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Abstract. A method for measuring three-dimensional (3-D) direction images of collagen fibers in biological tis-
sue is presented. Images of the 3-D directions are derived from the measured transmission Mueller matrix
images (MMIs), acquired at different incidence angles, by taking advantage of the form birefringence of the
collagen fibers. The MMIs are decomposed using the recently developed differential decomposition, which
is more suited to biological tissue samples than the common polar decomposition method. Validation of the
3-D direction images was performed by comparing them with images from second-harmonic generation micros-
copy. The comparison found a good agreement between the two methods. It is envisaged that 3-D directional
imaging could become a useful tool for understanding the collagen framework for fibers smaller than the dif-
fraction limit. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of
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1 Introduction
Biomedical research is experiencing a revolution due to the
development of instruments for spectral and spatial characteri-
zation. In addition, pulsed lasers are readily available for
nonlinear optical applications. Recently, polarization sensitive
techniques, known from the thin film community, have been
developed for biomedical applications. In the thin film commu-
nity, the polarization sensitive technique spectroscopic ellipsom-
etry has been successfully used to characterize material
properties of many kinds for several decades.1 As a conse-
quence, ellipsometry now plays an important role in the semi-
conductor industry. More recently, spectroscopic Mueller matrix
ellipsometry has been employed to characterize anisotropic
nanostructured materials and plasmonic structures.2–6 Due to
the turbidity of biological tissue,7 the modeling is more compli-
cated than for more uniform samples such as thin films. In addi-
tion, partial depolarization of light in the sample requires
acquisition of the full polarization properties, i.e., the Mueller
matrix, and not only the ellipsometric parameters Ψ (amplitude)
and Δ (phase difference). Nevertheless, Mueller matrix ellips-
ometry has been shown to be a promising technique for the
characterization of biological tissue.8–13

Recently, several setups have been developed to acquire
Mueller matrix images (MMIs) of biological samples. In par-
ticular, Pierangelo et al.13 demonstrated the use of a reflection
imaging Mueller matrix ellipsometer to characterize and
diagnose colorectal cancer. Furthermore, several broadband
Mueller matrix designs for imaging have been proposed14

and some have been implemented.15 By carefully choosing
the probing wavelength, it is possible to make the technique sen-
sitive to a certain depth range in the tissue.7 Hence, if MMI is
combined with hyperspectral imaging it would be possible to
study the depth dependent effects. The MMI technique is, in

principle, nondestructive and can, with further development,
achieve a submicrometer resolution, as well as being sensitive
to structural features smaller than the diffraction limit.

There are a range of polarization effects which alters a
Mueller matrix, the common being depolarization, diattenua-
tion, birefringence, and optical activity. If a material possesses
several of these effects, it is not always easily seen from the
Mueller matrix which of the effects are responsible for a certain
feature in the measured data. One way of simplifying the analy-
sis is to decompose the measured Mueller matrix. The typical
way of decomposing the Mueller matrix has been the forward
polar decomposition,16,17 but recently, Ossikovski et al.18

pointed out that polar decomposition assumes the polarization
effects to be multiplicative, which is rarely the case for biologi-
cal media. They suggested that the differential decomposition is
a more suitable approach for decomposing such simultaneous
effects. The differential decomposition was originally proposed
by Azzam19 and later extended to include depolarizing media by
Ossikovski20 and has recently been applied on biological tissue
by Kumar et al.12 In the latter work, it was shown how to
calculate physical properties from the decomposed matrices.

Using decomposedMMIs of biological tissue containing col-
lagen fibers, it has been shown possible to extract the in-plane
direction of the fibers from their induced birefringence.11 We,
here, generalize this idea further in order to find the 3-D direc-
tion of collagen fibers in biological tissue. This generalized
method is tested and validated by comparing the three-dimen-
sional (3-D) direction image of tendon derived fromMMIs, with
second-harmonic (SHG) images of the same sample. SHG im-
aging is well known to be a good diffraction limited technique
for imaging collagen fibers.21,22

2 Materials and Methods

2.1 Sample Preparation

Tendon tissue was taken from medial femoral condyle of a
chicken’s knee, bought fresh from the supermarket. A small
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section of the tissue was embedded in a mounting medium for
cryo-sectioning (O.C.T., Sakura, Alphen aan den Rijn, The
Netherlands). Rapid freezing of the O.C.T. embedded tissue
was completed using liquid nitrogen. This frozen section was
stored in a freezer (−60°C) until cut with a cryostat into 50-
μm thin tissue sections. The cutting plane was parallel to the
collagen fibers. The thin sections were placed on standard
microscope glass slides and stored in a freezer (−60°C).
Before being measured, the tissue samples were brought back
to room temperature and covered with a standard cover slip.
Edges of the cover slip were sealed with Vaseline to avoid dehy-
dration. Between measurements, the slides were stored at 4°C.

2.2 SHG Imaging

SHG images were collected on a Zeiss LSM 510 meta micro-
scope using a Coherent Mira 900 for excitation at 790 nm.
Imaging was done with a 40× 1.2 NA objective. A custom
built polarization setup, which compensates for any birefrin-
gence in the optical path, was used to ensure circular polariza-
tion. The average power at the focal plane was approximately 8.

2.3 MMI Setup

After the samples were imaged with SHG, they were measured
in a custom built MMI ellipsometer, shown in Fig. 1. The system
uses ferroelectric liquid crystals for both the polarization state
generator and analyzer. Details of the system can be found in
Aas et al.23 An improvement was made to the illumination, by
replacing both the laser and rotating diffuser, with a 940 nm
collimated light emitting diode (LED). In addition, a motorized
rotation stage for the sample was introduced in order to image
the sample at the different projections needed to extract the 3-D
direction, as described below.

The system was calibrated using the eigenvalue calibration
method24 on four reference samples (air, two polarizers, and
a retarder), ensuring the correct measurement of the Mueller
matrix. By comparing the measurement of air to the identity
matrix, an error estimate was made resulting in a measure for
the accuracy of the system.

2.4 Decomposition of the Mueller Matrix

As the differential decomposition method is able to decompose
simultaneous polarization effects, it was chosen for the decom-
position of the measured Mueller matrices presented here. Due
to the measurement noise, some of the measured Mueller matri-
ces are slightly unphysical, which was compensated for by using
the filtering described by Cloude,25 prior to the decomposition.

The differential decomposition results in two matrices, Lm
and Lu,

20 where Lm contains the elements used to calculate
the retardance and the diattenuation. The uncertainties (standard
deviation) in the retardance and the diattenuation can be calcu-
lated by using the same matrix elements from Lu as those origi-
nally used from Lm. Furthermore, the depolarization can be
calculated from Lu. In this study, the relevant properties are
the linear retardance δ, the angle of orientation of the linear
retardance θ, and the depolarization Δ (It is here noted that
the depolarization [Δlog−M , Eq. (19) in the paper by Kumar
et al.12] has the wrong signs of the exponential, it should be
Δlog−M ¼ 1 − ð1∕3Þðeα1 þ eα3 þ eα3Þ as discussed in a private
correspondence with Ossikovski, one of the authors of the origi-
nal paper.).12

2.5 Directional Calculation

In every day life, we are familiar with determining the orienta-
tion of an object just by looking at it. Because our eyes are sep-
arated by a distance, they see two different projections of an
object which enables deduction of the object’s orientation.
The MMI setup can only image one projection, but it is possible
to rotate the sample in two different sample rotations α, see
Figs. 2 and 3, and then use the two resulting images to calculate
the direction of the imaged birefringent structure, i.e., the col-
lagen framework.

In order to derive the direction of anisotropic structures, it is
convenient to start with the Euler transformations.26 They
require the definition of two coordinate systems, the laboratory
frame of reference and the sample frame of reference. Let p ¼
½x; y; z� describes a vector in the laboratory frame of reference.
The frame of reference is defined in such a way that the x-axis
points along the direction of illumination, the y-axis is horizon-
tal, and the z-axis is vertical, see Fig. 2. Let p 0 ¼ ½x 0; y 0; z 0� be
a vector in the sample frame of reference. The sample frame of

Fig. 1 The Mueller matrix imaging (MMI) setup consisting of the
polarization state generator (PSG) and the polarization state analyzer
(PSA). P1 and P2 are the linear polarizers, R1; : : : ; R4 are the retard-
ers and F1; : : : ; F4 are the ferroelectric liquid crystals.

Fig. 2 Rotation α of the sample seen from above the setup.

Fig. 3 The coordinate systems used for the calculation of the direc-
tions. The laboratory frame ðxyzÞ is identical to the sample frame of
reference ðx 0y 0z 0Þ at α ¼ 0. The x -axis points along the illumination
direction toward the camera and z is vertical. As the rotation is around
z, z 0 ¼ z for any α. The lower row of figures shows the projection of a
three-dimensional (3-D) fiber onto the imaging plane, for different rota-
tions of the sample (α).
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reference coincides with the laboratory frame for a rotation
α ¼ 0 deg, see Fig. 2. The sample is only rotated around the
z ¼ z 0 axis, see Figs. 2 and 3, resulting in the following
Euler rotation matrix

RðαÞ ¼
2
4
cos α sin α 0

− sin α cos α 0

0 0 1

3
5: (1)

By using this transformation, it is possible to transform from
the sample frame of reference p 0 to the laboratory frame of refer-
ence p, by p ¼ Rð−αÞp 0. Applying this transformation gives
the following relations

x ¼ x 0 cos α − y 0 sin α;

y ¼ x 0 sin αþ y 0 cos α;

z ¼ z 0: (2)

The goal is to determine p 0 by measuring the Mueller matrix
at two different sample rotations, α1 and α2, by looking at the
projections into the laboratory frame of reference (the measured
image), resulting in the measured ðy1; z1Þ and ðy2; z2Þ. By
choosing α2 ¼ −α1 ¼ α, (in our setup α2 < 0 due to the direc-
tion of rotation) and solving Eq. (2), the components of p 0

results in

x 0 ¼ y2 − y1
2 sin α

; y 0 ¼ y1 þ y2
2 cos α

; z 0 ¼ z1 ¼ z2: (3)

As the MMI measurement only yields the direction of the
slow axis, θ, and not the projected length (the length in the
yz plane) of the fiber, it is not possible to find the absolute
value (length) of the vector. In order to resolve this, we define
the projected length of the fiber as

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 02 sin2 αþ y 02 cos2 αþ 2x 0y 0 sin α cos αþ z 02

q
:

It is now possible to define the coordinates with respect to the
measured angles

y1 ¼ l1 cos θ1; z1 ¼ l1 sin θ1;

y2 ¼ l2 cos θ2; z2 ¼ l2 sin θ2:

Using z1 ¼ z2 ¼ z we find that

y1 ¼ z cot θ1; y2 ¼ z cot θ2;

which, when inserted into Eq. (3), gives

x 0 ¼ zðcot θ2 − cot θ1Þ
2 sin α

; y 0 ¼ zðcot θ1 þ cot θ2Þ
2 cos α

; z 0 ¼ z.

These equations depend on the absolute length of z, however,
as we are only interested in the direction of the fiber, we can set
z ¼ 1. This solution is limited to only include positive z, which
is not a problem since all solutions with negative z can be rep-
resented by the opposite vector located in the positive z space. In
addition, it will not be possible to get a solution purely in the xy

plane (z ¼ 0). A real measurement contains some noise, both
from the measurement itself and from numerical noise, ensuring
that the angle is never exactly zero. In addition, the rotation
around z means that it is not possible to see the difference
between different vectors in the xy plane if z ¼ 0. The final
equations are then

x 0 ¼ cot θ2 − cot θ1
2 sin α

; y 0 ¼ cot θ1 þ cot θ2
2 cos α

; z 0 ¼ 1: (4)

When presenting the results derived with Eq. (4), the vector
is normalized to its length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 02 þ y 02 þ z 02

p
.

Another consideration to make is that the angle of incidence
is not the same as the rotation angle of the sample, due to the
difference in refractive index. This difference yields a correction
for α which is α ¼ arcsin½sinðαrÞ∕nt�, where αr is the angle of
rotation (incidence angle on the glass) and nt is the refrac-
tive index of tissue, assumed here to be 1.4.7 According to
Snell’s law, the two glass slides sandwiching the sample do
not affect this correction.

2.6 Directional Imaging

By changing the angle of incidence on the sample, i.e., rotating
the sample, and using the slow axis direction found from the
decomposition, it is possible to calculate and hence make
an image of the 3-D direction of the fibers as described in
Sec. 2.5. The calculation is done using incidence angles of
αr ¼ �30 deg. The resulting images are resampled, using αr,
such that the stretching due to rotation is counteracted and
the pixels are square. αr is used because the image is seen
on the surface of the glass.

3 Results and Discussion
Two of the recorded Mueller matrices, after cropping and resam-
pling, are shown in Fig. 4. The first element of the Mueller
matrix has the intensity image overlaid. These Mueller matrices
are the basis for the decomposition and calculating the directions
as explained in Sec. 3.2.

3.1 Depolarization and Linear Retardance

Linear retardance describes how much the polarization in one
direction is phase shifted with respect to its orthogonal polari-
zation. Figure 5 shows the linear retardance together with its
uncertainty for the tendon sample. The uncertainty is calculated
from Lu and represents the standard deviations of the linear
retardance. As previously reported,11 a high concentration of
collagen results in a high retardance, mainly due to the form
birefringence induced by the shape of the fibers in the effective

Fig. 4 The normalized, cropped, and resampled MMI for 30 deg (a)
and −30 deg (b), with the intensity image (gray scale image) overlaid
the first element in the Mueller matrix as it is 1 in every pixel.
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medium. The mentioned study looked at the collagen fibers
present in cartilage, which is less ordered than the collagen
fibers in tendons. Being less ordered means that the structure
should be modeled as a multilayered effective medium (requir-
ing a layered decomposition of the Mueller matrix) with one
orientation for every layer. The higher degree of order in the
tendon makes the presented results more clear, and thus avoids
the need to consider the sample as a multilayered system.

Figure 5(b) shows the uncertainty image (standard deviation)
of the linear retardance, which is seen to be above the random
noise level in some areas. As the uncertainty in this figure is a
result of depolarization effects, it is useful for the analysis of the
sample. Previous evaluation of the uncertainty has been limited
to the knowledge of the measurement error found from the cal-
ibration. Specifically, the error is found from the measurement
of air which, here, results in a measurement error on the order of
a few percents. The uncertainty image supplies additional infor-
mation about the sample. It gives a measure for the uncertainty
induced by randomness in the sample. This randomness can, for
instance, be the fiber orientations and/or sizes, as well as depo-
larizing effects like multiple scattering and integration over
several polarization states in one pixel. This is confirmed by
comparing the uncertainty measurement to the depolarization
shown in Fig. 6(a).

3.2 Directional Imaging

From the retardance found in the decomposition, it is not only
possible to calculate the linear retardance, but also the direction
of the fast axis of the birefringence. This latter property can,
together with the correct effective medium model, be used to
find the direction of the collagen fibers as explained in Sec. 2.

The directional image and the SHG image for the tendon
sample are shown in Fig. 7. As the 3-D directional image in

Fig. 7(a) shows, the fibers are mostly in the plane, as expected
due to the direction of the cryostat cut. The calculated in-plane
directions [black lines in Figs. 7(a) and 7(b)] correspond very
well with the apparent directions in the SHG images [Figs. 7(c)
and 7(e)]. There are some areas that are clearly out-of-plane [red
areas in the 3-D directional image, Fig. 7(a)], which in the SHG
images are either dark or show some weak structure. The latter
can be explained by the SHG signal generation. When consid-
ering SHG signal generation, fiber orientations are important, as
a fiber in-plane has a much larger cross section for generating
SHG, compared to one out-of-plane. This means that the darker
parts of the image in Fig. 7(c) probably are due to an out-of-
plane orientation of the fibers, in accordance with the 3-D direc-
tional image. Figure 7(d) shows an overlay of the out-of-plane
part of Fig. 7(a) and the SHG image in Fig. 7(c).

The lower right of the sample shows an offset between the
directional image and the SHG. There could be several reasons
for this offset, one being that the size of the fibers is around the
upper limit of the validity of the effective medium model, which
is ∼λ (here λ ¼ 940 nm). In this study, it was necessary that the
fibers were sufficiently large to visualize with SHG, which is
limited by the diffraction limit. It is expected that the MMI
results will be superior for smaller fibers.

Another contributing factor to the error in the direction is the
depolarization induced uncertainties in the direction of the fast
axis. The calculation of this uncertainty was not given by Kumar
et al.12 as it cannot be calculated from Lu in the same way as
the uncertainty in the other parameters. As a solution to this, we
have calculated the uncertainty, shown in Fig. 6(b), using the
standard method for propagation of errors, here, the uncertain-
ties found in Lu. If the propagation is made at an incidence angle
of 0 deg, the resulting uncertainty in the angle of the fast axis is
given by

σθ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½Luð2;4Þ�2
4½Lmð3;4Þ�2

n
1þ½Lmð2;4Þ�2

½Lmð3;4Þ�2
o
2
þ ½Luð3;4Þ�2½Lmð2;4Þ�2
4½Lmð3;4Þ�4

n
1þ½Lmð2;4Þ�2

½Lmð3;4Þ�2
o
2

vuut :

(5)

The reasons for choosing to study the uncertainty at an inci-
dence angle of 0 deg, instead of�30 deg, are due to the approx-
imations used to derive the propagation uncertainty. Propagation
of uncertainties uses only the first derivatives and not the higher
orders, which for Eq. (4) might be an incorrect approximation.
The uncertainty at 0 and �30 deg is expected to be similar,
although the exact relation is hard to predict. A prediction is
hard because there could be a reduction in the uncertainty as
a result of the increase in the number of data points (two
data sets), although the increase in apparent thickness could
on the other hand increase the uncertainty. As a consequence,
the 0 deg uncertainty will be used as a good indication for
the �30 deg uncertainty.

By studying Fig. 6(b), it is possible to see that the uncertainty
in the directions is larger in the lower right part of the sample
compared to the upper, which is in accordance with the compari-
son between the 3-D image and the SHG image, shown in Fig. 7.
In addition, by comparing with Fig. 6(a), it is seen that they cor-
relate well showing that the uncertainty is a result of the depo-
larization. As the depolarization is generated by, among others,

(a) (b)

Fig. 5 Linear retardance (a) and the uncertainty (b) for the tendon
sample at normal incidence. Both images are in degrees.

(a) (b)

Fig. 6 (a) Depolarization at normal incidence for the tendon sample.
The color scale is from 0 for fully polarized to 1 for fully depolarized.
(b) Uncertainty in the direction of the slow axis for normal incidence.
The color scale is in degrees.
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the randomness of the fiber orientations, it offers a better under-
standing of the sample structure.

The out-of-plane directions in Fig. 7 are seen to correspond
well with the same areas in the SHG image. Additionally, by
studying Fig. 7(a) and the zoomed in views in Figs. 7(b)
and 7(e), it is possible to see that the oscillating structure
(the oscillation between green and blue) along the fibers is vis-
ible both in the SHG image and the out-of-plane direction
image. Both of these results confirm that the 3-D directional
imaging finds the correct directions.

It is worth noting that the method described above makes it
possible to find the fiber directions using MMI, even though the
resolution in our system is much poorer than for SHG. Another
notable property is that this method only requires the sample to
be birefringent, as the calculation is based on the direction of
linear retardance. Linear retardance is present in a range of dif-
ferent biologicals,9 colloidals,27 and solid matter systems,23

extending the possible applications for the method.

4 Conclusion
We have presented a method for determining the 3-D direction
of collagen fibers embedded in biological tissue from MMIs.
The resulting images are shown to be in good agreement for
a tendon sample when compared to SHG images. In particular,
it is possible to see oscillating structures in the collagen orien-
tation, as well as the out-of-plane directions of the fibers. The
possibility to see effects from collagen fibers below the diffrac-
tion limit could be an important input to the understanding of
how the collagen framework looks. Additionally, the use of
the differential decomposition instead of the, until now, most

common polar decomposition has provided a good insight
into the uncertainties in the calculation of the physical
properties.
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