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Abstract. We propose a two-dimensional (2-D) space-scale analysis of fringe patterns collected from a diffrac-
tion phase microscope based on the 2-D Morlet wavelet transform. We show that the adaptation of a ridge detec-
tion method with anisotropic 2-D Morlet mother wavelets is more efficient for analyzing cellular and high
refractive index contrast objects than Fourier filtering methods since it can separate phase from intensity
modulations. We compare the performance of this ridge detection method on theoretical and experimental
images of polymer microbeads and experimental images collected from living myoblasts. © The Authors.
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1 Introduction
During the past century, the attraction of biophysicists for
observing and characterizing living matter at cellular and
subcellular levels has been the prime mover for developing
sophisticated microscopic devices. Even if the concept of
diffraction-limited imaging and interferometry principles1 was
established for a long time, the actual development of micro-
scopic devices based on interferometric contrast was achieved
in the first part of the 20th century by Zernike2 and
Nomarski and Weill3 and further developed by Gabor,4 who pio-
neered the principle of holographic microscopy. Retrieving a
phase information from the light transmitted through transparent
objects, like living cells, has benefited from the development of
coherent sources, optoelectronic polarizing tools, and fast and
sensible cameras in the second part of the 20th century. It is
nowadays quite straightforward to design a compact, highly
sensitive phase microscope that can follow in real time the
dynamics of cells. In the last decade, different teams5–13 have
played a major role in disseminating the concepts of quantitative
phase microscopy (QPM) among the optical and biophysical
community. They have applied this technique to the real-time
characterization of cellular dynamics and their alteration in
cases of diseases.6,13–16

Other approaches that do not rely on interferometric princi-
ples have also been proposed to circumvent the constraint of
high degree of coherence. They rather start from a principle
of electromagnetic energy conservation, written as the diver-
gence of the wave flow vector being equal to zero.17–21 The

technique of transport of intensity is valid only for weak defocus
and reduces to a differential equation for field propagation.22,23

This method is interesting for partially coherent illumination
such as given by broadband polychromatic sources. For thick
samples, three-dimensional computation is required.24

The principle of diffraction phase microscopy (DPM) intro-
duced by Popescu and coauthors25–27 relies on both off-axis and
common-path principles in combination with fast acquisition
rate and high temporal sensitivity. The interference patterns pro-
duced by a DPM system correspond to the superimposition of a
simple carrier fringe pattern, given, for instance, by a diffraction
grating, with the image of the object through the objective lens.
To retrieve the phase image associated with the sample object,
different methods have been proposed, including Hilbert trans-
form followed by phase unwrapping,28,29 derivative methods,30

and Fourier filtering to avoid unwrapping problems.31 All these
phase retrieval algorithms rely on the assumption that the object
phase does not alter the fringe carrier pattern, allowing a quasi
one-dimensional analysis of interference patterns. To improve
this approach and delineate more precisely the validity of this
assumption, we propose here to generalize Fourier filtering
methods using a two-dimensional (2-D) space-scale analysis
based on Morlet wavelet transform.32 We first introduce the
DPM principle and illustrate it on simple physical objects,
such as micron-size particles. We then describe the space-
scale analysis and the possibility to measure directly the
phase of the interference pattern from the detection of the ridges
of the Morlet wavelet transform of the original image. Finally,
we illustrate this method on living myoblasts, showing that both
the modulus and the phase of the interference pattern can be
retrieved.*Address all correspondence to: Françoise Argoul, E-mail: fargoul@ens-lyon.fr
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2 Modeling the QPM System Response and
Its Space-Scale Analysis

Popescu and coauthors25–27 designed an elegant QPM by intro-
ducing an amplitude diffraction grating in the image plane of an
inverted microscope to generate multiple diffraction orders
containing the full spatial information about the transparent
object crossed by the light beam. This QPM setup, inspired
from this principle, was assembled in our laboratory. It is
described in the Sec. 7 and illustrated in Fig. 1. After the trans-
mission grating G, the zeroth- (U0) and first-order (U1) compo-
nents of the diffracted beams are separated in the conjugated
Fourier plane of the image plane of the microscope. Then,
the zeroth order is low-pass filtered with a spatial filter and
recombined with the first order, thanks to a second Fourier
lens L2 to give a spatially modulated interference image
Iðx; yÞ similar to the one shown in Fig. 2(a), captured from
a glass coverslip covered by a scratched polymer layer. The
vertical fringes of this image have a frequency fg that is related
to the grating period; they superimpose to the object phase
image. We propose here a method based on a 2-D continuous
wavelet transform (CWT) to retrieve the object phase informa-
tion from this type of image.

The intensity map Iðx; yÞ recorded on the CMOS camera is
directly proportional to the modulus square of the electric field
at this point.

Ið~xÞ ¼ jU0 þ U1j2ð~xÞ
¼ ½jU0j2 þ jU1j2 þ U0U�

1 þ U�
0U1�ð~xÞ: (1)

If fg is the spatial frequency of the grating, the phase differ-
ence betweenU1 andU0 includes both the grating and the object
phase information: Φð~xÞ ¼ fgxþ ϕð~xÞ, with ~x ¼ ðx; yÞ. This
gives a synthetic form of Ið~xÞ.

Ið~xÞ ¼ Pð~xÞ þQð~xÞ cos½fgxþ ϕð~xÞ�: (2)

ϕð~xÞ is the phase due to the object transmission at location ~x.
Pð~xÞ and Qð~xÞ are real valued; they correspond, respectively, to
the background and modulation intensities at location ~x. One
common assumption is that Pð~xÞ and Qð~xÞ vary much slower
than ϕð~xÞ. The local frequencies of the signal U can be

computed in both directions x and y from the partial derivatives
of the phase ϕð~xÞ.

fxð~xÞ ¼ fg þ ∂½ϕð~xÞ�∕∂x; (3)

fyð~xÞ ¼ ∂½ϕð~xÞ�∕∂y: (4)

These equations can be rewritten in the vectorial form.

�
fx
fy

�
¼ ~∇½fgxþ ϕð~xÞ�: (5)

Equation (3) shows that the local frequency in x may deviate
from the carrier frequency fg depending on the strength of the
phase derivative with respect to x, the steeper ϕð~xÞ, the larger
this deviation.

By a simple computation, assuming that we are characteriz-
ing a homogeneous object of thickness d and index n imbedded
in a continuum medium of index n0, we can approximate the
optical path change Δpo at the center of the object with the rela-
tion Δpo ∼ dðn − n0Þ and Δϕ ¼ 2πΔpo∕λ. Assuming that the
microscope can achieve a 10−2 rad phase sensitivity, this gives
the possibility to detect objects of thickness 10−2λ∕ð2πΔnÞ,
which for a refractive index drop of 0.2 and wavelength
λ ¼ 532 nm gives a sensitivity to objects with thickness
down to 4 nm, along the optical axis.

The practical treatment of interference fringe patterns often
assumes that the background and the fringe modulation intensities
as well as the phase vary slowly across the fringe pattern.33,34 This
may no longer be true when the fringe pattern is produced by a
highly diffracting object, such as a highly structured living cell,
for instance, with thickness of several micrometers. A living cell
is not a homogeneous medium, but is made of compartments sur-
rounded by lipid membranes with high refractive index (plasmic
membrane, nuclear membrane, Golgi apparatus, mitochondrial net-
work) and highly dynamic proteic fiber network (cytoskeleton,
nuclear matrix). This situation requires a method that is able to cap-
ture the spatial variation of the local frequencies fx and fy, without
being biased by the spatial dependence of the fringe amplitudeQð~xÞ
[Eq. (2)]. The wavelet transform offers this possibility since it allows
a decomposition of a signal (uni- or multidimensional) into atoms

Fig. 1 Quantitative phase microscopy (QPM) setup. A transmission grating (G), positioned at the image
plane (IP) of the microscope objective lens (O), is used for beam division into a central beam (order 0) and
two symmetric beams (order 1) with respect to the optical axis. A spatial filter is placed at the Fourier
plane of the lens L1 to select the first-order beam (imaging field) and to low-pass filter the zeroth-order
beam.25–27 The two beams are recombined with the lens L2 and the interferogram is recorded on a CMOS
camera.
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(wavelets) that are well localized in space and frequency.35 The
CWT is a mathematical technique introduced in signal analysis
in the early 1980s.36,37 Since then, it has been the subject of consid-
erable theoretical developments and practical applications in a wide
variety of fields.38–54 An optical wavelet device has also been
designed that performs the CWT, thanks to Fourier optics princi-
ples.55,56 We choose here a 2-D Morlet wavelet32 because it is
particularly well suited for time (or space) frequency analysis.

3 Phase Map Reconstruction Using the CWT
Phase stepping and Fourier transform methods have been pro-
posed in the 1980s for interferogram analysis in one and two
dimensions.33,57 These methods, however, assume that the coef-
ficients Pð~xÞ andQð~xÞ vary slowly over one fringe cycle, so they
can be treated as constants. To our knowledge, the first attempt
to use a wavelet transform as a processing tool with white-light
interferometry dates back to 1997.58 Since then many teams
have used this tool with success, in one dimension59–67 as
well as in two dimensions.68–75

More than a simple signal filtering tool, the wavelet trans-
form analysis can also offer the possibility of a direct compu-
tation of the phase of the interferometry image, thanks to
a wavelet transform ridge detection algorithm.59–62,64,66,67,75

The 2-D CWT of an interferogram Ið~xÞ with ~x ¼ ðx; yÞ is
defined as52

WΨð~b; a; θÞ ¼ aη
Z
R2

Ið~xÞΨ�½a−1rθð~x − ~bÞ�d2~x: (6)

WΨð~b; a; θÞ is the wavelet transform coefficient, at position
~b, scale parameter a, and rotation angle θ. ~b ¼ ðbx; byÞ is a 2-D
translation parameter describing the position of the wavelet,

a > 0 is the scale dilation parameter (nondimensioned), θ is
a rotation parameter, rθ is the 2 × 2 rotation operator matrix,
Ψ is the mother wavelet, Ψ� is the complex conjugate of Ψ,
and η is a normalization exponent. In Fourier space, the wavelet
transform reads as

WΨð~b;a;θÞ ¼ aη
Z
R2

Îð~kÞei~b·~kΨ̂�½ar−θð~kÞ�d2~x: (7)

The symbol ^ denotes the Fourier transformation. A typical
mother wavelet commonly used to detect localized and oriented
features is the 2-D Morlet wavelet.52

ΨMð~xÞ ¼ ei~k0·~xe−
1
2
jA~xj2 − e−

1
2
jA−1~k0j2−1

2
jA~xj2 ; (8)

Ψ̂Mð~kÞ ¼
ffiffiffi
ε

p ½e−1
2jA−1ð~k−~k0Þj2 − e−

1
2jA−1~k0j2−1

2jA−1~kj2 �: (9)

The parameter k0 is the wave vector and A ¼ diag½1; ε1∕2� is
a 2 × 2 anisotropic matrix (ε ≥ 1).

We use here this anisotropic 2-D continuous Morlet wavelet
transform, with anisotropy factor ϵ, to extract the phase of
a fringe pattern obtained with the QPM, such as shown in
Fig. 2(a). The correction terms in Eqs. (8) and (9) enforce
the admissibility condition Ψ̂Mð~0Þ ¼ 0. However, they are
numerically negligible for jk0j ≥ 5.6, and one usually drops
them. Putting ε ¼ 1 and removing the correction terms gives
the Gabor function.

Fig. 2 (a) Untreated QPM image of a glass coverslip coated with polymer layer including a scratch in the
diagonal direction. The scale bar is 10 μm. (b) Real part of the symmetric two-dimensional (2-D) Morlet
wavelet ΨM with ϵ ¼ 1. (c) Real part of the anisotropic two-dimensional Morlet wavelet ΨM , with ϵ ¼ 10.
(d), (e), and (f) modulus of the 2-D Fourier transforms of (a), (b), and (c), respectively, coded with a gray
colormap.
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ΨGð~xÞ ¼ expði~k0 · ~xÞ exp
�
−
1

2
j~xj2

�
: (10)

The Morlet wavelet is a complex function; the modulus of
the truncated Morlet wavelet (without the correction term) is
a Gaussian, elongated in the x direction if ε > 1, and its
phase is constant along the direction orthogonal to ~k0, and linear
in ~x, mod(2π∕jk0j), along the direction of ~k0. As compared to the
1-D case, the additional feature of the 2-D Morlet (or Gabor)
wavelet function is its inherent directivity, entirely contained
in its phase. This turns to be a crucial advantage for studying
objects with directional properties. Indeed, since the wavelet
transform [Eq. (6)] is a convolution product of the fringe pattern
with the dilated wavelet, we see that the wavelet transform
smoothes the image in all directions, but detects the sharp tran-
sitions in the direction perpendicular to ~k0. In Fourier space, the
effective support (footprint) of the function Ψ̂M is an ellipse cen-
tered at ~k0 and elongated in the ky direction. In Figs. 2(b) and
2(c) we show two Morlet wavelets computed for ~k0 ¼ ð5.6; 0Þ,
and ε ¼ 1 and ε ¼ 10, respectively; their Fourier transforms are
shown in Figs. 2(e) and 2(f). Since the ratio of the axes is equal
to

ffiffiffi
ε

p
, the cone of the wavelet in Fourier space elongates along

ky direction as ε increases. This wavelet preferentially detects
edges perpendicular to the y-direction (i.e., parallel to ~k0),
and its angular selectivity increases with ~k0 and with the
anisotropy ε. For the optical image shown in Fig. 2(a) recorded
with the QPM from a glass coverslip coated with a scratched
polymer layer, the best selectivity is achieved with ~k0
perpendicular to the long axis of the ellipse in ~k − space,
that is ~k0 ¼ ðk0; 0Þ. We show in Fig. 2(d) the modulus of the
Fourier transform of the fringe image shown in Fig. 2(a).
The Morlet wavelet selects the right part of this Fourier trans-
form by performing a band-pass filtering around the grating fre-
quency. The advantage of taking a smooth wavelet and not a
simply circular window in Fourier space31 is not only to
avoid the introduction of artificial oscillations produced by
the sharp boundary of such a window, but also to have the ability
to use the mathematical formalism of wavelet analysis, for in-
stance, the ridge detection method.52 The Morlet wavelet ΨM is
then written as

ΨMð~xÞ ¼ exp

�
−
1

2
ðx2 þ εy2Þ

�
½expðik0xÞ − expð−k20∕2Þ�:

(11)

We notice the general form of the truncated Morlet wavelet.

ΨMð~xÞ ¼ VΨð~xÞ exp½iϕΨð~xÞ�; ϕΨð~xÞ ¼ k0x; (12)

where VΨð~xÞ is an anisotropic Gaussian function and ϕΨ is the
phase of the wavelet.

The ridge of the wavelet transform can be computed at each
spatial point ~x; it corresponds to a scale arð~bÞ such that the local
derivative of the wavelet phase ϕΨ compensates the local deriva-
tive of the object phase ϕ.

fg~∇ðx; 0Þ þ ~∇ϕð~xÞ − ~∇ϕΨ½a−1r ð~bÞrθð~x − ~bÞ� ¼ 0: (13)

If we consider only the modulated part of the fringe pattern
Qð~xÞ exp½iϕð~xÞ� (complex form), we can derive the equation
for its Morlet CWT, given that Qð~bÞ changes slowly compared
to the phase of the fringes; the rotation angle is fixed, θ ¼ 0. It is

important to note here that the choice of η ¼ 2 (norm L1)52,63,64,74

makes this computation straightforward.

WΨð~b;aÞ¼
Ψ̂Mfa½fgð1;0Þþ ~∇ϕð~bÞ�g

Cð~b;aÞ
Qð~bÞeiϕð~bÞ; (14)

up to a correction term Cð~b; aÞ that depends on the local varia-
tions of the phase ϕð~xÞ and the modulation amplitudeQð~xÞ of the
optical signal on the ridge skeleton. Note that this correction term
is constant in the approximation of a slow spatial variation Qð~bÞ.
Equation (14) is a local equation describing the shape of the
wavelet transform in the vicinity of the scale arð~bÞ that maxi-
mizes its modulus; this shape is Gaussian because Ψ̂M is a
Gaussian function.

Hence, from Eq. (9), the maxima of the modulus of the CWT
correspond to the wavelet ridge skeleton, where the optical
phase ϕ produced by the object fulfills the equation

~k0∕arð~bÞ ¼ fgð1; 0Þ þ ~∇ϕð~bÞ: (15)

It can be demonstrated analytically that this ridge detection
method is independent of the modulation intensity Qð~xÞ
[Eq. (2)] of the original fringe pattern (as long as the fringes
are detectable) using the properties of Gaussian functions in
real and Fourier spaces. This result can be intuitively understood
because the ridge detection method boils down to the compu-
tation of the position of a local maxima of the wavelet transform
with the scale parameter a, whatever the value of this maxima.
The modulus of the wavelet transform on the ridge skeleton
reads

WΨ½~b; arð~bÞ� ¼
Ψ̂Mð~k0Þ

C½~b; arð~bÞ�
Qð~bÞeiϕð~bÞ: (16)

According to Eq. (16), we could straightforwardly compute
ϕð~bÞ from the phase of the wavelet transform WΨ½~b; arð~bÞ�,
without using the derivative form of Eq. (15). This is not
true when the variations of the phase and their amplitude mod-
ulations are too fast compared to fg, giving a complex value to
C½~b; arð~bÞ�. In that case, Eq. (15) must be preferred. We also
note that the modulus of the wavelet transform on the ridge fol-
lows the fringe amplitude modulation Qð~bÞ. As a general
remark, this wavelet-based method intrinsically eliminates back-
ground intensity variations Pð~xÞ that do not affect the fringe pat-
tern modulations.

4 Validation of the CWT Ridge Detection
Method on Latex Microbeads

We discuss the efficiency of the 2-D CWT ridge detection
method on a model system made of a microbead particle (radius
R ¼ 5 μm) with refractive index nb ¼ 1.59 surrounded by a
matching index oil n0 ¼ 1.5167. Figure 3(a) shows the fringe
pattern computed with Eq. (2) for the 2-D phase of the bead.

ϕð~xÞ ¼ ½4πðnb − n0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ð~x − ~xcÞ2

q
�∕λ; (17)

where ~xc corresponds to the projection of the center of the bead
in the (X; Y) plane. This bead is a good model of the experimen-
tal fringe patterns that will be presented later on. It is a good
guide for defining the optimum wavelet parameters for
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retrieving the phase from a fringe pattern. We observe in Fig. 3
(a) that on the border of the bead there is a breakdown of the
fringe continuity because the phase derivative is not continuous
at these points, which makes the phase computation harder.
Figures 3(b) and 3(c) [respectively, Figs. 3(d) and 3(e)] show
a gray-coded representation of the modulus of the 2-D CWT
on the horizontal (respectively, vertical) section shown in
Fig. 3(a). The 2-D CWT of the horizontal section [Figs. 3(b)
and 3(c)] shows a strong deformation of the ridge arðbxÞ
when entering and exiting the bead. This is also visible on
the fringe pattern [Fig. 3(a)] since on the left side of the
bead the fringes are compressed (smaller scale a), whereas
on the right side they are dilated (larger scale a). Close to
the border of the bead, jWΨð:; aÞj is no longer a single humped
Gaussian function (reflecting the shape of the modulus of the
wavelet) since two maxima appear, corresponding to the exist-
ence of two local frequencies slightly splitted apart from the car-
rier fringe frequency fg, corresponding to a ¼ 1 here. When the
anisotropy of the 2-DMorlet wavelet is increased [see Fig. 3(c)],
the ridge detection is more acurate, improving the detection of
the border of the bead. The improvement provided by an aniso-
tropic wavelet is more visible on the 2-D CWT analysis of a
vertical section, shown in Figs. 3(d) and 3(e). jWΨðby; aÞj
keeps its single humped shape, except in a close neighborhood
of the bead border, where it vanishes. This evanescence of the
jWΨð:; aÞj curves prevents a precise determination of the scale
ar where it is maximum. With an anisotropic 2-D Morlet wave-
let (ϵ ¼ 10), this vanishing is more localized in by and damped
[Fig. 3(e)]. The evanescence of the wavelet transform modulus
maxima curves is explained by a rapid shift of the fringes along
the axis X and their summation by the wavelet transform, since
its width is ∼5.6 fringe periods along X. The 2-D CWT with a
Morlet analyzing wavelet is, therefore, particularly suited for the
detection of fringe compression or dilation along the X direc-
tion. It is less efficient to detect the shift of fringes along X,
especially with curved fringes. From this 2-D CWT analysis,
we can propose three methods for phase retrieval.

• 1. The firstmethod uses the 2-DMorletwavelet as a Fourier
filter, with a fixed scale a ¼ 1 corresponding to the grating

fringe modulation fg; it does not use the ridge detection.
We will call it the Fourier filtering method 1.

• 2. The second method uses the 2-D CWT ridge detection
method to compute the phase derivative of the fringe pat-
tern, described by Eq. (15), and makes an integration of
this derivative along X. We will call it the ridge integral
method 2.

• 3. The third method uses the 2-D CWT ridge detection
method to compute the new complex quantity
WΨ½b; arð~bÞ� on the ridge and takes its argument to com-
pute the phase [Eq. (16)]. We will call it the ridge argu-
ment method 3.

Figure 4 compares these three methods for phase retrieval on
the bead model, for two values of the anisotropy factor ϵ.
Figures 4(a) and 4(b) show the phase extracted with a simple
Fourier filtering of the fringe pattern, using a Morlet wavelet
at fixed scale a. This method does not succeed to recover the
theoretical phase whatever ϵ because on the border of the
bead, the local frequency of the fringes is too far from the fringe
carrier fg, and it is, therefore, impossible to estimate their phase
correctly. Figures 4(c) and 4(d) show the ridge integral method 2
on this bead model. In that case, the theoretical phase can be
estimated correctly on the central part of the bead, but compu-
tation errors remain on the top and bottom borders of the bead,
which come from the difficulty to capture the local CWT modu-
lus maxima position when this modulus vanishes. With method
2, the phase is computed by integration of the gradient ~∇ϕð~bÞ
along the axis bx, which produces an accumulation of the errors
on ϕð~xÞ on the right side of the bead. However, switching from
isotropic [Fig. 4(c) and ϵ ¼ 1] to anisotropic wavelet [Fig. 4(d)
and ϵ ¼ 10] corrects the errors on the top and the bottom borders
of the bead, but the integration errors remain. To improve this
aspect, a higher resolution in the modulus maxima detection
method is necessary at the expense of computation time.
Note, however, that if the fringe pattern is very noisy, method
2 avoids the unwrapping of the phase and may stabilize the
computation of the phase. Figures 4(e) and 4(f) show the
ridge argument method 3. This method is still sensitive to fringe
discontinuities [Fig. 4(e)] on the top and the bottom borders of

Fig. 3 (a) Theoretical QPM intensity image of a transparent micro-bead, computed with Eqs. (2) and (17).
The scale bar is 5 μm. (b) and (d) Modulus of the 2-D continuous wavelet transform (CWT) on the hori-
zontal (fixed Y ) section shown in (a) by a white dashed line. (c) and (e) Modulus of the 2-D CWT on the
vertical (fixed X ) section shown in (a) by a white dashed line. (b) and (d) have been computed with an
isotropic 2-D Morlet wavelet (ϵ ¼ 1). (c) and (e) have been computed with an anisotropic 2-D Morlet
wavelet (ϵ ¼ 10). a ¼ 1 corresponds to the fringe frequency f g . The dashed black lines outline the
ar ð~bÞ ridge functions. The gray coding is identical for all CWT modulus images, from zero (black) to
0.8 (white).
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the bead. With an anisotropic wavelet (ϵ ¼ 10), this method suc-
ceeds to reproduce the theoretical phase with a 10−3 relative
error on the phase. The possibility to adjust the anisotropy of
the wavelet is, therefore, important for analyzing phase discon-
tinuities; it has never been reported in that context.

To compare with the bead model, we have imaged a 5 μm
radius latex microbead with the QPM and applied the 2-D aniso-
tropic CWT (ϵ ¼ 10) to analyze the experimental fringe pattern
shown in Fig. 5(a). Unlike the theoretical model, the fringe inten-
sity modulation in the QPM is no longer constant, see the hori-
zontal section plotted in black in Fig. 5(b). This intensity
modulation is produced by the light scattering by the bead.
As established by Bedrosian,76 when this modulation contains
frequencies that overlap with the fringe carrier frequency fg,
the extraction of the phase with the Hilbert method is biased
and leads to a false estimation. Indeed, from the Hilbert trans-
form of the term Qð~xÞ cos½fgxþ ϕð~xÞ� in Eq. (2), we would like
to recover a function like Qð~xÞ sin½fgxþ ϕð~xÞ� from which the
phase could be computed straightforwardly. Bedrosian’s theo-
rem shows that this is workable only if the amplitude modulation
Qð~xÞ does not contain frequencies that mix with the carrier fre-
quency fg. This condition is not experimentally satisfied as illus-
trated in Fig. 5(b). In that case, when using the ridge detection,
the CWToffers the advantage of leading to a measure of the fre-
quency from the ridge that considerably reduces the effects of

fringe modulation amplitude on phase retrieval [Eq. (15)]. In
Fig. 5(c), we show the modulus of the 2-D CWT jWΨðbx; aÞj
on the horizontal section shown in Fig. 5(a). The ridge arð~bÞ
plotted in Fig. 5(c) with a black line is very similar to the theo-
retical curve shown in Fig. 3(c). The real part of the CWT com-
puted on the ridge shown in Fig. 5(d) is very impressive when
compared to the original image [Fig. 5(a)]. It looks as if the major
intensity modulations of the original images were damped out to
keep only the fringe distorsion, from which the phase is com-
puted. The same section of Fig. 5(d) is plotted in gray in
Fig. 5(b). The efficiency of the wavelet transform is well illus-
trated in this example. Figure 5(e) shows the modulus
jWΨ½~b; arð~bÞ�j computed on the ridge of the 2-D CWT on
this latex microbead; it is coded in gray from minimum
(black) to maximum (white). Figure 5(f) gives a 2-D gray-
coded image of the phase derivative ∂ϕð~bÞ∕∂b of the CWT
on the ridge, and Fig. 5(g) shows the three-dimensional (3-D)
representation of the phase ϕð~xÞ computed from the ridge of
the CWT with method 3. The modulus of the 2-D CWT on
the ridge preserves the intensity of the original fringe image,
whereas this intensity modulation disappears completely on
the phase derivative ∂ϕð~bÞ∕∂b. We also note that as for the
bead model, the anisotropic Morlet wavelet allows a very
nice detection of the phase derivative. The 3-D picture of the
phase in Fig. 5(g) is very appealing since it not only detects per-
fectly the phase drop due to this bead and reproduces the theo-
retical prediction, but also delineates some defects of the beads
that are visible as phase irregularities on the surface of the bead.
We have estimated the standard deviation of the background
phase on this image of ∼0.25 rad.

5 Application of the CWT Phase Retrieval
Method to Living Cell Imaging

We illustrate the performance of the CWT phase retrieval
method on a murine myoblast cell line C2C12, which can be
differentiated to give rise to plurinucleate syncytia (the myo-
tubes) by fusion. We will focus here on undifferentiated
C2C12 cell monolayers. Figure 6 reports the 2-D CWT ridge
analysis of a QPM image of a nonadherent myoblast that is pro-
gressively rounding and will detach from the glass to enter mito-
sis.77 The characteristic organization of the microtubule-actin
cytoskeleton with stress fibers has disappeared, the cell is
round, and it is no longer possible to delineate a nice nuclear
contour inside this cell. However, this spherical shape is inter-
esting because it allows us to perform the same parametrization
of the phase map as we have done previously for spherical par-
ticles. Compared to the previous example of the microbead in
Sec. 4, we observe on Fig. 6(a) that besides scattering effects on
the border of the bead, the internal structure of the cell also pro-
duces intensity modulations of the fringes that may make the
analysis more complex. We have plotted in Fig. 6(b) a profile
of the fringe image selected on the white dashed section of
Fig. 6(a) (black curve), which can be compared to the corre-
sponding profile of the real part of the 2-D CWT ridge on
the same section. Similar to the example of Fig. 5, the CWT
ridge analysis regularizes the fringe intensity modulation.
Figure 6(c) reports the modulus of the 2-D CWT jWΨðbx; aÞj
on the horizontal section shown in Fig. 6(a). The ridge arð~bÞ
plotted in Fig. 6(c) with a black line is reminiscent of the
one shown in Fig. 5(c). The real part of the CWT computed
on the ridge shown in Fig. 6(d) when compared to the original
QPM image [Fig. 6(a)] definitely flattens the intensity

Fig. 4 Three-dimensional (3-D) representation of the reconstructed
phases from the fringe pattern of Fig. 3(a) with methods 1 [(a) and
(b)], 2 [(c) and (d)], and 3 [(e) and (f)]. (a), (c), and (e) are computed
with the isotropic Morlet wavelet (ϵ ¼ 1). (b), (d), and (f) are computed
with the anisotropic Morlet wavelet (ϵ ¼ 10). The phase ϕ is given in
radians.
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Fig. 5 2-D CWT analysis of an experimental QPM fringe pattern captured from a 5 μm radius latex micro-
bead embedded in glass index matching oil. (a) The untreated QPM image. The scale bar is 5 μm.
(b) Intensity profile (black line) of the section marked with a white dashed line in (a). The gray line cor-
responds to the real part of the CWT ridge computed on this section. (c) Gray coded modulus of the 2-D
CWT on the horizontal section shown in (a). The ridge ar ð~bÞ is plotted with a black line. (d) Real part of the
CWT computed on the ridge. (e) Modulus of the 2-D CWT computed on the ridge. (f) ∂ϕð~bÞ∕∂x computed
from the ridge [Eq. (15)]. (g) 3-D representation of phase computed from the fringe pattern of (a) with
method 3. The anisotropic Morlet wavelet (ϵ ¼ 10) is used for this analysis. The gray coding is done from
black (minimum) to white (maximum).

Fig. 6 2-D CWT analysis of a QPM fringe pattern collected from a round myoblast. (a) The untreated
QPM image. The scale bar is 10 μm. (b) Intensity profile (black line) of the section marked with a white
dashed line in (a). The gray line corresponds to the real part of the CWT ridge computed on this section.
(c) Gray coded modulus of the 2-D CWT on the horizontal section shown in (a). The ridge ar ð~bÞ is plotted
with a black line. (d) Real part of the CWT computed on the ridge. (e) Modulus of the CWT computed on
the ridge. (f) ∂ϕð~bÞ∕∂x computed from the ridge of the CWT. (g) 3-D representation of phase computed
from the fringe pattern shown in (a) with method 3. The anisotropic Morlet wavelet (ϵ ¼ 10) is used for this
analysis. The gray coding is done from black (minimum) to white (maximum).
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modulations. Figure 6(e) shows the modulus jWΨ½~b; arð~bÞ�j
computed on the ridge of 2-D CWT; it is coded in gray from
minimum (black) to maximum (white). The intensity modula-
tion that remains in Fig. 6(e) is eliminated in the derivative
of the phase shown in Fig. 6(f) (ridge method 2). Finally,
using method 3, we reconstruct a 3-D profile of the phase of
this myoblast in Fig. 6(g). This representation confirms the
round shape of this cell in the third direction Z and points
out a central part where smaller objects are identified, which
may be attributed to condensed chromosomes. We use the
same model as proposed for a spherical bead as a first approxi-
mation to extract the mean refractive index of this cell and delin-
eate one of the protruding object and its refractive index. The
interpolation of the whole cell by a spherical phase shape
[Eq. (17)] is reported in Fig. 7. This interpolation leads to an
estimation of the overall refractive index of the cell as
nc ¼ 1.36� 0.005, given that the buffer refractive index is
n0 ¼ 1.33. Moreover, subtracting this mean spherical phase
contour from the total phase contour (see Fig. 7), we can
also compute the phase drop of the small spherical object
that pops up on the upper part of the cell and estimate its
index to be 1.4� 0.005.

In Fig. 8, we show the image of an adherent myoblast cell,
where we can recognize thin lamellipodia extensions that exhibit
filopodia projections on the leading edge: a characteristic pattern
of cell motility. It has been shown in the literature that differ-
entiation and fusion of myoblasts into multinucleated myotubes
is accompanied by a dramatic reorganization of the Golgi com-
plex.78 Here we rather have the classic compact juxtanuclear
Golgi complex of an undifferentiated myoblast that we can rec-
ognize as small granular objects on both the derivative of the
phase ϕ reported in Fig. 8(c) and on the phase ϕ shown in
a 3-D representation in Fig. 8(d). The phase response of this
adherent cell is different from that shown for the round cell
[Fig. 6(g)]; the nucleus looks more like a phase plateau, flat-
tened by the mechanical tractions of the lamellipodia. On the
border of the nucleus, the QPM detects a necklace of phase
droplets and a central part with higher phase [Figs. 8(c) and
8(d)]. At this stage, it is difficult to conclude if these small
bodies are essentially Golgi complex or a combination of peri-
nuclear organelles as rough and smooth endoplasmic reticulum,
Golgi, vesicles, and mitochondrial network.

6 Summary
We have shown that a wavelet-based space-scale analysis can be
used to decode the fringe images recorded from living cells with

a QPM. The implementation of the ridge detection method is
more successful than Fourier filtering methods when imaging
cellular and high refractive index contrast objects since it
can discriminate intensity from phase changes. This technique
has been applied to undifferentiated myoblast cells and revealed
internal structures of these cells, which were confirmed by fluo-
rescence imaging. This microscope is coupled to a high-speed
camera, and we hope in the near future that besides capturing the
optical phase changes produced by the cell internal structures,
the record of the dynamics of these internal bodies will provide a
complementary way to distinguish these structures without the
need of fluorescence staining.

7 Materials and Methods

7.1 Quantitative Phase Microscope

A low-coherence laser diode (Thorlabs, GmbH, Germany,
λ ¼ 532 nm) is used as a light source and is directed to the sample
(S) usingKöhler illumination, such that the field at the image plane
(IP) is spatially coherent over the entire field of view (Fig. 1).
Different diffraction orders are then created with a transmission
grating (G) (70 grooves∕mm) localized at the IP of themicroscope
equipped with an objective (O) 40× (Olympus, France, SPlan40,
N:A: ¼ 0.7). A spatial filter (Thorlabs, custom-made) is placed at
the Fourier plane of lensL1 to select the first-order beam (imaging
field) and to low-pass filter the zeroth-order beam (reference). The
spatial filter has been designed with two circular apertures with
diameters of 15 μm and 2 mm. The two beams are recombined
using a second Fourier lens (L2), and the resulting interferogram
is recorded as an image of 2048 × 2048 pixels with a CMOS cam-
era (Hamamatsu, Japan, ORCA-Flash 4.0). The 4f lens system
adds a 5× magnification (f1 ¼ 50 nm, f2 ¼ 250 mm).

7.2 Polymer Layer Preparation

A solution of 10% poly(methyl methacrylate) (PMMA, Sigma-
Aldrich, France) in toluene was spin coated over a glass cover-
slip at a speed of 1000 rpm during 50 s. A time of 10 s is fixed to
reach the nominal speed. After coating, the film was annealed
for 1 h at 140°C. Prior to imaging, a portion of the PMMA layer
was removed with a scalpel.

7.3 Polystyrene Beads Preparation

1 μL of an aqueous solution containing polystyrene beads
(FLUKA 72986) was diluted in 10 mL of deionized water.

(a) (b) (c)

Fig. 7 Decomposition into spherical phase shapes of the myoblast phase map shown in Fig. 6. (a) The
original 2-D phase map computed from the fringe pattern with ridge method 3. The gray coding is done
from black (minimum) to white (maximum). (b) Horizontal sections corresponding to the colored crosses
shown in (a) and their spherical phase contour envelope [Eq. (17)] in dashed line. (c) The subtraction of
the original phase map with the spherical phase contour envelopes, revealing other phase contours of
smaller objects, inside the cell. The red curve can again be parametrized by a spherical phase contour to
estimate the index of this small protruding object, marked with a red cross in (a).
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250 μL of the dilution were deposited on a small petri dish with a
glass window and let overnight in an oven at 70°C to dry. Before
imaging, 500 μL of glass index matching oil were added.

7.4 Cell Culture

C2C12 mouse cells (ATCC number CRL-1772™) were grown in
high glucose (4.5 g∕L) Dulbecco’s modified Eagle medium
[(DMEM), GE Healthcare Life Science, Dominique Dutscher,
France] supplemented with 20% fetal bovine serum GE
Healthcare Life Science and 1% antibiotics (penicillin/streptami-
cine). Adherent myoblasts on 50 mm petri dishes with a glass
bottom of 0.17 mm thickness were maintained at 37°C and 5%
CO2 up to 60% confluence until they were used. The glass surface
was not treated to enhance cell adhesion. The growth medium
was replaced by phosphate buffered saline solution before imaging.
No further sample preparation was required.
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