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Abstract. Noninvasive treatments are increasingly being used for the management of basal cell carcinoma
(BCC), the predominant type of nonmelanoma skin cancer, making the development of noninvasive diagnostic
technologies highly relevant for clinical practice. Laser-induced fluorescence (LIF) spectroscopy emerges as
an attractive diagnostic technique for the diagnosis and demarcation of BCC due to its noninvasiveness,
high sensitivity, real-time measurements, and user-friendly methodology. LIF relies on the principle of differential
fluorescence emission between abnormal and normal skin tissues (ex vivo and in vivo) in response to excitation
by a specific wavelength of light. Fluorescence originates either from endogenous fluorophores (autofluores-
cence) or from exogenously administered fluorophores (photosensitizers). The measured optical properties
and fluorophore contributions of normal skin and BCC are significantly different from each other and correlate
well with tissue histology. Photodynamic diagnosis (PDD) is based on the visualization of a fluorophore, with
the ability to accumulate in tumor tissue, by the use of fluorescence imaging. PDD may be used for detecting
subclinical disease, determining surgical margins, and following-up patients for residual tumor or BCC relapse. In
this review, we will present the basic principles of LIF and discuss its uses for the diagnosis, management, and
follow-up of BCC. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.19.3.030901]
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1 Introduction
Nonmelanoma skin cancer (NMSC) is a term used to encompass
skin cancer forms other than malignant melanoma, and it most
commonly refers to squamous cell carcinoma (SCC) and basal
cell carcinoma (BCC). BCC is the most common malignancy in
humans and its incidence is on the rise with considerable public
health implications.1

The optimal management of skin cancer relies on early and
accurate diagnosis, appropriate treatment, and monitoring for
potential relapse. Noninvasive treatments are increasingly being
used for the management of BCC. Recent advances in the
molecular pathophysiology of BCC have opened the way for
new exciting targeted therapies, including oral hedgehog signal-
ling inhibitors, in order to avoid the need of extensive, repetitive,
or mutilating surgery.2 A plethora of new developments in opti-
cal imaging techniques is available for the noninvasive diagnosis
(photodiagnosis) of NMSC including fluorescence, diffuse
reflectance, Raman and near-infrared spectroscopies, optical
coherence tomography, and multiphoton and confocal laser
scanning microscopies.3,4 More interestingly, optical methods are
also increasingly being used to monitor clearance of skin cancer
after traditional treatments and screen for early relapse detection.

In this review, we will present the basic principles of laser-
induced fluorescence (LIF) for the management of BCC, and we
will discuss its use in early and advanced BCC diagnosis, the

use in determining surgical margins, and the ability to detect
residual cancer or tumor relapse.

2 LIF: Basic Principles Made Simple
In LIF, nonionizing radiation is delivered and collected with
optical fibers that are placed in contact with the skin surface.

The excitation light passes through and explores the tissue
under the probe noninvasively, and fluorescence light is emitted
back to the surface where it is collected by the fibers at a fixed
distance away from the source fiber. These optical measure-
ments depend on the morphology, function and, biochemical
composition of the tissue. They are also influenced by the fluo-
rophore distribution, and by the tissue’s optical properties, espe-
cially at the maximum imaging depth. Quantitative optical
spectroscopy techniques constitute an objective diagnostic
methodology, as they do not rely on the operator’s experience.

Fluorescence emission from a skin lesion is excited with an
irradiation source including coherent or incoherent broadband
lights, e.g., laser, light-emitting diode (LED), a xenon lamp,
or a halogen lamp. Fluorescence originates either from endog-
enous fluorophores (autofluorescence) or from exogenously
administered fluorophores (photosensitizers).

Skin tissue autofluorescence, by near-ultraviolet (UV) and
blue excitations, originates from endogenous fluorophores such
as reduced nicotinamide adenine dinucleotide (NADH),5–9 colla-
gen, elastin,9,10 and tryptophan.8 Light-induced autofluorescence
spectroscopy with laser source can be used to detect and quantify
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differences between healthy tissue and pathological lesions
in vivo, in real time, with easy-to-use methodology for measure-
ments, lack of need for contrast agents, precision, selectivity, and
specificity (Table 1).11–13 The use of lasers, instead of incoherent
light sources in autofluorescence spectroscopy, has the advantage
of using an exact wavelength and can deliver the excitation light
with fibers to the selected body site, without significant loss of
light power, and derive, in real time, medical information from
naturally occurring endogenous fluorophores, without adding
external (exogenous) fluorescent markers.14 Tissue fluorescence
can be improved by the application of exogenous fluorophores
(photosensitizers) with selective absorption and fluorescence
properties, which preferentially accumulate in cancer cells and,
after the irradiation with light of specific wavelength, emit char-
acteristic fluorescence delineating the site of NMSC.15 Clinical
studies have demonstrated that photosensitizer-induced skin fluo-
rescence has significant diagnostic advantages compared with
skin autofluorescence due to the increase in the fluorescence
intensity by using exogenous fluorophores accumulating in the
malignancy and the consequent better demarcation between
the malignant and normal tissues (Table 2).

The use of exogenous fluorophores has been integrated in the
clinical practice with the topical photodynamic therapy (PDT).
Topical 5-aminolevulinic acid (ALA) and methyl aminolevu-
linic acid (MAL) are the most commonly used topical agents
in PDT, while second-generation photosensitizers are under
investigation. MAL-PDT has been approved by the European
Medicines Agency as a treatment for actinic keratoses on the
face and scalp when other therapies are considered less appro-
priate, for superficial and/or nodular BCC unsuitable for other
available therapies, such as lesions on the mid-face or ears,
lesions on severely sun damaged skin, large lesions, or recurrent
lesions, and for SCC in situ (Bowen’s disease) when surgical
excision is considered less appropriate. PDT is increasingly
being investigated in dermatology for a wide range of

inflammatory and infectious cutaneous diseases.16 It is based
on the selective destruction of cancerous or affected cells with-
out damaging the surrounding healthy tissue by combining three
elements: oxygen, light, and a photosensitizing agent.

Light sources for PDT are coherent and incoherent broad-
band lights. Lasers as coherent sources are metal vapor lasers
(copper and gold vapors), dye-pumped tunable (Arþ-dye and
Nd:YAG-dye) lasers, and diode lasers. Their advantages include
the possibility to treat the lesion without affecting the surround-
ing healthy skin, the short illumination time without heating the
surrounding tissue, and the use of monochromatic light.17–22

Laser’s capacity to emit high-flux monochromatic light and
its focal precision, allows for small, demarcated lesions to be
selectively treated within a short-time interval.19,21,22 The advan-
tage of dye lasers is the possibility to change the dye and thus the
emission wavelength, making it possible to use the same laser in
combination with various photosensitizers. Because of their large
beam cross-section (typically 1 to 3 cm2), the metal vapor lasers
can be applied for PDTof large lesions, such as those occurring in
the skin, without the need to use a beam expander and the align-
ment with the dye module is not critical as for argon lasers.23

Diode lasers, besides having a convenient size, are also reliable,
cheaper, and easy to use.24 Incoherent light sources are fluores-
cent lamps, LEDs, filtered xenon arc, and metal halide light. LED
are broadband sources, cheaper, more compact, and convenient
for therapy of wider areas, larger or multiple tumors, and field
cancerization therapy.19,20,24–27 Photodynamic diagnosis (PDD)
is a method for tumor demarcation that is based on the visuali-
zation of the fluorophore accumulating in the tumor tissue, by the
use of fluorescence imaging.

3 Laser-Induced Autofluorescence
for the Diagnosis of BCC

Noninvasive treatments are increasingly being used for the man-
agement of BCC, the predominant type of NMSC, making the

Table 1 Laser-induced fluorescence (LIF): pros and cons.

Pros Cons

Noninvasiveness: not every clinically suspect NMSC lesion turns
out to be cancerous

No need for a lesional biopsy, i.e., an invasive method, which requires the evaluation
from a trained dermatopathologist, and the result may take some days to be available or
may be inconclusive (due to an error of biopsy sampling or tissue mishandling)

Malignant tissues normally exhibit weak fluorescence
with small features that are difficult to observe

High sensitivity The multitude and the variability of clinical forms and
fluorescence properties of benign and malignant skin
lesions limit its specificity

User-friendly methodology The interpretation of results may depend on patient-
related characteristics such as skin, age, and
phototype

Real-time measurements

Use for photodynamic diagnosis (PDD) of BCC

Fluorescence diagnosis allows an accurate assessment of BCC borders to
determine excision margins prior to surgical removal

LIF may be used to follow up after PDT in deciding whether repetition of
the treatment is necessary when the response to therapy is difficult to ascertain
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development of noninvasive diagnostic technologies highly rel-
evant for clinical practice. Lesional biopsy and histopathologic
evaluation (Fig. 1) have been the gold standard for the diagnosis
of NMSC and the differential diagnosis of SCC and BCC.
However, the biopsy is an invasive method; it requires histopa-
thologic evaluation from a trained dermatopathologist, and the
result may take some days to be available or the result may not
be conclusive due to an error of biopsy sampling or mishandling
of the tissue. Also, not every clinically suspect NMSC lesion
turns out to be cancerous. LIF spectroscopy is a very attractive
diagnostic technique for early diagnosis and demarcation of
basal skin carcinoma due to its high sensitivity, user-friendly
methodology for real-time measurements, and noninvasiveness.

Skin tissues under excitation with UV light (in the spectral
region 260 to 400 nm) demonstrate differences in their bio-
chemical content and metabolic state, with higher autofluores-
cence intensities in healthy skin compared with BCC, allowing
diagnostic differentiation. In malignant tissue, fluorescence
spectral changes are due to a decrease in collagen and elastin
and a decrease in NADH levels, mainly due to the shifted
equilibrium between the highly fluorescent NADH and the

less-fluorescent oxidized-form NADþ in the malignant tissue.
In the spectral region of 500 to 600 nm, the reduction of the
fluorescence is attributed to hemoglobin absorption.28–32

Similar autofluorescence patterns have been shown for both
superficial and nodular BCCs.28

The feasibility of autofluorescence spectroscopy for skin
cancer detection using excitation at 375 nm has been investi-
gated. No significant differences in the shape of fluorescent
spectra or in fluorescence intensity values between tumor and
normal skin has been found.33 Autofluorescence spectra from
BCC lesions, excited with HeCd laser at 442 nm, showed
decreased fluorescence intensity as compared with the surround-
ing normal skin, a trend that has also been confirmed by in vivo
autofluorescence imaging of BCC lesions.34

More promising results reported higher fluorescence inten-
sity in nonmelanoma tumors (BCC and SCC) compared with
healthy skin using UV excitation at 295 nm for the tryptophan
residues, which could be a result of epidermal thickening in
tumor site. In contrast, the fluorescence intensity associated
with collagen cross-links was lower in tumors, because of the
erosion and degradation of the connective tissue after excitation

Table 2 Differences in fluorescence between BCC and healthy skin depending on excitation wavelengths and autofluorophores.

Laser/light source, excitation
wavelength Autofluorophores

Differences in fluorescence between
BCC and healthy skin tissue References

Nitrogen laser, 337 nm Collagen reduced
nicotinamide adenine
dinucleotide (NADH)

BCC: lower fluorescence intensity than healthy skin 3, 38

LED, 365, 385, and 405 nm Endogenous porphyrins BCC: lower fluorescence intensities than healthy skin 8

Appearance of porphyrin is typically pronounced in
advanced sate of BCC

Dye laser pumped by a nitrogen
laser, 365 nm

NADH collagen keratin No significant differences between the fluorescence
of control sites and nonmelanoma skin tumors

11, 33

Low-pressure mercury arc lamp,
365, 405,436, 546, and 577 nm

HeCd laser, 442 nm BCC: lower fluorescence signal 34

125 W xenon arc lamp, 295 nm Epidermal tryptophan
residues

BCC: higher fluorescence intensity compared with
normal skin

9, 35

Dermal collagen cross-links The measured fluorescence intensity was reduced in BCC
relative to normal skin

9, 35

Xenon lamp (75 W), 370 nm NADH, collagen, and
elastin

BCC: lower autofluorescence than in surrounding
normal skin

36

PpIX BCC: higher PpIX fluorescence than in surrounding
normal skin

Nitrogen/dye laser, 410 nm Collagen elastin crosslinks BCC: lower fluorescence emission than in normal skin 37

A frequency tripled ultrafast Yb:
glass fiber laser, 355 nm

There is no clear trend in the lifetime shifts of BCC observed,
with 355-nm excitation, while the fluorescence lifetime of
BCC is consistently lower than that of the surrounding
peri-lesional skin, under 445-nm excitation

39

Diode laser, 445 nm No significant difference in the mean emission wavelength
between BCC and healthy skin for either excitation
wavelengths
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with 350 nm.35 Similar results have been shown with lower
fluorescence signal in BCC compared with normal skin.36

Fluorescence spectroscopy with a nitrogen/dye laser tuned at
410-nm excitation has been used for the detection of BCC
in vivo.37 A correlation was found between the cancer detection
diagnostic accuracy and the skin phototype in 49 patients. The
diagnostic accuracy for tumor detection was lower in patients
with darker skin types, with a diagnostic accuracy of 93%
for phototype I, while it was 78% for phototype III.

Spectroscopic assessments of autofluorescence during
experiments on unstained human skin samples (BCC, SCC,
and healthy tissues) were carried out with a homemade nitrogen
laser (λ ¼ 337 nm).37 The fluorescence intensity of malignant
tumor was weaker than that of the normal tissue, especially
in the skin tissue with SCC, which showed a larger displacement
in the red spectrum. Moreover, there were significant differences
in the spectral signatures between BCC and SCC, which facili-
tated their differential diagnosis.

Another laser-induced spectroscopic method used in skin tis-
sues is the investigation of the fluorescence lifetime of endog-
enous fluorophores. Time-resolved autofluorescence spectra of
BCC have been studied with in vivo measurements prior to sur-
gical excision.38 This method is relatively independent of the
factors of fluorophore concentration and signal attenuation by
the sample and has been shown that both ex vivo and in vivo
effectively differentiate between healthy and affected tissues
in various types of skin cancer.38–40 The paired difference in
fluorescence lifetime in each spectral channel between healthy

skin and BCC has been investigated. The fluorescence lifetime
did not vary significantly with emission wavelength over the
spectral range containing the peak fluorescent signal (425 to
540 nm for UV excitation and 475 to 550 nm for blue excita-
tion). There was no significant difference in the mean emission
wavelength between healthy skin and BCC for either excitation
wavelengths. There was no clear trend in the lifetime shifts in
BCC observed with UV excitation; however, for blue light
excitation (445 nm), the fluorescence lifetime in BCC was
consistently lower than that of the surrounding nonaffected
peri-lesional skin (i.e., tlesion < tnormal).

38

Tissue fluorescence analysis with a 442-nm HeCd laser light
was used to illuminate and excite unstained skin tissue sections
in order to demarcate the normal and BCC areas.41 The fluores-
cence images of the samples were recorded by a CCD camera
though a microscope. In the cancerous regions, the epidermis
showed a very weak fluorescence signal, while the stratum
corneum exhibited fluorescence emissions peaking at about
510 nm. In the dermis, the basal cell islands and a band of sur-
rounding areas showed a very weak fluorescence signal, while
distal dermis above and below the basal cell island showed
a greater fluorescence signal with different spectral shapes.

Wide-field false-color images of fluorescence lifetimes of
unstained biopsies of 25 BCCs were studied, following excita-
tion of autofluorescence with a 355-nm pulsed UV laser to
clearly discriminate areas of BCC from the surrounding unin-
volved skin and to allow localization and delineation of the
malignant areas.39 The maximum visual information could be
obtained by merging the lifetime and intensity images to pro-
duce intensity-weighted lifetime maps. The resultant image
combined two complementary dimensions of information and
allowed the lifetime information to be related to the anatomical
intensity image without loss of information from either
parameters.39

The excitation wavelengths, autofluorophores, and
differences in fluorescence between healthy and cancer tissues
are summarized in Table 2.

4 PDD for BCC
LIF by exogenous fluorophore agents has been used in the con-
text of PDT as a diagnostic method. PDD is a method for tumor
demarcation that is based on the visualization of a fluorophore,
with the ability to accumulate in tumor tissue, by the use of fluo-
rescence imaging. ALA and MAL are nonfluorescent precursors
of fluorescent protoporphyrin IX (PpIX). Visualization of PpIX
represents the basis of the PDD for skin tumors, and it may be
used with fluorescence imaging systems. Image-processing
methods widely used for demarcation of BCC after ALA-
induced PpIX include the ratio imaging method and thresh-
old-based imaging.42 Ratio imaging method uses the division
of either autofluorescence intensity versus PpIX fluorescence
intensity after ALA application, or the fluorescence intensity
of tumor marked area versus the ALA-treated normal skin
area, or the fluorescence intensities between red over other spec-
tral areas after administration of ALA-induced PpIX.42–44

Threshold imaging method uses either a total emission photon
count in fluorescence spectra as the discriminating index where
a threshold value is calculated to separate normal tissue indices
from indices of cancer tissues or an intensity ratio between nor-
mal and control skin tissues’ fluorescence spectra.37,42 This
threshold divides the signal intensity scale into two zones:
normal and cancer zones. The optimal threshold value, however,

Fig. 1 Histopathologic images of (a) basal cell carcinoma (BCC) and
(b) squamous cell carcinoma (SCC).
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depends on the intensity of the acquired fluorescence image.42

Those two methods can reduce geometric effects, influence
from the incident light distribution, and provide a quantitative
measurement for correlation with subsequent histological
assessments, although when intensity of the fluorescence is fluc-
tuating, the threshold-based methods introduce errors in tumor
demarcation.42,44

Five superficial and 10 nodular BCCs in 15 patients were
studied with fluorescence measurements prior to the topical
application of ALA, 2-, 4-, and 6-h post-ALA application,
immediately post-PDT (60 J cm−2 at 635 nm), and 2 h after
treatment. Superficial BCC showed a maximum PpIX fluores-
cence 6 h post ALA application, whereas in nodular BCC the
maximum occurred 2 to 4 h after the application.45 This variabil-
ity of the fluorescence intensity may be due to the duration of the
ALA/MAL application time, the concentration of the ALA/
MAL cream, and/or the intensity of the illuminating light.
There are various approaches to achieve robust tumor demarca-
tion with derivation of novel unsupervised image segmentation
methods that are not dependent on the variability of the fluores-
cence intensity, and LIF may be used for tumor demarcation,
i.e., determination of the tumor boundaries.42

Fluorescence diagnosis allows an accurate assessment of
BCC borders to determine excision margins prior to surgical
removal. LIF with a diode laser at 633 nm was used to monitor
the buildup of the ALA/methyl-esterified δ-ALA (ALA-ME)-
induced PpIX in BCCs.46 A clear demarcation between the
lesion and the normal skin was detected with LIF for both
PpIX precursors before PDT treatment.46

Pharmacokinetic studies investigated the borders of tumor
growth and the intensity of accumulation of radachlorin in
32 patients with BCC and the intensity of accumulation of
Photosense in 81 patients.47 The discrimination between normal
and malignant tissues was done by spectral-fluorescent complex
and spectra analyzer LESA-01 (He-Ne-laser, λ ¼ 633 nm).
There was fluorescence from all tumors, and additional fluores-
cence zones were found, while a cytological confirmation of
BCC was available in most cases. Two-dimensional images
of fluorescence signs of radachlorin in normal skin were detect-
able up to 5 days after injection.

In an attempt to increase this PpIX-based fluorescence
tissue contrast in normal skin in seven patients with nodular
BCC, a multichannel fluorescence imaging system was devel-
oped to collect PpIX (635 nm), autofluorescence (470 and
600 nm), and photobleached products (670 nm) emission
from both cancerous lesions and surrounding normal skin
before and after PDT, after excitation with a small sealed-off
nitrogen laser pumping a dye laser emitting at 405 nm.48,49 The
photosensitizer’s fluorescence was monitored to distinguish
normal skin from malignant lesions, as well as to track the
accumulation of photodegraded products during PDT. The
malignant region 1 week after PDT was limited to the area
delineated by the multicolor fluorescence imaging system,
suggesting that the tumor did not, to a large extent, infiltrate
the surrounding tissue.

Optical spectroscopy may noninvasively monitor disease
progression in real time based on its ability to collect optical
parameters that correspond to distinct morphology, function,
and biochemical composition of the tissue, which may change
over time.50 LIF may be used to follow up after PDT in deciding
whether the repetition of the treatment is necessary when the
response to therapy is difficult to ascertain.

5 Optimizing Results: Processing and
Interpretation of Spectral Data

In general, the LIF spectra of normal and malignant tissues
exhibit certain differences at several wavelengths. However, it
is difficult to observe subtle but consistent differences in the
raw data, because these differences are often masked by large
variations in intensity. Intrapatient variability in the fluorescence
intensity response is typically large and affects the diagnostic
accuracy.51,52 In addition, the autofluorescence spectra of malig-
nant tissues have usually very low intensity of fluorescence radi-
ation emitted by endogenous fluorophores, above excitation of
300 nm.3,15,34,36,53

Fluorescence is a highly promising and attractive technique
for the diagnosis and demarcation of BCC. However, the multi-
tude and the variability of clinical forms and fluorescence
properties of benign and malignant skin lesions pose issues
that limit its specificity. This is also the case with BCC that
may present as nodular, superficial, morpheic, cystic, or ulcer-
ative type.13 Also, the interpretation of results may depend on
patient-related characteristics such as skin age and photo-
type.54,55 In order to account for intrapatient and intralesion
variations in the evaluation of the results from LIF spectra,
mathematical models and specific statistical analysis techniques
have been applied. Some researchers focused on the spectral
profile of each spectrum containing specific characteristics
that are more consistent. These have been amplified and com-
pared by the use of effective diagnostic algorithms with some
form of normalization. This is especially important for malig-
nant tissues which normally exhibit weak fluorescence with
small features that are difficult to observe.56 Nevertheless, the
simple normalization, namely, the division with respect to the
integrated intensity of the entire spectrum, is redundant and
inefficient.52,57 Fluorescence spectra of NMSC37 underwent
statistical process using total emission photon count as the dis-
criminating index. A threshold value was calculated to separate
normal tissue indices from indices of cancer tissues. The clas-
sification accuracy of each data point was determined using the
threshold value.

Rajaram et al.50 fit the observed spectra to models and were
able to extract optical parameters of the tissue such as the
absorption and scattering coefficients, hemoglobin concen-
tration, and the relative contributions of the constituent
fluorophores. Using these parameters in a leave-one-out cross-
validation, they were then able to diagnose BCCs with a sen-
sitivity of 94% and a specificity of 89%.50

Various data analysis methods have been devised and
employed to differentiate between fluorescence spectra of nor-
mal and cancerous tissues for the purpose of cancer diagnosis.
There are several methods for the analysis of autofluorescence
tissue spectra. Evaluated methods include principle peak
ratio, differential normalized fluorescence (DNF), bivariate
DNF (2-D-DNF), principal component analysis, and correlation
coefficient mapping.56–64

Among these methods, DNF is a simple, straightforward
method and provides excellent classification.56 In the DNF
analysis, the diagnostic features are extracted from the differ-
ence between the averaged cancerous and averaged normal
tissue spectra. Thus, in this analysis,53,65 first, a normalization
process is utilized in order to amplify and compare the spectral
characteristics of normal and malignant tissues. The LIF spectra
of normal and tumor tissues can be normalized to 1, at a par-
ticular wavelength, where the normalization wavelengths can
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be chosen at the point corresponding to maximum fluorescence
intensity. The resulting normalized intensity for each spectrum
has a dimensionless value and consequently becomes less de-
pendent on the intensity factor. In addition, a baseline curve,
as the mean average of normalized fluorescence spectra from
a reference set of normal tissue samples, can be determined,
due to the fact that the normalized spectra of normal tissues
have similar spectral profiles. Finally, a DNF curve for a specific
tissue sample can calculated as the difference between the
normalized fluorescence spectrum and the baseline curve. An
excellent feature of the DNF method is its efficiency in
extracting the diagnostic index. The DNF index, which is
the spectral intensity of each tissue spectrum at the feature wave-
length subtracted by the averaged normal tissue spectrum at
the same wavelength, serves as the diagnostic index in cancer
detection. The accuracy of the DNFmethod in a proper discrimi-
nation of BCC and normal skin tissues can be specified by
calculating the percentage of correctly classified spectra, accord-
ing to histopathology results.53 The advantages of the DNF
method, especially how to best perform cancer diagnosis
based on the rich information in the extracted spectral features,
have not been fully exploited. In DNF analysis of tissue spectra,
usually two or more spectral features become apparent. In prac-
tice, either one of them was used in diagnosis or two spectral
features were used independently to yield their own results.
The sensitivity and specificity obtained for LIF in skin malig-
nancies by DNF depend on the selected wavelength in the peak-
near areas and can reach values from 80% to 98%,64 whereas in
other tissue malignancies, like tissue pathologies of the esopha-
gus, authors reported a sensitivity of 100% and a specificity
of 98%.10

6 Conclusions and Future Perspectives
Laser technology based on optical spectroscopy is a diagnostic
tool for BCC, emerging to be integrated in the clinical setting.
LIF spectroscopy is a very attractive diagnostic technique for
early diagnosis and demarcation of BCC due to its high sensi-
tivity, user-friendly methodology for real-time measurements,
and noninvasiveness. The measured optical properties and fluo-
rophore contributions of normal skin and NMSCs are signifi-
cantly different from each other and correlate well with tissue
histology (Table 3).

In patients with BCC, PDD may be used for detecting sub-
clinical disease and determining surgical margins and following
up for residual tumor or BCC relapse. Further research may
investigate new photosensitizers and laser sources for the accu-
rate diagnosis and follow-up monitoring of BCC in clinical
practice.

The combination of optical techniques such as LIF spectros-
copy and diffuse optical spectroscopy offer promise as a useful
multimodal approach with considerable superiority for differen-
tiating between normal and malignant tissues than each method
alone.
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