single molecules with subdiffraction
precision. Current nanoscopic imaging techniques are essen-
tially based around two major concepts: stochastic single mol-
ecule localization and deterministic ensemble imaging. The best
known examples of deterministic imaging techniques include
stimulated emission depletion and structured illumination
microscopy.1–5 In contrast, stochastic super-resolution imaging
techniques rely on precise positional determination of single
molecules and image reconstruction. These techniques include,
for example, photo-activated localization microscopy and sto-
chastic optical reconstruction microscopy.6–11 One application
for super-resolution microscopy is the accurate determination of
a protein’s spatial and temporal cellular distributions. Apart from
localization, these techniques also provide additional informa-
tion about protein cluster characteristics (e.g., number of mol-
ecules per cluster and density), which are not available when
imaged with conventional diffraction-limited optics.12,13

Recently, the mentioned techniques were adapted for imaging
human tissues.14–16 In our study, we applied STORM

microscopy on healthy and pathological brain tissue samples
obtained postmortem to analyze the spatial distribution of recep-
tors on neuronal and glial cells.

The STORM method is based on photo-activation of
fluorescent molecules. However, in our experiments, we apply
a modification of STORM called dSTORM (direct STORM). In
the dSTORM technique, fluorophores switch between a detect-
able fluorescent and a nonfluorescent (dark) state by a light-
induced chemical reaction.11,17,18 This process is repeated
many times and allows the reconstruction of an image via the
molecular distribution within a sample. Especially in the case
of the complex-organized brain, the precise characterization
of receptor distribution will provide insights in brain tissue
organization, as a tool to discriminate receptors on neuronal
and glial cells, and finally in classification of brain’s diseases.
In order to test the model system, we have focused on
nanoscopic localization of the well-characterized serotonin
receptor 5-HT1A, a G-protein-coupled receptor widely distributed
in regions of frontal cortex, septum, amygdale, hippocampus,
and hypothalamus. Interestingly, serotonin responses strongly cor-
relate with depressive symptoms [major depressive disorder
(MDD)], exhibiting low brain 5-HT abundance and reduced
density of serotonin 1A receptor (5-HT1A) and transporter
(5-HTT).19–22

In this primarily technical study, we developed a statistical
spatial analysis method for characterization of dSTORM
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images tested on serotonin 5-HT1A receptors in brain tissue
samples using fluorescently labeled antibodies. The immuno-
cytochemical approach allows nanoscopic two-dimensional
(2-D) mapping of serotonin receptor groups. To enable anatomi-
cal orientation within the tissue of the frontal cortex, glial cells
are also labeled with a second anti-glial fibrillary acidic protein
(GFAP) antibody.

For proper comparison of image samples, we used our novel
clustering-based analysis method at the single-molecule level.
This analysis uses hierarchical clustering to construct molecule
clusters with a given distance (size) between the molecule posi-
tions. For each prepared cluster set, a number of selected cluster
features are calculated including shape, relative molecule den-
sity, relative number of fluorophores, and the distance of a clus-
ter to the skeleton representation of a bulky fluorescent structure
(e.g., glial cells). These empirical distributions of features form
the basis of comparison in spatial patterns determined from the
fluorescent two-color images.

To verify our method, healthy brain tissue (cryopreserved
samples) were compared with epitope-retrieved and paraffin-
fixed tissues, which was stored for different time periods.
The comparison demonstrates the influence of long-term sample
preservation, which is an important issue for further studies on
bank material; So far, fixation artifacts have never been quanti-
fied on a nanoscopic level. Moreover, results on cluster den-
sities, fluorophore numbers, shapes, and cluster distances-to-
skeleton (representation of glia cells) determined from healthy
brain tissues were compared with data obtained from brain sam-
ples of depressive patients.

The experimental results indicate that our method can be
used for further studies on complex processes like receptor den-
sity changes. Furthermore, it allows tissue classification at a
nanoscopic level of routine pathology samples of various dis-
eases. Moreover, the presented relationship between the clusters
and the structure of the bulk fluorescence image enables a more
precise analysis of the concentration and the density of receptors
surrounding the glia scaffold.

2 Materials and Methods

2.1 Sample Preparation

The tests of the platform were performed on the postmortem
routine brain tissue samples. A list of test sample sources is pre-
sented in Table 1.

2.1.1 Cryopreserved samples

The native brain samples were incubated with Tissue-Tek
O.C.T.™ Compound (Sakura®) (glycolen-based) and sub-
sequently cooled and cut with a Cryostat (CM3050S, Leica
Microsystems, Wetzlar, Germany). The cut brain slices were
attached to coverslips (article number 1871, Carl Roth,
Karlsruhe, Germany) and stored at −20°C. All brain tissues
were cut orthogonally to the cortical layers.

2.1.2 Paraffin-embedded samples

For the fixation procedure (for samples fixed after 2007), the
samples were incubated in a formalin solution for a period of
∼20 h (depending on sample size derived from the patient)
and rinsed with distilled water. Thereafter, the samples were
washed with a solution containing an ascending ethanol dilution
series (60%, 70%, 80%, and 96% in distilled water and 100%;
∼10 h total wash time). Subsequently, the ethanol washing sol-
ution was replaced by xylol (99%, Dako, Vienna, Austria) for
1 h and embedded in paraffin for 30 min.

For the older fixation procedure (samples fixed before 2007),
the timing for fixation steps with ethanol, xylol, and paraffin was
different. After the biopsies, the samples were incubated in a
formalin solution for a minimum of 4 h. The successive ascend-
ing ethanol dilution series (60%, 70%, 80%, and 96% in distilled
water and 100%) were completed in 27 h. Thereafter, the ethanol
was replaced with xylol (15 h) and embedded in paraffin
for 12 h.

For both fixation methods, the paraffin-embedded samples
were cut with a Mikrotom (RM2255, Leica) in ∼3-μm thick sli-
ces and attached to coverslips (the same as for the cryopreserved
samples). To remove the paraffin, the samples were incubated
with xylol and descending isopropanol series (96%, 80%,
and 70% in distilled water). The epitope retrieval was conducted
by boiling the sample in the washing solution (PT module,
Thermo Scientific, Vienna, Austria) for 1 h. The samples
were stored for maximum 7 days at room temperature (25°C)
in Dulbecco’s phosphate buffered saline (PBS) buffer until fur-
ther usage.23

2.1.3 Sample incubation

To prepare the necessary reaction chamber, adhesive silicone
isolators (JTR20-A-2.5, GRACE BIO-LABS, Oregon) were
bound to the glass slide carrying the brain tissue. The samples

Table 1 Source of test—samples (Nerve Clinic Linz, Department of Pathology and Neuropathology)

Cryopreserved
paraffin fixed Sample group Age Cause of death Gender Diagnosis

C Norm A 67 Myocardial infarction m Normal, st.p. Astrocytoma

C Norm A 60 Incarceration, brain edema f Normal, edema

P Norm B 77 Cardial decompensation f Normal

P Norm B 75 Incarceration, brain bleeding m Normal

P_old Norm E 61 Cardial decompensation m Normal, st.p. Astrocytoma

P Depr. C 65 Myocardial infarction m Depression, alcoholism

P Depr. D 74 Myocardial infarction f Depression, Mb Alzheimer, Parkinson
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were incubated for 12 h at 6°C with anti-GFAP, anti-HT1A, and
fetal calf serum as a competitor. After 12 h of incubation, the
samples were rinsed once with Dulbecco’s PBS buffer [1×
(without Ca and Mg); PAA—The Cell Culture Company,
Pasching, Austria]. To induce the Atto655 fluorophore blinking,
cysteamine (2-mercaptoethylamine, Sigma Aldrich, Vienna,
Austria) at a 20 to 40 mM concentration was used. All samples
were measured within 24 h after incubation. All measurements
were performed in Dulbecco’s PBS buffer.

2.2 Antibodies

Astrocyte labeling: The astrocytes were marked with an anti-
GFAP mouse anti-human monoclonal IgG antibody labeled
with Alexa Fluor® 488 (Molecular Probes®, Vienna, Austria).

HT1A receptor labeling: The HT1A receptors were marked
with an anti-HTR1A rabbit anti-human antibody (LS-B970/
27181, Lifespan BioSciences Inc., Seattle) This antibody turned
out to be best suited for immunohistochemistry experiments and
is also used at the Nerve Clinic Linz (LNK) for neural standard
screening.

Anti-HTR1A antibody was labeled via a N-hydroxysuccini-
mid (NHS)-ester bond with Atto655 (Attotec, Attotec. Labeling
protocol, Siegen, Germany).

Seventy-five microliters of 1 mg∕ml HTR1A (dissolved in
PBS buffer and 2% sucrose) were diluted with a 0.2-M sodium
bicarbonate buffer at a pH of 8.4. Thereafter, 1 μl of 0.25 mg∕ml
Atto655 dimethylsulfoxid (DMSO) solution was added to adjust
a labeling ratio of ∼1.8. The reaction mixture was incubated for
1 h at room temperature. To separate the labeled HTR1A anti-
bodies from free dyes, a PD-10 Sephadex® G-25m column (GE
Healthcare, Pittsburgh) was used. The labeling solution was
purified via a PD-10 purification column in PBS buffer. To con-
centrate the labeled antibody, the eluate was pelleted (Thermo,
Multifuge 1S-R, HERAEUS, Thermo Scientific, Vienna,
Austria). The solution was split into three aliquots and stored
at −20°C.

2.3 Setup and Imaging

The images were taken on a modified Olympus IX81 inverted
microscope. The samples were illuminated through an Olympus
UApo N 100×/1.49 NA oil objective with two diode lasers at
642-nm (Omicron Laserage Laserprodukte GmbH—Phoxx®

642, Rodgau-Dudenhofen, Germany) and 491-nm wavelength
(Cobolt Calypso 100™, Solna, Sweden). The signal acquisition
was carried out on an Andor iXonEM + 897 (back-illuminated)
EMCCD (16-μm pixel size).

Used filter sets:

• Dichroic filter: FITC/Cy5 (ZT405/488/561/640rpc,
Chroma, Olchin, Germay)

• Emission filter: FITC/Cy5 (446/523/600/677 nm
BrightLine® quad-band bandpass filter, Semrock,
Rochester)

• Additional emission filter: HQ 680/30 M (NC209774,
Chroma, Olchin, Germay)

The experiments were performed using excitation powers of
3.35 and 0.025 kW∕cm2 at 642 and 491 nm, respectively. The
samples were illuminated for 10 ms (642 nm) and 5 ms (491 nm)
with 40 ms delay time. The illumination protocols were timed
with a custom-made LabView®-based control software.

2.4 Image Preprocessing

The requirement of multicolor imaging presents additional chal-
lenges for tissue imaging and analysis. Given the low signal-
to-noise ratio of single-molecule images, we have chosen a
detection method based on the isotropic undecimated wavelet
transform (IUWT).24,25 Wavelet thresholding offers a robust sol-
ution for the detection of small bright features, for example,
detection of subcellular structures labeled by fluorescent
dyes. Since a fluorescent dye can be considered as a point
light source, its image is the point-spread function of the optical
system that can be approximated by a 2-D Gaussian shape. The
typical noise model is photon count noise, following a Poisson
distribution, and an additive Gaussian read-out noise:

n ∼ PoiðNÞ � Gaussð0; σÞ;
with n is the number of detected photo-electrons, and N is the
number of emitted photons.

For an EMCCD camera, the model including the effect of the
multiplier can be approximated26 by the equation:

pðn; NÞ ∼ Gauss

�
GN;FG

ffiffiffiffiffiffiffiffi
ðNÞ

p �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πF2G2N

p exp

�
−ðn − GNÞ2
2F2G2N

�
;

where F represents the excess noise, and G is the average multi-
plier gain.

To deal with heterogeneity of the image noise, a variance-
stabilizing transform is applied prior to the IUWT. The imple-
mentation of IUWT is based on the binomial filter h ¼
½1; 4; 6; 4; 1�∕16 as scaling function and the “à trous” algo-
rithm.25,27 The wavelet coefficients are computed as the differ-
ence between two successive scales. The wavelet coefficients of
the finest resolution are discarded as noise. The remaining coef-
ficients are threshold based on the control of false discovery rate
as proposed in Ref. 28. The pixels considered significantly
across scales are the result of the single-molecule detection step.

Subsequently, the detected molecules’ position was deter-
mined with subpixel accuracy by least square fitting of a 2-D
Gaussian function in the neighborhood of the detected signifi-
cant pixels. An estimation of the localization accuracy was also
calculated.29,30

2.5 Single-Molecule Analysis

Commonly, the position determination for image reconstruction
is only limited by the single-molecule signal and the local back-
ground noise (see Thompson/Mortensen formula).29,31 The fix-
ation and epitope-retrieval protocols used guarantee good
single-molecule detection. However, this assumption can be
inaccurate, if, for example, the setup exhibits an intrinsic
error in position determination. In order to consider this addi-
tional dynamic offset in the estimation of the position accuracy
(PA), we assumed a bound fluorescent antibody as mobile and
calculated the PA via error of the mean square displacement
(MSD). The position deviation was described by MSD error
estimation for a single trajectory using Qian formula30,32,33

var ¼ ð4DnΔTÞ2ð2n2 þ 1Þ
3nðN − n − 1Þ ;

where ΔT is the time delay between two frames, N is the num-
ber of steps in a trajectory, n ¼ tlag∕ΔT where tlag is the sum of
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illumination time and delay between the frames, and D is the
diffusion constant.

In our approach, the calculated PA via MSD (offset of the
MSD plot) is global (PAg), averaged over all single-molecule
signals detected over all frames, and describes the smallest
localization radius in the image. To characterize the smallest
possible localization accuracy of our setup, glass bound and
sparsely distributed Atto655-labeled antibodies were used.
The estimated PA was determined to be 22.2∓3.9 nm (approx-
imately two to three times larger than the size of an antibody34).
This value defines the resolution limit for the dSTORM images.
Local position accuracies (PAl) for individual single molecules
were determined via standard deviation of the peak position over
all illuminated frames within the maximal search radius of PAg.
For the image reconstruction, the mean values of all point coor-
dinates detected within PAg were used. In comparison, the cal-
culated Thompson PA reaches a value of 11 nm (minimum);
however, it does not take into account the setup properties.

2.6 Image Sector Alignment

Due to the heterogeneous laser profile and variations in setup
adjustment in the particular experiments, the images analyzed
at single molecule show a nonregular density profile along
the y-axis (heterogeneous illumination). Therefore, for compari-
son of two sample images, it is necessary to choose the nearly
homogenous illuminated sectors from both images. To ensure
that both images have the same size, we first calculated the nor-
malized molecule density distribution along the y-axis of an
image. The normalized molecule density for a given y-value
is the ratio of the density of molecules in an image segment
with a length [0, xmax] and a width y� Δ to the molecule density
of the whole image (total number of molecules/image surfaces).
The estimated density profile along the y-axis is then approxi-
mated with a one-dimensional Gauss function. The width of a
segment is determined as width of the Gauss function at 50% of
its maximal value (typically 140 to 200 pixels). An example of
sector determination is presented in Fig. 1.

2.7 Clustering-Based Spatial Analysis of Image

In order to determine the spatial distribution pattern of receptors,
we need to find characteristic parameters or image features,
which will help us to quantify changes between the images.

Classical spatial analysis uses the changes of selected spatial
parameters, which take place when the distance scale (observa-
tion scale) is made to vary. The most popular method, proposed
by Ripley (known as Ripley K- and L-functions),35 describes the
characteristics of the point groups (clusters) at many distance
scales. For given maximal distance between points in cluster
d, the Ripley’s LðdÞ function is estimated as

LðdÞ ¼
�
λ−1

X
i

X
j≠i

kijðdij < dÞ∕Nπ

�
1∕2

;

where Σkij is the summation over all points j that are within
distance d of point i (including boundary condition), and λ is
the density, which can be estimated as λ ¼ N∕A, where N is
the observed total number of points, and A is the area of the
analyzed sector. Although LðdÞ can be determined for any d,
it is common practice to consider d less than ∼1∕3, the shortest
dimension of the studied area fdmax < ∼1∕3 min ½sizeðAÞ�g.
Calculating LðdÞ for d ¼ 1 to dmax for the analyzed sector,
we obtain the spatial pattern vectors L. This standard method
for spatial analysis only examines the statistical density of all
point clusters in the image sectors35,36 and does not consider
structural information such as the local density, shape of
point clusters or relationships between clusters, and the structure
of bulk fluorescence image. An example of Ripley’s L-functions
for two images is presented in Fig. 2.

Therefore, we propose a novel approach for spatial analysis
based on clustering of preselected image sectors and cluster
profiling. In our case, the Ripley’s L-function is only used
for establishing the significant interval of distance scale (cluster
maximal size) dmin to dmax (Fig. 2).

The selected sector of points (single molecules) can be clus-
tered in nonoverlapping clusters CðdÞ with a cluster dimension
less or equal to a given value d½d ∈ ðdmin; dmaxÞ�. The dimension
d of cluster (cluster size) is the maximal distance between points
within the cluster. For fast clustering of a given sector of image,
we use the hierarchical agglomerative clustering (HAC) method
with complete link.33 HAC clusters are established by cutting
the dendrogram at a desired level so that each connected com-
ponent (subclusters) forms a new cluster. The linkage between
two clusters is achieved by complete linkage. This method is
well suited for our consideration, because it takes into account
the “similarity” between clusters based on the “outermost”

Fig. 1 (a) Empirical density distribution and a Gauss fit of molecule density along the y-axis of an image. (b) Selected sector of an image.
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points [the least distance-similar (Ref. 33)] in clusters. The two
clusters with a minimal complete linkage are merged in a new
one. For a given distance d, HAC algorithm generates a lot of
nonoverlapping clusters so that the dimension (size) of each
cluster is less or equal d. The clusters represent stochastic dis-
tribution of points in selected sector, scaled into a cluster set. For
each cluster, we defined local characteristics (features) which
describe the spatial structure of a sector more accurately than
with the standard spatial analysis method.

2.7.1 Spatial properties of cluster

Each cluster cðdÞ ∈ CðdÞ can be characterized by the following
local features:

1. Single fluorophore intensity determines the number of
detected single fluorophores (or molecules). The clus-
ter fluorophore ratio fluor½cðdÞ� is the proportion of
fluorophore number per cluster to total number of flu-
orophores in the whole image sector. In an ideal case,
where every antibody carries only one fluorophore and
is imaged only once, the number of antibody-labeled
receptors would be directly described by fluor½cðdÞ�.

2. The relative density of cluster dens½cðdÞ� is the propor-
tion of cluster density to the mean density of the com-
plete image sector under consideration. The cluster
density is determined as number of points (molecules)
within a cluster per cluster area. The cluster area is
calculated as the sum of the area inside the circle
located at any point of the cluster with a radius
equal to half the distance to its first nearest neighbor.

3. Cluster eccentricity: The best suited eccentricity def-
inition for our analysis is based on central moments of
points within a cluster.35 As a measure of eccentricity,
we took the proportion ecc½CðdÞ� ¼ v1∕v2, where v1

and v2 are the eigenvalues of the symmetric 2 × 2

matrix M of central moments of cluster points.
Such a measure is an invariant with respect to location,
rotation, translation, and scaling of cluster. The eccen-
tricity of a round-shaped cluster is equal to 1, and the
eccentricity of a line-shaped cluster is equal to 0.

4. To determine the relationship between the cluster and
the bulk fluorescent structure of the image, the skel-
eton representation of the bulk image sector is pre-
pared.37,38 The cluster distance-to-skeleton ratio
dist½cðdÞ� is the proportion of the distance of the clus-
ter centroid (mean position of points in the cluster) to
the skeleton and of the mean distance of all points to
the skeleton within an image sector. This representa-
tion of relationship between the clusters and the struc-
ture of the bulk fluorescent image enables additionally
a more precise analysis of concentration and density of
receptors surrounding, for example, glia structures.

An example of clustering and cluster features is presented
in Fig. 3.

We gathered information about cluster properties in the
aforementioned manner and compared the resulting data with
cluster features extracted from randomly located points on
the same image. The average eccentricity of the clusters changes
from an almost circular shape to the shape of an elongated
ellipse with increasing mean distance-to-skeleton and cluster
size. A similar behavior was observed for changes in the density
of the clusters. The average density of the cluster decreases with
the increase of the average distance-to-skeleton and with the
increase in the size of clusters. In contrast, the average eccen-
tricity and average density of clusters for randomly located
points is almost constant for all cluster sizes.

2.8 Spatial Comparison of Image Sectors from
Two Samples

In order to characterize and compare the spatial distribution of
single receptors between two image sectors of two samples, we
applied the features described above for spatial analysis. For
each cluster set, we used CðdÞ derived from two sample images
and computed the empirical feature distributions fluorðdÞ,
densðdÞ, eccðdÞ, and distðdÞ for each distance d from the test
interval ½dmin; dmax�, respectively. Next, for a pair of such
distributions (e.g., dens1ðdÞ—first sample and dens2ðdÞ—
second sample) and for a d obtained from the clustering
process of the first and second samples, we made two null
hypotheses:

1. The null hypothesis I is that the empirical distributions
of both samples are drawn from the same continuous
distribution.

2. The null hypothesis II is that the first-sample empirical
distribution cumulative distribution function (CDF) is
larger than or equal to the second-sample empirical
distribution CDF.

These distributions can be compared with the Kolmogorov–
Smirnov two sample nonparametric test or with the Wilcoxon
rank sum test.39–41 We tested both hypotheses at the standard
5% significance level using a two-sample Kolmogorov–Smirnov

Fig. 2 Ripley’s L-functions (distance d in pixel) for cryopreserved (L1)
and paraffin-fixed (L2) images of a healthy brain tissue. Both samples
show statistically significant clustering dissimilarity to complete spatial
randomness (CSR) distribution at smaller distances and significant
dispersion at larger distance. However, similarity between both samples
(L1 and L2) is very high (p-value of Kolmogorov–Smirnov two-sample
nonparametric test is equal to 0.96).
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test. The Kolmogorov–Smirnov test calculates the p-value
pvðdÞ between two empirical distributions for a given maxi-
mum size of clusters d. It is sensitive to differences between
the empirical cumulative distribution functions of the two
samples. The test rejects the null hypothesis (at the 5% signifi-
cance level), if pvðdÞ < 0.05 [where pvðdÞ ¼ pvequalðdÞ for test
of hypothesis I and pvðdÞ ¼ pvlargeðdÞ for test of hypothesis II].
Additionally, we apply a 2-D and two-sample Kolmogorov–
Smirnov test.42 This test compares a pair of 2-D distributions
using Fasano and Franceschini’s generalization of the
Kolmogorov–Smirnov test.42 The test of null hypothesis II
can be applied to identify differences between samples, but
only for selected spatial features of a cluster, for example the
receptor–density distribution.

The test of null hypothesis I is used to define the similarity
coefficient between two samples. The similarity coefficient is
the mean of the weighted sum of the pvðdÞ values for the differ-
ent cluster features like fluorðdÞ and pairwise features like
[densðdÞ, distðdÞ] and [eccðdÞ, distðdÞ] [throughout the range
of cluster size (d)]. The weighted sum of the pvðdÞ is called
aggregated p-value pvaggðdÞ.

pvaggðdÞ ¼
X

αipviðdÞ
where i ∈ ffluor; ðdens × distÞ; ðecc × distÞg andX

αi ¼ 1 similarity coefficient ¼ Meand½pvaggðdÞ�:

To estimate the similarity or dissimilarity between two
images, it is sufficient to compare these three p-values pvðdÞ
on the interval ½dmin; dmax�. The analysis of the presented images
by using the Ripley’s L-function revealed an appearance of sta-
tistically significant clustering dissimilarity, when compared
with a complete spatial randomness (CSR) distribution usually
in the distance interval of ½dmin; dmax� ¼ ½1;∼35� pixels. This
interval was chosen for the further estimation and comparison
of pvlarge-value functions. To exemplify the method described
above, a comparison of two brain tissue images is presented
in Fig. 4.

3 Results and Discussion
We analyzed dSTORM-imaged brain tissue samples with the
presented method in order to extract cluster features of our

Fig. 3 Cluster and cluster features for cryopreserved sample images of a healthy brain tissue. (a) Image sector and clustering result for cluster max-size
d ¼ 18 pixels. (b) Skeleton of bulk fluorescence image (a) (glia tissue) and localized molecules (dots). (c) Mean value of clusters eccentricity (y-axis) and
clusters distance-to-skeleton (z-axis) as function of cluster size (x-axis) for d from 1 to 35 pixels (light gray). For comparison, the clustering results for
randomly located points on the same image are represented by the black. The eccentricity and distance-to-skeleton of randomly located points are
almost constant for all cluster sizes. (d) Mean values of relative cluster density (y-axis) and cluster distance-to-skeleton (z-axis) as function of cluster size
(x-axis) for d from 1 to 35 pixels (light gray). Black represents the same features for randomly located points. The mean density of cluster and mean
distance-to-skeleton is almost constant, too.
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protein of interest, the serotonin 5-HT1A receptor. Since this
receptor is expressed on the surface of neural as well as glial
cells, we used the co-localization with an exclusively glial
marker to demonstrate that this features-based analysis method
is applicable for tissue classification at a nanoscopic level. To
experimentally verify the presented method, neocortex tissue
samples from healthy individuals and patients suffering from
a mental disorder were used (see Table 1).

3.1 STORM Imaging

For dSTORM-imaging of serotonin receptor clusters on glial
and nerve cells, the sample preparation methods and the illumi-
nation conditions had to be adapted. All measurements were
performed on ∼3-μm thin brain slices. To reduce autofluores-
cence and light scattering for two-color imaging, we used a
total internal reflection fluorescence (TIRF) microscopy
derived43 highly inclined and laminated optical (HILO) sheet
illumination configuration.44,45 In this configuration, a laser
beam is tilted through a single objective and leads to the illu-
mination in only a thin intersection of the focal plane. The
method is, however, not related to the wide-field imaging tech-
nique HiLo.46,47

The target proteins were labeled with commercially available
antibodies marked with Alexa488 or Atto655 fluorophores
(Attotec, Siegen, Germany). In case of the polyclonal anti-sero-
tonin receptor antibody (Lifespan BioSciences Inc., Seattle), the
labeling was performed via covalent amino fluorophore conju-
gation, and for the specific recognition of the glia, a monoclonal

Alexa488-conjugated antibody (Molecular Probes, Vienna,
Austria) against GFAP was used. We aimed to have a labeling
ratio of 1.8 fluorophores per antibody, which guarantees that a
relatively high amount of antibodies are labeled with just a sin-
gle fluorophore and at the same time leads to a low abundance of
blank antibodies. Due to this stochastic-labeling method, an
exact quantification of the protein number within a serotonin
receptor cluster is not possible. However, to guarantee the com-
parability of the samples measured in this work, all tissues are
incubated with antibodies labeled in the same batch. Estimating
more accurate numbers of serotonin receptors will require a
labeling ration of one fluorophore per antibody and a detection
system in which every fluorophore will only be imaged once.
Moreover, the receptor recognition is also restricted to the bind-
ing affinity of the commercially available polyclonal antibodies.
Due to their probabilistic binding kinetics, they cannot mark all
successfully retrieved serotonin receptors.

We used the fluorescently labeled glia cells for orientation
within the tissue slice by keeping the density of the glia cells
in the imaged areas constant. Those receptor signals which did
not colocalize with the glial skeleton are neural receptors and,
interestingly, they also form clusters. However, only the anti-
5HT1A antibodies were characterized via localization micros-
copy. To apply dSTORM imaging, the photoswitching rate of
Atto655 fluorophores needed to be adjusted to ensure sufficient
long fluorophore off times. A 40 mM of cysteamin (MEA) were
added to the measurement buffer. The Atto655-conjugated anti-
body was continuously illuminated at 4 mW∕cm2 power with a
frame rate of 20 frames∕s (∼800 photons∕fluorophore). Fast

Fig. 4 (a) Image of a cryopreserved healthy brain tissue. (b) Image of a paraffin-fixed healthy brain tissue. (c) Comparison between (a) and (b) samples—
pvaggðdÞ of cluster features distributions with similarity coefficient ¼ 0.234 [gray zone shows minimal and maximal values of aggregated pvðdÞ].
(d) Image of a cryopreserved healthy brain tissue. (e) Image of a brain tissue of patient with depressive disease. (f) Comparison between (d) and (e) sam-
ples—pvaggðdÞ of cluster features distributions (similarity coefficient ¼ 0.029).
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illumination times and rather sparse serotonin clusters required
1200 frames for a fully reconstructed image. It was acquired
within 1 min with localization accuracy down to 22.5 nm
(Fig. 5). The described system adjustments are necessary to
arrange two-color imaging and localization microscopy of
fixed brain tissues (Fig. 6).

3.2 Sample Comparison

The presented image analysis was tested using samples from
different patients (see Table 1), which were prepared following
different fixation protocols. Generally, the test samples can be
classified in the following groups: cryopreserved brain tissue of
healthy individuals (Group A—13 samples), paraffin-fixed sam-
ples of healthy individuals (Group B—6 samples), samples
taken from MDD patient with Alzheimer (Group C—2 sam-
ples), samples of a depressive (MDD) alcoholic patient
(Group D—4 samples), and long-time preserved paraffin-
fixed samples (Group E—3 samples).

We computed the aggregated pvaggðdÞ functions for cluster
size d ∈ ½dmin; dmax� and similarity coefficient for each pair of
images within the same sample group and between different
groups.

Figure 7 presents the pairwise comparison matrix of images
from all samples [Fig. 7(a)] and sample groups [Fig. 7(b)]. The
grayscale (black—similarity coefficient ¼ 1, white—similarity
coefficient ¼ 0) matrix elements represent the mean of the
aggregated p-values, i.e., the pairwise similarity coefficient
between the samples.

Based on this pairwise comparison, we constructed the
global statistical similarity coefficient between the different
sample groups. The global similarity coefficient between two
groups of samples can be calculated as the mean value of sim-
ilarity coefficients between all sample pairs from both groups.

3.3 Spatial Cluster Analysis of Cryopreserved
Samples (Group A)

The first measurements were performed on cryopreserved sam-
ples. The cryogenic tissue preservation method was used for two
reasons: first, to test the consistency of the brain slices, and sec-
ond, to find a reference system for optimizing the fixation pro-
tocols for two-color imaging and for comparison with fixed
healthy/pathologic tissue samples. Furthermore, the cryo-pres-
ervation method is also used to determine the antibody concen-
tration required to saturate the serotonin H1 receptors in the
brain tissue and to quantify the unspecific binding (incubation
with unspecific Alexa647-labeled anti-GFP antibody). The con-
centration used was estimated to be 0.8 μg of antibodies per
sample with almost 2 orders of magnitude higher specificity.
The samples are derived from patients with no mental disability
and died of cardiac decompensation and pulmonary edema with
previous records of atrial fibrillation (see Table 1). The data were
obtained from two patients with five and eight technical replicas,
respectively [Fig. 7(a), submatrix A]. To ensure comparison
between the same regions, only samples of the prefrontal cortex
have been used. Moreover, we chose images with a similar den-
sity of the glia cells (21� 1.5% average density), which was
determined via intensity thresholding of the images’ sectors,
the same as used for cluster analysis. The threshold level was
kept manually constant in all images. The comparison shows
a 0.33 global similarity coefficient agreement between the cry-
opreserved samples. This result implies a good similarity
between the samples regarding their cluster size, elliptic elon-
gation, and density distribution in relation to the structure of
the fluorescent bulk signal (glial tissue). Moreover, the results
show that the proposed spatial analysis method is able to char-
acterize serotonin H1 receptor clusters within human brain tis-
sue at single-molecule level.

3.4 Characterization of Fixation Artifacts
(Groups B and E)

The main objective of this study was to develop a method to
quantify receptor distributions in thin sections of brain tissue
on a nanoscopic level. Such a method should also be applicable
to fixed samples stored for long periods. In a second step, we
used the presented spatial analysis method to study the impact of
the fixation method on sample quality. Therefore, we compared
cryopreserved with paraffin-embedded tissues. The data of the
paraffin-embedded tissue were collected from two patients [fix-
ation year 2010 and three technical replicas for each patient—
Fig. 7(a), submatrix B]. The analyzed images have a 20� 3%
glia cell density. The comparison indicates a global similarity
coefficient agreement of 0.2 inside the sample groups.
Moreover, we also observed a high similarity between the

Fig. 5 (a) Single-molecule imaging setup. (b) Image of a single molecule
with localized centers of all detected events from this molecule.
(c) Zoom of the center pixel from (b).

Fig. 6 (a) Image of the cryofixed brain tissue; green-labeled glia tissue
with white-marked localized serotonin receptors (circle radius
27� 4.3 nm, pixel size 160 nm). The areas A and B represent zoomed
out clusters of reconstructed images. In the reconstructed image, the
localized single-molecule positions were fitted with a normalized
Gauss, multiplied with maximal intensity of the dyes, and detected
within PAg (Gaussian FWHM ¼ PAg, pixel size 15 nm). (b) Image of
the paraffin-fixed brain tissue (conserved in 2010; epitope retrieval
2012); green-labeled glia tissue with white-marked localized serotonin
receptors (circle radius 28� 3.6 nm, pixel size 160 nm). The areas C
and D represent zoomed out clusters of reconstructed images. All
detected fluorophores were Gaussian fitted at their original positions
(FWHM ¼ PAl , pixel size 15 nm).
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cryo- and paraffin-preserved tissues with global similarity coef-
ficient of ∼0.2 between the samples. This confirms a good
capability of our method for the comparison of tissue samples.

Furthermore, we wanted to test whether differences in the
fixation protocols and extended storing times will have an
impact on sample comparison. The comparability between dif-
ferently treated and stored samples would significantly extend
the applicability of the method [Fig. 7(a), submatrix E]. Paraffin
samples had been prepared before 2007 by using a different fix-
ation method and were compared with cryopreserved and
freshly prepared paraffin samples. The comparison shows a
global similarity of ∼0.1 to the cryopreserved tissue and a neg-
ligible similarity (global similarity of 0.018) to the paraffin-
embedded slice. The data suggest that both the longer alcohol
treatment in the older fixation procedure and the longer storage
may have a negative impact on sample quality by causing a
stronger epitope damage of the target protein. Consequently,
for a precise comparison, our method requires consistency in
sample conservation and fixation date as well.

3.5 Spatial Cluster Analysis of Brain Tissue of
Patients Suffering from a Mental Disorder
(Groups C and D)

To test the applicability of the localization microscopy and the
cluster analysis in neuropathology, we concentrated on a very
challenging field—the neuropathology of psychiatric disease.
We compared healthy brain samples with samples of MDD
patients (two patients with two and four technical replicas,
respectively, each prepared in two individual batches). The
first patient suffered from MDD and additionally from other dis-
eases like Alzheimer’s and Parkinson’s (two technical replicas).
The glia tissue density was shown to be around 19� 0.5%
[Fig. 7(a), submatrix C]. This tissue displays a high 0.48 global
similarity value for sample comparison inside the group. The
second patient analyzed suffered from alcoholism; the four sam-
ples of this patient display a global similarity value of 0.24 at a

glia tissue density of 20� 3% [Fig. 7(a), submatrix D]. We
observed a dissimilarity between the brain tissues of the
MDD patients and the healthy patient. We denote global simi-
larity of 0.07 and 0.05 compared with healthy cryopreserved and
paraffin-fixed tissues, respectively. The comparison between the
two MDD patients displays a similarity coefficient value of
∼0.14, which shows a moderate agreement between the sam-
ples. These first results are promising for the future use of locali-
zation microscopy and the proposed special analysis technique
for characterization and classification of human brain tissue.
Although our study is limited to a small number of patients
and to a single cortical region, the analysis reveals differences
between pathological and healthy brain tissues which render the
method applicable in the complex field of biological psychiatry.

3.6 Relative Comparison of Cluster Features
Between the Samples

The presented method allows the classification of the samples
based on their similarity; however, it does not provide statistical
information about the relative cluster fluorophore number or
density. Therefore, in a second comparison we determined
the plarger-value to test the null hypothesis II (for a definition
see Sec. 2), which assumes that the first-sample empirical dis-
tribution CDF is larger than (or equal to) the second-sample
empirical distribution CDF. A larger distribution corresponds
to a larger cluster size and density by comparing one sample
with the other. The comparison is restricted to individual fea-
tures, for example, the relative number of fluorophores per clus-
ter—fluorðdÞ or relative cluster density—densðdÞ. The test is
performed within a cluster size interval of d ∈ ½1; 35� pixels.
The result for relative cluster density distribution is presented
in Fig. 8. The test of the null hypothesis II of cluster relative
density was prepared on pairs of samples from groups A and
B and samples from groups C and D.

The mean cluster density derived from C and D samples is
smaller than from samples of healthy individuals (A and B

Fig. 7 (a) The similarity coefficient values between compared pairs of images from all sample groups (test of null hypothesis I). The submatrix A
represents data from cryopreserved samples, submatrix B—paraffin-fixed samples prepared in 2010, submatrix C—a major depressive disorder
(MDD) patient with Alzheimer as well as Parkinson, submatrix D—a depressive (MDD) alcoholic patient, and submatrix E—paraffin-fixed samples
prepared 2007. A strong similarity between images from cryopreserved and paraffin-fixed samples (year 2010) is observed. Long-time preserved par-
affin-fixed samples (year 2007) show much lower comparability to the earlier fixed and cryopreserved samples. Moreover, a strong dissimilarity
between the cryopreserved and fixed samples versus patient group was observed. (b) Average of similarity coefficient values calculated between
all samples groups—global similarity coefficient for null hypothesis I.
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samples). Cryopreserved as well as paraffin-fixed samples of
healthy individuals [Fig. 8(a), rows of submatrices A and B]
show a high similarity between empirical CDFs of cluster den-
sity and fluorophore ratio with aggregated plarger-values between
0.4 and 0.7 for cluster density and between 0.7 and 0.9 for clus-
ter fluorophore ratio. In contrast, the samples from C and D
groups [Fig. 8(a), rows of submatrices C and D] manifest a sig-
nificantly lower similarity between CDFs of density and fluo-
rophore ratio (aggregated plarger-values between 0.04 and
0.09) compared with healthy brains samples from groups A
and B.

4 Conclusions
Structural insights into receptor distribution within the brain
have far-reaching consequences into the understanding of
brain tissue composition and its changes due to mental illness
and drug treatment. The analysis of small size clusters has up to
now primarily relied on electron microscopy, which offers
exquisite spatial resolution but has limitations in multi-
component analysis.14,48 Fluorescence microscopy overcomes
these limitations, but its diffraction limit does not allow exact
position analysis of receptors.

Within this study, we successfully applied a dual-color, sin-
gle-molecule, 2-D super-resolution method to determine the
protein distribution of serotonin receptor 5-HT1AR in brain tis-
sue. In particular, we were able to visualize serotonin receptor
clusters at nanometer resolution level (down to 22.5 nm) in
native and fixed dense light-scattering brain tissues. Our results
were obtained from samples that are typically used in immuno-
histochemistry, which simplifies the implementation of our
approach and shows a promising potential for more accurate
analysis applications. The fast-imaging process further allows
the recording of large sets of high-resolution images, which ren-
ders the comparative analysis between different tissue samples
possible. The 2-D image of nanoscopically mapped serotonin
receptors was used for a novel cluster-based analysis with
respect to their sizes, densities, elongations, and relationship
to bulk fluorescent structures (glia tissue). Herein, we would
like to stress that the presented clustering method is the only
technique which enables the combined analysis of localization

microscopy and bulk fluorescence imaging. The proposed spa-
tial analysis method allowed us to characterize the effects of
long-term paraffin conservation and epitope retrieval on brain
tissue. Also, the analysis method reveals differences between
pathological (MDD) and healthy brain samples and indicates
its potential application in tissue classification. In the case of
5-HT1AR receptors, which are expressed on glial as well as neu-
ral cells, the distribution of clusters is certainly influenced by
several factors like, e.g., the cell type and cell-cell interactions
or changes in pathological tissue morphology. Therefore, we
applied correlative analysis between images of the glia tissue
and single-molecule cluster distribution, which should include
only the clusters associated with the labeled glial cells in the
analysis.

Moreover, we would like to point out that the suggested clus-
tering analysis method can also be adapted for three-dimen-
sional analysis as well as for the characterization of any 2-D
biological systems (e.g., Lat clustering on activated T-cell mem-
branes).49 The method also offers a more powerful alternative
for the Ripley-K/L functions analysis method, which has limi-
tations regarding the sample classification.

On the technical side, the presented work demonstrates that
the combination of localization microscopy with a standard fix-
ation method provides a powerful platform well suited for the
analysis of biological tissue samples at a nanoscopic level. Our
platform, therefore, marks a valuable technological advance-
ment for the characterization of protein distributions in brain
tissue.

Acknowledgments
The work described in this article was done within the research
project Medical Proteomics Lab sponsored by Basic Research
Program of the University of Applied Sciences Upper
Austria. We would like to thank Nick Fulcher, Gregor
Mendel Institute, Vienna for support and Mario Brameshuber,
Institute of Applied Physics, Vienna University of
Technology for providing us the anti-GFP antibody. Due to a
tragic accident, Kurt Schilcher died shortly after the article
was submitted. The work described in this article was done
within the FIT-IT project number 835918 “NanoDetect: A

Fig. 8 (a) Mean p-value obtained from comparison between pairs of samples (over the complete distance interval) for testing of null hypothesis II [for
dens(c½d�)]: Group A—cryopreserved samples, group B—healthy paraffin-fixed samples, group C—first MDD patient, group D—second MDD patient.
The distribution CDF of dens1ðdÞ of sample 1 (rows) is larger than the distribution CDF of dens2ðdÞ of sample 2 (columns). (b) Average pvlarge-values
between samples groups.

Journal of Biomedical Optics 011021-10 January 2014 • Vol. 19(1)

Sams et al.: Spatial cluster analysis of nanoscopically mapped serotonin receptors. . .



Bioinformatics Image Processing Framework for Automated
Analysis of Cellular Macro and Nano Structures” sponsored
by the Austrian Research Promotion Agency (FFG). This
work was additionally supported by the Austrian Science
Fund (FWF) (DK W1207; SFB 1710, 1711); the Austria
Genomic Program (GENAU III); and the EU FP6
Programme Network of Excellence on Alternative Splicing
(EURASNET) (LSHG-CT-2005-518238).

References
1. T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluo-

rescence microscopy,” Opt. Lett. 24(14), 954–956 (1999).
2. T. A. Klar et al., “Fluorescence microscopy with diffraction resolution

barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U. S. A.
97(15), 8206–8210 (2000).

3. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit
by stimulated emission: stimulated-emission-depletion fluorescence
microscopy,” Opt. Lett. 19(11), 780–782 (1994).

4. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of
two using structured illumination microscopy,” J. Microsc. 198(2), 82–
87 (2000).

5. L. Schermelleh et al., “Subdiffraction multicolor imaging of the nuclear
periphery with 3D structured illumination microscopy,” Science
320(5881), 1332–1336 (2008).

6. E. Betzig, “Proposed method for molecular optical imaging,” Opt. Lett.
20(3), 237–239 (1995).

7. E. Betzig et al., “Imaging intracellular fluorescent proteins at nanometer
resolution,” Science 313(5793), 1642–1645 (2006).

8. S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution
imaging by fluorescence photoactivation localization microscopy,”
Biophys. J. 91(11), 4258–4272 (2006).

9. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by
stochastic optical reconstruction microscopy (STORM),” Nat. Methods
3(10), 793–795 (2006).

10. M. Heilemann et al., “Super-resolution imaging with small organic
fluorophores,” Angew. Chem. Int. Ed. Engl. 48(37), 6903–6908 (2009).

11. S. van de Linde, M. Sauer, and M. Heilemann, “Subdiffraction-resolu-
tion fluorescence imaging of proteins in the mitochondrial inner mem-
brane with photoswitchable fluorophores,” J. Struct. Biol. 164(3), 250–
254 (2008).

12. H. Shroff et al., “Live-cell photoactivated localization microscopy of
nanoscale adhesion dynamics,” Nat. Methods 5(5), 417–423 (2008).

13. H. Shroff, H. White, and E. Betzig, “Photoactivated localization micros-
copy (PALM) of adhesion complexes,” Curr. Protoc. Cell Biol. Chapter
4 (Unit 4), 21 (2008).

14. A. Dani et al., “Superresolution imaging of chemical synapses in the
brain,” Neuron 68(5), 843–856 (2010).

15. D. Baddeley et al., “4D super-resolution microscopy with conventional
fluorophores and single wavelength excitation in optically thick cells
and tissues,” PLoS One 6(5), e20645 (2011).

16. S. Nanguneri et al., “Three-dimensional, tomographic super-resolution
fluorescence imaging of serially sectioned thick samples,” PLoS One
7(5), e38098 (2012).

17. M. Heilemann et al., “Carbocyanine dyes as efficient reversible single-
molecule optical switch,” J. Am. Chem. Soc. 127(11), 3801–3806 (2005).

18. S. van de Linde et al., “Multicolor photoswitching microscopy for sub-
diffraction-resolution fluorescence imaging,” Photochem. Photobiol.
Sci. 8(4), 465–469 (2009).

19. P. R. Albert and S. Lemonde, “5-HT1A receptors, gene repression, and
depression: guilt by association,” Neuroscientist 10(6), 575–593 (2004).

20. L. Christiansen et al., “Candidate gene polymorphisms in the serotoner-
gic pathway: influence on depression symptomatology in an elderly
population,” Biol. Psychiatry 61(2), 223–230 (2007).

21. D. Hoyer, J. P. Hannon, and G. R. Martin, “Molecular, pharmacological
and functional diversity of 5-HT receptors,” Pharmacol. Biochem.
Behav. 71(4), 533–554 (2002).

22. E. K. Lambe et al., “Serotonin receptor expression in human prefrontal
cortex: balancing excitation and inhibition across postnatal develop-
ment,” PLoS One 6(7), e22799 (2011).

23. Dako GmbH, Education Guide: Immunohistochemical Staining
Methods, 4th ed., p. 183 (2006).

24. J. L. Starck, J. Fadili, and F. Murtagh, “The undecimated wavelet
decomposition and its reconstruction,” IEEE Trans. Image Process.
16(2), 297–309 (2007).

25. J. C. Olivo-Marin, “Extraction of spots in biological images using multi-
scale products,” Pattern Recogn. 35(9), 1989–1996 (2002).

26. J. Hynecek and T. Nishiwaki, “Excess noise and other important char-
acteristics of low light level imaging using charge multiplying CCDs,”
IEEE Trans. Electron Dev. 50(1), 239–245 (2003).

27. L. Muresan et al., “Microarray analysis at single-molecule resolution,”
IEEE Trans. Nanobiosci. 9(1), 51–58 (2010).

28. Y. H. Y. Benjamini, “Controlling the false discovery rate: a practical and
powerful approach to multiple testing,” J. R. Stat. Soc. 57(1), 289–300
(1995).

29. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer
localization analysis for individual fluorescent probes,” Biophys. J.
82(5), 2775–2783 (2002).

30. H. Qian, M. P. Sheetz, and E. L. Elson, “Single particle tracking.
Analysis of diffusion and flow in two-dimensional systems,”
Biophys. J. 60(4), 910–921 (1991).

31. K. I. Mortensen et al., “Optimized localization analysis for single-mol-
ecule tracking and super-resolution microscopy,” Nat. Methods 7(5),
377–381 (2010).

32. S. Wieser et al., “(Un)confined diffusion of CD59 in the plasma mem-
brane determined by high-resolution single molecule microscopy,”
Biophys. J. 92(10), 3719–3728 (2007).

33. S. Wieser and G. J. Schütz, “Tracking single molecules in the live cell
plasma membrane-do’s and don’t’s,” Methods 46(2), 131–140 (2008).

34. V. R. Sarma et al., “The three-dimensional structure at 6 A resolution of
a human gamma Gl immunoglobulin molecule,” J. Biol. Chem. 246(11),
3753–3759 (1971).

35. P. M. Dixon, Encyclopedia of Environmetrics, John Wiley & Sons Ltd.,
Chichester, West Sussex, England (2006).

36. T. D. G. Shakhnarovich and P. Indyk, Nearest-Neighbor Methods in
Learning and Vision, MIT Press, Cambridge, Massachusetts (2006).

37. P. Maragos and R. W. Schafer, “Morphological skeleton representation
and coding of binary images,” IEEE Trans. Biomed. Eng. Acoustics,
Speech Signal Process. 34(5), 1228–1244 (1986).

38. R. Kresch and D. Malah, “Skeleton-based morphological coding of
binary images,” IEEE Trans. Image Process. 7(10), 1387–1399 (1998).

39. N. Smirnov, “On the estimation of the discrepancy between empirical
curves of distribution for two independent samples,” Bull.
Mathematique de l’Universite de Moscou 2, 3–16 (1939).

40. A. N. Kolmogorov, “On the empirical determination of a distribution
function,”Giornale dell’Instituto Italiano degli Attuari 4, 83–91 (1933).

41. E. A. Gehan, “A generalized Wilcoxon test for comparing arbitrarily
singly-censored samples,” Biometrika 52(1–2), 203–223 (1965).

42. R. Lopes, I. Reid, and P. Hobson, “The two-dimensional Kolmogorov-
Smirnov test,” in XI Int. Workshop on Advanced Computing and
Analysis Techniques in Physics Research, Proc. Sci., Amsterdam,
The Netherlands (2007).

43. D. Axelrod, “Cell-substrate contacts illuminated by total internal-reflec-
tion fluorescence,” Biophys. J. 33(2), A200 (1981)

44. M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined
thin illumination enables clear single-molecule imaging in cells,”
Nat. Methods 5(2), 159–161 (2008).

45. J. Huisken and D. Y. Stainier, “Selective plane illumination microscopy
techniques in developmental biology,” Development 136(12), 1963–
1975 (2009).

46. J. Mertz et al., “Widefield fluorescence sectioning with HiLo micros-
copy,” in Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, pp. 3229–3230
(2009).

47. D. Lim et al., “Optically sectioned in vivo imaging with speckle illu-
mination HiLo microscopy,” J. Biomed. Opt. 16(1), 016014 (2011).

48. K. L. Briggman and W. Denk, “Towards neural circuit reconstruction
with volume electron microscopy techniques,” Curr. Opin. Neurobiol.
16(5), 562–570 (2006).

49. D. J. Williamson et al., “Pre-existing clusters of the adaptor Lat do
not participate in early T cell signaling events,” Nat. Immunol. 12(7),
655–662 (2011).

Journal of Biomedical Optics 011021-11 January 2014 • Vol. 19(1)

Sams et al.: Spatial cluster analysis of nanoscopically mapped serotonin receptors. . .

http://dx.doi.org/10.1364/OL.24.000954
http://dx.doi.org/10.1073/pnas.97.15.8206
http://dx.doi.org/10.1364/OL.19.000780
http://dx.doi.org/10.1046/j.1365-2818.2000.00710.x
http://dx.doi.org/10.1126/science.1156947
http://dx.doi.org/10.1364/OL.20.000237
http://dx.doi.org/10.1126/science.1127344
http://dx.doi.org/10.1529/biophysj.106.091116
http://dx.doi.org/10.1038/nmeth929
http://dx.doi.org/10.1002/anie.v48:37
http://dx.doi.org/10.1016/j.jsb.2008.08.002
http://dx.doi.org/10.1038/nmeth.1202
http://dx.doi.org/10.1016/j.neuron.2010.11.021
http://dx.doi.org/10.1371/journal.pone.0020645
http://dx.doi.org/10.1371/journal.pone.0038098
http://dx.doi.org/10.1021/ja044686x
http://dx.doi.org/10.1039/b822533h
http://dx.doi.org/10.1039/b822533h
http://dx.doi.org/10.1177/1073858404267382
http://dx.doi.org/10.1016/j.biopsych.2006.03.046
http://dx.doi.org/10.1016/S0091-3057(01)00746-8
http://dx.doi.org/10.1016/S0091-3057(01)00746-8
http://dx.doi.org/10.1371/journal.pone.0022799
http://dx.doi.org/10.1109/TIP.2006.887733
http://dx.doi.org/10.1016/S0031-3203(01)00127-3
http://dx.doi.org/10.1109/TED.2002.806962
http://dx.doi.org/10.1109/TNB.2010.2040627
http://dx.doi.org/10.1016/S0006-3495(02)75618-X
http://dx.doi.org/10.1016/S0006-3495(91)82125-7
http://dx.doi.org/10.1038/nmeth.1447
http://dx.doi.org/10.1529/biophysj.106.095398
http://dx.doi.org/10.1016/j.ymeth.2008.06.010
http://dx.doi.org/10.1109/TASSP.1986.1164959
http://dx.doi.org/10.1109/TASSP.1986.1164959
http://dx.doi.org/10.1109/83.718480
http://dx.doi.org/10.1093/biomet/52.1-2.203
http://dx.doi.org/10.1038/nmeth1171
http://dx.doi.org/10.1242/dev.022426
http://dx.doi.org/10.1117/1.3528656
http://dx.doi.org/10.1016/j.conb.2006.08.010
http://dx.doi.org/10.1038/ni.2049

