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Abstract. We present the Toast++ open-source software environment for solving the forward and inverse prob-
lems in diffuse optical tomography (DOT). The software suite consists of a set of libraries to simulate near-infra-
red light propagation in highly scattering media with complex boundaries and heterogeneous internal parameter
distribution, based on a finite-element solver. Steady-state, time- and frequency-domain data acquisition
systems can be modeled. The forward solver is implemented in C++ and supports performance acceleration
with parallelization for shared and distributed memory architectures, as well as graphics processing computa-
tion. Building on the numerical forward solver, Toast++ contains model-based iterative inverse solvers for recon-
structing the volume distribution of absorption and scattering parameters from boundary measurements of light
transmission. A range of regularization methods are provided, including the possibility of incorporating prior
knowledge of internal structure. The user can link to the Toast++ libraries either directly to compile application
programs for DOT, or make use of the included MATLAB and PYTHON bindings to generate script-based
solutions. This approach allows rapid prototyping and provides a rich toolset in both environments for debugging,
testing, and visualization. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or
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1 Introduction
Diffuse optical tomography (DOT)1–4 is a medical imaging
modality for measuring and visualizing the distribution of
absorption and scattering properties in an organ such as the
brain. The optical parameters are related to physiological mark-
ers, such as blood oxygenation and tissue metabolism, making
DOT a functional imaging tool. Applications include brain
activation studies5 and breast tumor detection.6

Data acquisition systems consist of a light source that deliv-
ers near-infrared light to the body surface at different points or
with different spatial patterns, and a detector system that mea-
sures the light transmitted through the tissue and emitted
from the boundary. Light sources include steady-state systems,
time-resolved and frequency-domain systems, providing mea-
surements of intensity, temporal dispersion or phase shift, and
modulation amplitude, respectively.

Biological tissues are highly scattering in the near-infrared
wavelength range, and the detected photons have undergone
multiple scattering events. Monte Carlo models of light trans-
port in tissue build intensity distributions by computing individ-
ual photon paths as a random walk model, given the parameters
of single-scattering events. By comparion, methods based on the
Boltzmann equation treat light as a density wave propagating
through the tissue. Computational methods solve the arising
partial differential equations numerically by discretizing the
domain and parameter distributions; for example, by the use
of finite-difference (FDM), finite-element (FEM), or boundary
element (BEM) methods.

In this paper, we describe the Toast++ software, an efficient
open-source toolbox developed for modeling and reconstruction
in DOT. Toast++ is a collection of libraries for sparse matrix
algebra, finite-element analysis and nonlinear inverse problem
solution that can be linked directly into the application pro-
grams. It allows researchers to rapidly construct analysis
software without the need to develop the underlying low-level
sparse matrix and finite-element subsystems. Toast++ contains
parallel matrix assembly and solver tools that provide scalability
for distributed and shared memory architectures7 as well as
graphics-processor platforms.8

The Toast++ software suite includes bindings for MATLAB
and PYTHON, which exposes the functionality of the low-level
Toast solver engine to both of these scripting environments. This
method allows the rapid delvelopment of script-based applica-
tion code, combining the high performance of the Toast libraries
with the rich toolsets of MATLAB or PYTHON, including lin-
ear solvers and visualization tools. This paper contains a number
of code and script examples for various aspects of the software
and user interface.

While Toast++ was originally developed for modeling and
reconstruction in DOT, its modular design and extensible pro-
gramming interface allows it to be adapted to other medical
imaging problems and applications in different fields, such as
linear elasticity models for soft tissue deformation.9

2 Background
Toast was originally developed as a closed-source C++ finit-
element-based light transport and inverse reconstruction software
tool in time-resolved optical tomography. The software was later
extended for frequency-domain problems. Scalable matrix
assembly for shared and distributed memory architectures
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using threads and message passing interface (MPI), respectively,
was added later. Most recently, the matrix library was extended to
include a graphics-accelerated version, using Compute Unified
Device Architecture (CUDA) for execution on NVidia graphics
hardware.

Toast was initially distributed as a set of command line util-
ities for light transport simulation and image reconstruction. A
significant improvement in usability was provided by adding
a MATLAB interface that exposed the Toast functionality as
a toolbox containing a collection of MATLAB functions for
mesh manipulation, matrix assembly, and solution. Scripts for
forward and inverse solver examples for time- and frequency-
domain problems were included. Recently, the MATLAB inter-
face has been revised to make use of object-oriented MATLAB
programming paradigms.

In addition, an alternative PYTHON module interface has
been included in the Toast suite. It makes use of data structures
and linear solvers provided by the numpy and scipy modules,
and it also provides similar functionality to the MATLAB
toolbox.

Toast has now been released as an open-source software dis-
tribution, allowing users to access and extend the low-level
library code.

3 Computational Methods
Image reconstruction in optical tomography is an ill-posed non-
linear inverse problem. Toast uses a model-based optimization
approach, which iteratively minimizes an objective function
defined as a norm of the difference between model and measure-
ment data. In the following sections, we describe the components
of the forward and inverse solvers used by the Toast software.

3.1 Forward Modeling

The forward model in DOT describes the propagation of near-
infrared light through biological tissues from a distribution of
light sources illuminating the surface, to a collection of detectors
measuring the light exiting the tissue. The sources can either
consist of optical fibers delivering light to a small skin area,
or of devices that illuminate a larger area of the surface possibly
using structured light patterns.10 Data acquisition systems
may employ continuous sources (continuous wave imaging),
periodic at MHz to GHz frequencies (frequency-domain
imaging) or pulsed (time-domain imaging). At the wavelength
used in DOT, tissue is highly scattering, and photon transport
can often be described as a diffusion process. For the frequency
domain case, the forward model is then given by

−∇ · κðrÞ∇ϕðr;ωÞþ
�
μaðrÞþ

iω
c

�
ϕðr;ωÞ¼0; r∈Ω (1)

with boundary condition11

ϕðm;ωÞþ2ζðcÞκðmÞ∂ϕðm;ωÞ
∂ν

¼ qðm;ωÞ; m∈∂Ω; (2)

where q is a source distribution on boundary ∂Ω of domain Ω,
modulated at frequency ω. Field ϕ represents the complex-
valued photon density distribution. The model parameters
are absorption coefficient μa, diffusion coefficient κ ¼
½3ðμa þ μsÞ�−1 with (reduced) scattering coefficient μs, and
speed of light in the medium c. ζ is a term incorporating the
refractive index mismatch at the boundary, ∂ν is the outward

boundary normal, and i is the imaginary unit. The measurable
quantity is the normal current across the boundary,

Jnðm;ωÞ ¼ −cκðmÞ ∂ϕðm;ωÞ
∂ν

: (3)

Analytic solutions of Eqs. (1) and (2) only exist for simple
geometries. For practical applications, a numerical model must
be employed that can incorporate inhomogeneous parameter
distributions and complex boundaries. The Toast++ package
uses a Galerkin FEM to implement the DOT forward problem.

3.2 Time-Domain Modeling

As an alternative to measuring a modulated signal, time-domain
data acquisition systems use short pulses of light Qðr; tÞ in
the picosecond range for sources, and measure the temporal
dispersion of the transilluminated signal at the detector sites.
The light transport model in this case is the time-dependent
diffusion equation,

−∇ · κðrÞ∇ϕðr; tÞþ
�
μaðrÞþ

∂
∂t

�
ϕðr; tÞ¼Qðr; tÞ; r∈Ω:

(4)

Numerically, the time derivative term can be approximated
by a finite-difference scheme. The Toast++ software allows
the simulation of the time-dependent measurement signals,
using either implicit or explicit schemes for propagation in
time. In addition, Toast++ allows the direct computation of
the temporal moments, as well as the Laplace transform and
its moments (the Mellin–Laplace transform) of the measurement
signal, without the need for a full computation of the temporal
profile.12,13

3.3 Inverse Problem Solver

The Toast++ suite contains the building blocks to construct an
iterative inverse solver for reconstructing the distribution of
model parameters x ¼ fμa; κg or x ¼ fμa; μsg from boundary
measurements y ¼ hM; Ji∂Ω for some measurement profile M.
The inverse problem is defined by a regularized least-squares
approach, where an objective function Ψ is minimized,1,14 given
by

ΨðxÞ ¼ 1

2

X
i

½yi − fiðxÞ�2 þ τRðxÞ (5)

with forward model f given by Eqs. (1)–(3), regularization func-
tional R and hyperparameter τ.

Toast++ provides a range of regularization options, including
Tikhonov and total variation (TV) methods, to enforce different
smoothness conditions in the solution. In addition, spatially vary-
ing regularization parameters can be applied to take into account
prior knowledge about the internal structure of the target.

Toast++ provides functions for constructing the direct and
adjoint fields for a given set of source and detector locations,
and it allows the solution of the adjoint problem either by explic-
itly constructing the Jacobian and Hessian matrices of the
forward operator, or by an implicit, matrix-free approach.
Using this functionality, gradient-based inverse solvers can be
constructed by making use of first derivatives, such as nonlinear
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conjugate gradients (NCG),15 or second derivatives such as
Gauss-Newton (GN) or Levenberg–Marquardt approaches.14

4 Program Description
Toast++ is designed as a hierarchical set of core libraries written
in C++ for sparse matrix computation (libmath), finite-
element computation (libfe), and iterative parameter
reconstruction (libtoast). Sample command-line application
programs for diffuse light transport modeling (fwdfem) and
image reconstruction (supertoast) linking to the libraries
are included, as well as tools for visualizing the simulated mea-
surements and volume reconstructions.

In addition to the C++ interface, the libraries can also be
accessed via bindings for the MATLAB and PYTHON scripting
environments, allowing application code to be written as high-
level scripts. Embedding Toast in MATLAB or PYTHON
allows the use of pre-existing tools, such as preconditioned
parallel solvers or visualization tools without additional effort.
The ability for runtime debugging and inspecting intermediate
results aids in rapid prototyping of new application code.

A schematic overview of the building blocks of the Toast
suite is shown in Fig. 1. In the following sections, we describe
the components in more detail.

4.1 Matrix Library

The Toast++ matrix library (libmath) contains a class hier-
archy for sparse and dense matrix and vector types, as shown
in Fig. 2. It exposes a common matrix interface via the abstract
Matrix class, which hides the implementation details of
specialized matrix subtypes such as dense, compressed sparse
row (CSR), and coordinate-indexed matrix classes, from the
application layer. The matrix library is templated and can be
instantiated for real and complex-valued data types.

Public methods include element, row, and column access via
iterators, matrix-vector products, as well as direct and iterative
linear solvers including conjugate gradients (CG), generalized

minimum residual methods, LU, and Cholesky decompositions.
Many of the methods are implemented as wrapper functions to
external libraries, such as the SuperLU library for LU solution or
preconditioning of sparse matrix classes.

The MATHLIB library also contains a distributed sparse
matrix class (TCompRowMatrixMPI) using the MPI protocol,
which allows the matrix data to be distributed over multiple
processor nodes, while maintaining the common matrix inter-
face, and thus being transparent to the application programmer.
This matrix class can be used to represent the linear system of
the finite-element model in conjunction with a partitioned dis-
tributed mesh class, as discussed in the next section.

4.2 Finite-Element Library

Using an N-dimensional polynomial basis expansion with local
support uiðrÞ, i ¼ 1: : : N over domain Ω, a piecewise polyno-
mial approximation ϕh of field ϕ can be expressed as

ϕhðr;ωÞ ¼
X
i

ΦiðωÞuiðrÞ; (6)

which is defined by the vector Φ ∈ CN of nodal coefficients.
Applying the weak formulation of Eq. (1) and integration by
parts16 leads to the linear system

½KðκhÞ þ CðμhaÞ þ ζAþ iωB�ΦðωÞ ¼ QðωÞ; (7)

where K, C, A and B are sparse symmetic positive definite sys-
tem matrices. The assembly of each matrix is performed on a
per-element basis, followed by a mapping from the local to
global degree of freedom (DOF). The individual integrals
over an element ΩðelÞ

i are given by14

K
ðelÞ
ij ¼

X
k∈S½ΩðelÞ�

κk

Z
ΩðelÞ

ukðrÞ∇ujðrÞ · ∇uiðrÞdr

C
ðelÞ
ij ¼

X
k∈SðΩðelÞÞ

ðμaÞk
Z
ΩðelÞ

ukðrÞuiðrÞujðrÞdr

B
ðelÞ
ij ¼ 1

c

Z
ΩðelÞ

uiðrÞujðrÞdr

A
ðelÞ
ij ¼

Z
∂ΩðelÞ

uiðmÞujðmÞdm

QðelÞ
i ¼

Z
ΩðelÞ

uiðrÞq0ðr;ωÞdr: (8)

libmath

libfe

libtoast

LAPACK

BLAS

SuperLU

liblbfgs

Toast core libraries

C++
applications

Matlab
toolbox

Python
module

numpy

scipy

matplotlib

OpenGL

Matlab
scripts

Python
scripts

Script bindings

Applications

Fig. 1 Toast core library, script bindings, and application layer layout.

TCompRowMatrix<T>

TMatrix<T>

TDenseMatrix<T>

TGenericSparseMatrix<T>

TCompRowMatrixMPI<T>

TCoordMatrix<T>

TDiagMatrix<T>

TSymMatrix<T>

Fig. 2 Matrix class hierarchy in the Toast libmath library.
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The realization of the integrals in Eq. (8) depends on the type
of element and the shape functions used. In some cases, such as
triangles or tetrahedra with polynomial basis functions, analytic
integration formulae may be available. Otherwise, numerical
quadrature rules must be employed.

The Toast++ finite-element subsystem (libfe) contains
the mesh and element classes for defining a numerical represen-
tation of the forward problem. The Mesh class represents the
discretization of the computation domain and it is a container
for a list of node coordinates and a list of elements. It provides
functions for returning the sparsity pattern of the system matri-
ces for the linear FEM system, and for populating the matrices
by performing the appropriate integrals over elements and
mapping the results from the local element matrices to the global
system matrices. Toast also contains methods for node reorder-
ing, e.g., for bandwidth minimization or minimizing the fill-in
of the system matrix decomposition for direct solvers and
preconditioners.

Toast++ provides support for different element types and
shape functions in two and three dimensions. In 2-D, 3-,
6- and 10-noded subparametric and isoparametric triangles are
available, providing linear, quadratic and cubic polynomial
shape functions, respectively. In addition, Toast provides 4-
noded rectangular elements for representing structured meshes.
In 3-D, Toast offers 4- and 10-noded sub- and isoparametric
tetrahedra, as well as wedge and regular voxel elements. The
element class hierarchy is shown in Fig. 3. The element
types are represented in a hierarchical class structure, and
expose a common interface via the abstract Element base
class. This includes methods for mapping from local to global
coordinates, Jacobian computation, as well as integrals of shape
functions, shape function derivatives and combinations thereof,
over the element volume.

Elements use analytic integration rules where available,
including subparametric triangle and tetrahedron elements,
and resort to numerical quadrature rules for isoparametric ele-
ments with curved surfaces. The implementation details of
the element integrals and other methods are hidden from the
application layer by use of polymorphism. It is, therefore, pos-
sible to write applications independent of element type, and to
define meshes with mixed elements.

Toast++ also contains a distributed mesh class (MeshMPI)
which can be used to automatically partition a mesh and
distribute it over multiple processor nodes. Toast provides
the possibility to link to the Zoltan partitioning library17 for
partitioning and node migration. In combination with
Toast’s distributed sparse matrix support, the linear FEM
system can be assembled and solved transparently to the appli-
cation layer. This allows the deployment of Toast for large-
scale problems on computer clusters without additional coding
effort from the user.

Different options are available for the choice of source dis-
tributions Q. Toast supports point sources and extended source
profiles with a Gaussian or cosine shape to simulate optical
fiber-based light delivery systems.18 In addition, Toast also
allows modeling of illumination of large areas of the surface
with shaped light patterns.10 Source patterns are projected
onto the surface of a mesh of arbitrary shape by using an in-
stance of one of Toast’s projector classes, which support either
pinhole or orthographic projection. The projectors are imple-
mented with the use of OpenGL routines via the Mesa-3-D
library which can also make use of graphics hardware

acceleration. MATLAB bindings for the projector functions
are supported in the Toast toolbox.

The same projectors can be used to map a distribution of
transilluminated light from the surface to an imaging system
such as a charge coupled device (CCD) camera. Figure 4
shows an example of a source pattern projected onto a cylindri-
cal surface, and the resulting surface exitance on the opposite
side of the cylinder mantle projected back onto a CCD camera.
The use of shaped light illumination and CCD detectors can
reduce measurement times significantly.

Element_Structured_3D

Element

Element_Structured

Element_Structured_2D

Pixel4

Voxel8

Voxel27

Element_Unstructured

Element_Unstructured_2D

Element_Unstructured_3D

Triangle3

Triangle6

Triangle10

Triangle6_ip

Triangle10_ip

Tetrahedron4

Tetrahedron10

Tetrahedron10_ip

Wedge6

Triangle3D3

Triangle3D6

Fig. 3 Toast element class hierarchy. Abstract classes are shown in
gray, nonabstract classes in yellow together with graphical shape
representations.
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4.3 Alternative Numerical Modeling Schemes

In addition to the FEM scheme described above, Toast also sup-
ports alternative numerical subsystems for simulating light
propagation in scattering media. The software package includes
a discontinuous Galerkin (DG) discretization scheme,19 which
can be used to accurately simulate discontinuities in the internal
optical parameter distributions, including the refractive index. In
addition, meshes for DG computation can be refined more easily
than those used in standard FEM methods. DG, therefore, sup-
ports efficient adaptive refinement methods, e.g., as a function
of the gradient of the evolving parameter distribution during
a reconstruction.

Toast also contains a modeling module using the boundary
element method (BEM),20 which allows efficient simulation of
piecewise constant parameter distributions. This scheme has
been applied to shape reconstruction of internal boundaries
of regions with piecewise constant optical parameter values.
BEM can also be used to reduce the complexity of recon-
struction by restricting the solution on interface layers, such
as the cortical surface.21 Toast has been used to combine
FEM and BEM models for DOT reconstruction in layered
media, where superficial tissue layers are modeled with BEM,
while the region of interest is reconstructed with a spatially
resolved FEM approach.22

4.4 DOT Inverse Solver Library

Low-level support for building an inverse solver for parameter
estimation in DOT is provided by the libstoast library.
The library contains a class hierarchy of basis mapping opera-
tors that allow a field or parameter distribution on Ω to be
mapped from the mesh basis to an independent basis used for
the reconstruction. Given the mesh basis fuiðrÞg, i ¼ 1: : : N,
and inverse solution basis fvjðrÞg, j ¼ 1: : :M, the mapping

from nodal coefficients ΦðuÞ
i to inverse basis coefficients ΦðvÞ

j
is given by23

ΦðvÞ
j ¼

XN
i¼1

ΦðuÞ
i

Z
Ω
uiðrÞvjðrÞdr: (9)

Toast supports a range of inverse basis functions v, including
linear and cubic voxel bases, as well as blob bases with radially
symmetric basis functions of different shape, such as truncated
Gaussian and Kaiser–Bessel window functions.23 Figure 5
shows examples of the radial profiles of the supported blob
basis functions.

The separation of forward and inverse basis allows the
reconstruction to be tailored to the required performance and
convergence criteria, while conserving the fidelity of the for-
ward solver. For example, it is then possible to adaptively refine
the mesh without also affecting the reconstruction component.

libstoast contains support for defining the parameter
estimation problem by minimizing the regularized least-squares
cost functional Eq. (5). Methods for computing direct and
adjoint fields are provided by linking to the forward solver mod-
ule. Computation of the Jacobian matrix of the forward operator
for gradient-based methods is supported as well as matrix-free
methods. MATLAB and PYTHON bindings for the inverse
solver utilities are provided, allowing the iterative optimization
loop to be defined in application space directly by the user.

4.5 Support for Parallel Computation

Toast++ can be used on different parallel architectures for per-
formance improvement. It contains suppport for shared memory
systems by using threaded solutions for the available Krylov
solvers, using a master-worker structure to distribute multiple
right-hand sides of the linear FEM problem over multiple
threads.7 This high-level parallelization strategy is easy to
implement and has little computational overhead, resulting in
good scalability, in particular where the FEM problem is to
be solved iteratively for a large number of right-hand sides,
as is typically the case in DOT. When compiled with thread sup-
port, parallel versions of time-critical routines, such as forward
solution and gradient computation, are also available from the

Fig. 4 Example of a source pattern (top left) projected on a cylinder
with Toast’s pinhole projector operator (top right), and resulting
surface exitance (bottom right) projected back into a CCD detector
array positioned opposite the source projector (bottom left).
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Fig. 5 Radial profiles of blob basis types supported by Toast.

Journal of Biomedical Optics 040801-5 April 2014 • Vol. 19(4)

Schweiger and Arridge: The Toast++ software suite for forward and inverse modeling. . .



MATLAB and PYTHON interfaces. Figure 6 shows timings for
FEM forward solution with a BiCGSTAB iterative linear solver
(tolerance 10−14) on cylindrical meshes of different resolution,
using a threaded implementation with 1, 2, 4, 8, and 16 threads
on a Xeon E5-2665 workstation with 16 2.4 GHz processors.
When using the MATLAB and PYTHON interfaces, no addi-
tional setup code is required to make use of the multithreaded
Toast function support. The number of processors can be
adjusted manually, e.g., in MATLAB with

toastThreadCount(n);

A graphics processor hardware accelerated version of
the FEM forward solver for Toast has been developed using
the CUDA framework for NVidia graphics processors, and the
CUSP library24 for sparse linear system computation on the
graphics processor. The Toast CUDA implementation moves
the solution of the linear system to the graphics hardware
after the sparse system matrices and right-hand sides have
been assembled. This approach is particularly efficient for the
iterative solution of the time-domain problem, because the stiff-
ness and mass matrices in Eq. (8) remain unchanged and can be
reused for each iteration after having been copied once to the
device memory. We have reported speed improvements of a fac-
tor of up to 8 for a frequency-domain solution, and up to 13 for
a time-domain solution on an NVidia GTX 285 GPU, compared
to a single-threaded CPU solution on an Intel Xeon processor
clocked at 2.0 GHz with 4 MB cache and 12 GB main memory.8

4.6 MATLAB Bindings

The functionality of the Toast core libraries is exposed to the
MATLAB scripting environment as a toolbox containing a col-
lection of compiled mex files and utility scripts that are available
to MATLAB as callable functions. The MATLAB interface to
Toast makes use of an object-oriented approach, by representing
meshes, elements, solvers, etc., as MATLAB objects. Each
object has properties and methods that closely resemble the
class definitions of the underlying C++ code. As an example,
a subset of methods of the toastMesh class is shown in
Fig. 7. The interface consists of a single mex file that handles
the communication between the MATLAB Toast toolbox and

the C++ libraries. For example, the ToastMesh class contains
a handle to a C++ mesh object, and a series of methods for com-
puting mesh geometry and transformations, matrix assembly,
extracting element data, surface integrals, and so on. Each of
these methods is implemented by calling the mex file to pass
a request to the C++ Toast libraries. The libraries process the
request, and pass the results back to the MATLAB method.
In this way, the efficiency of the Toast library is maintained,
while allowing the user the convenience of the MATLAB script
interface.

4.7 PYTHON Bindings

Similar to the MATLAB toolbox, the PYTHON script interface
is provided by compiled PYTHON modules that can be
imported by a PYTHON script. The functionality of the
MATLAB and PYTHON interfaces is similar. Sharing of the
underlying core libraries minimizes code duplication and
improves stability and simplifies the process of code generation.
Toast functionality is available in PYTHON via a plugin module
that links to the Toast core libraries. Toast makes use of the
numpy and scipy modules for the sparse matrix data struc-
tures and linear solvers. The interface is similar to the
MATLAB Toast toolbox, with methods provided for construct-
ing or reading meshes, defining the FEM problem, assembling,
and solving the linear system. An additional advantage of the
MATLAB and PYTHON interfaces is the availability of addi-
tional functionalities, such as sparse matrix solvers and visuali-
zation tools.

The Toast toolbox functions in both interfaces can be used as
building blocks for creating scripts for solving both the forward
and inverse problems. Section 5 contains script examples for
different types of problems.

4.8 Data Structures and Efficiency

Both MATLAB and PYTHON support their own data structures
to represent matrix objects which are then exposed to external
modules via a programming interface. To avoid replication and
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n=2.7⋅104

n=8.3⋅104

n=2.1⋅105

Fig. 6 Timing comparsions for FEM forward computations of 64
source positions and three different mesh resolutions using
a BiCGSTAB iterative solver with thread support.

ToastMesh methods

Make()
Read()
Write()
Element()
NodeCount()
ElementCount()
Dimension()
BoundingBox()
Size()
Data()
SurfaceData()
ElementSize()
FindElement()
Elmat()
SysmatComponent()
Massmat()
SetQM()
ReadQM()
WriteQM()
DataLinkList()
Qpos()
Mpos()
Qvec()
Mvec()
Display()

% create a mesh from geometry data
% read mesh definition from file
% write a mesh definition to file
% returns a mesh element
% returns the number of nodes
% returns the number of elements
% returns the mesh dimension
% returns the mesh bounding box
% returns the mesh volume
% returns mesh geometry data
% returns the mesh surface geometry
% returns a list of element volumes
% identify element containing a point
% assemble an element matrix
% assemble a term of the global system matrix
% assemble a mass matrix
% define a source/detector set
% read a source/detector set from file
% write a source/detector set to file
% returns permutation index for a data vector
% returns a list of source positions
% returns a list of detector positions
% returns an array of right-hand sides
% array of boundary projection operators
% display a mesh and optional surface field

Fig. 7 Methods in the ToastMesh class of the Toast MATLAB toolbox.
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copying of data between MATLAB or PYTHON and the Toast
core libraries, Toast allows the construction of matrix and vector
objects that link to external data buffers. This allows the efficient
direct manipulation of MATLAB and PYTHON objects while
maintaining a consistent interface in the Toast matrix and vector
class structure. The following code example from a PYTHON
module shows the construction of a Toast vector that directly
links to a PYTHON vector:

double *vec_data=(double*)PyArray_
DATA(py_vec);
npy_intp *vdims=PyArray_DIMS(py_vec);
TVector<double> vec(vec_data,vdims[0],
SHALLOW_COPY);

Subsequently, vec behaves like an ordinary Toast vector, but
shares its data with the py_vec PYTHON object. Dense matri-
ces are wrapped in a similar way. For sparse matrices, Toast uses
a CSR format which is also supported by PYTHON with the
scipy module. Scipy does not have a C interface; therefore,
the data and index arrays are extracted from the PYTHON object
at script level, and passed separately to the interface module

# a function that copies a CSR matrix mat to
# a toast Module function
def function1(mat):
toast.Function1(mat.data, mat.indptr,
mat.indices)

# a function that returns a CSR matrix from
# a Toast module function
def function2(prm):
data,rp,ci,m,n=toast.Function2(prm)
return scipy.sparse.csr_matrix((data,
ci,rp),
shape = (m,n))

Where functions 1 and 2 are the corresponding function in
the toast PYTHON module. The CSR matrix construction in
their implementation would then be

int *rowptr = (int*)PyArrayDATA(py_mat_rp);
int *colidx = (int*)PyArrayDATA(py_mat_ci);
T *data = (T*)PyArrayDATA(py_mat_data);
TCompRowMatrix<T> mat(m, n, rowptr, colidx,
data, SHALLOW_COPY);

Where py_mat_data, py_mat_rp and py_mat_ci are
the representations of the CSR matrix arrays passed to the func-
tion. Again, this construct avoids the duplication and copying of
data between matrix representations.

MATLAB only supports the compressed sparse column
matrix format. While this could be accommodated by a trans-
position flag in the Toast sparse matrix class, MATLAB in
addition uses a storage format for complex data types that is
incompatible with the Toast format, necessitating the conver-
sion of data structures at the Toast-MATLAB interface, which
makes the Toast-MATLAB interface slightly less efficient than
PYTHON.

4.9 Visualization Tools

Both MATLAB and PYTHON provide visualization tools
that can be utilized in connection with Toast functionality to
display mesh geometry and results. MATLAB provides a
toastShowMesh function to display 2-D and 3-D meshes
and nodal funtions interpolated over the mesh area or surface.
In addition, Toast can write out mesh geometries and nodal sol-
utions in visualization toolkit (VTK) format, which can be visu-
alized in a variety of standard tools. Figure 8 shows the surface
of a head mesh exported from Toast and displayed in the
MayaVi2 Data Visualizer.

Fig. 8 Head mesh exported to VTK format and displayed in MayaVi2 Data Visualizer.
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5 Usage Examples
In this section, we demonstrate the functionality of the Toast
suite by presenting script examples for forward and inverse
DOT solvers in MATLAB and PYTHON.

5.1 DOT Forward Solver

We consider the problem of computing the complex photon
density field ϕðr;ωÞ in Eq. (1) in a complex head mesh
using the Toast-MATLAB toolbox. A schematic of the data
components comprising the forward problem is shown in
Fig. 9, including the definition of the mesh geometry from
node coordinates and element connectivity graph, the definition
of source and boundary projection operators and the nodal
parameter distribution. The forward solver uses this information
to assemble the system matrices of the FEM problem, the right-
hand sides and boundary operators. Using an appropriate pre-
conditioned linear solver, the resulting fields and boundary
data can be computed.

The problem geometry is represented in a Mesh class which
acts as a container for element and node coordinate lists, it main-
tains the mapping from individual element to global DOF, and
provides methods for querying the sparsity structure of the
global system matrices and their assembly. Toast only contains
limited support for mesh generation, but can import meshes gen-
erated from external meshing tools, which can then be saved in
Toast format. Access to the mesh geometry and integration
methods in the MATLAB-Toast framework is provided via
the toastMesh class. A mesh object may be loaded from
a file, or constructed on the fly, and then can be queried with
the Data method to extract node coordinates and element con-
nectivity graph:

mesh = toastMesh(‘head.msh’);
% read mesh from file
[nd elidx eltp] = mesh.Data;
% get mesh geometry
nnd = size(nd,1);
% node count
nel = size(elidx,1);
% element count
mesh.Display;
% display the mesh

The Datamethod retrieves the node (nd) and element arrays
(elidx), together with an element type list (eltp). The
Display command shows the mesh geometry in a 3-D surface
plot. An example mesh view for a head mesh with internal struc-
ture is shown in Fig. 10.

To perform the system matrix assembly for the DOT forward
problem in Eq. (7), we now define an empty sparse matrix to
hold the DOT stiffness matrix, and loop over all mesh elements
to compute the element integrals in Eq. (8), before mapping
them to the global DOF:

smat = sparse(nnd,nnd);
for i=1:nel
el = mesh.Elmat(i); % extract element

object
idx = el.Dof; % local->global

DOF mapping
Kel = el.Mat(‘PDD’,kap); % diffusion

term
Cel = el.Mat(‘PFF’,mua); % absorption

term
Bel = omega*el.Mat(‘FF’); % frequency

term
Ael = hmesh.Elmat(el,’BndPFF’,zeta); % bnd

term
% assemble into global stiffness matrix
smat(idx,idx) = smat(idx,idx) +...
Kel + Cel + Ael + 1i*Bel;

end

Vertex 1
…
Vertex n

Element 1
…
Element m

Mesh (geometry)

qpos 1
…
qpos nq

mpos 1
…
mpos nm

q/m
connect

QMMesh

Nodal parameters
NIM

source conditions

boundary conditions

Forward problem definition

stiffness
matrix

mass
matrix

rhs boundary
operator

linear solver

measurement data

Forward solver

Fig. 9 Layout of the Toast forward solver. The mesh object, together
with parameter distributions provided as nodal coefficients, source
and boundary conditions is used to construct the FEM linear system.

Fig. 10 MATLAB mesh viewer: Visualization of region interfaces for
skin, skull, gray and white matter of a volume mesh of the head.
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Where mua, kap, and zeta are the nodal coefficient vectors
of the parameter distributions of the DOT forward problem, and
omega is the modulation frequency. Instead of computing
the integrals per element and assembling them manually into
the global stiffness matrix, Toast also allows to assemble
each global matrix component in a single step with the
SysmatComponent method, performing the mapping from
local to global DOF in the library core:

K = hmesh.SysmatComponent (‘PDD’, kap);
C = hmesh.SysmatComponent (‘PFF’, mua);
B = omega*hmesh.SysmatComponent (‘FF’);
A = hmesh.SysmatComponent (‘BndPFF’, zeta);
smat = K + C + A + 1i*B;

As an additional level of abstraction, Toast also provides a
convenience function, dotSysmat that simplifies the matrix
assembly specifically for the DOT problem to a single function
call:

smat = dotSysmat(hmesh,mua,mus,ref,omega);

where mua, mus, and ref are the nodal absoption, scattering,
and refractive index coefficient vectors.

The right-hand sides are assembled from a predefined list of
source positions read from a data file:

mesh.ReadQM(‘head.qm’);
qvec = hmesh.Qvec();

where qvec is a sparse matrix representing multiple boundary
source distributions as column vectors. The complex fields for
all sources can now be computed with a MATLAB linear solver,
such as GMRES (generalized minimum residuals):

nq = size(qvec,2); % number of sources
phi = zeros(n,nq);
for q=1:nq
qq = qvec(:,q);
phi(:,q) = gmres(smat,qq,20,1e-10,1000);

end

As an example, the logarithmic amplitude on the interfaces of
a four-layer head model, arising from a modulated point source
on the skin surface, is shown in Fig. 11. The fields can now be
projected to measurement data of boundary exitance by apply-
ing the measurement operators, which can then be displayed as
source-detector maps, as shown in Fig. 12:

mvec = mesh.Mvec();
meas = mvec.’ * phi;
% sinogram for log amplitude:
figure; imagesc(real(log(meas)));
% sinogram for phase shift:
figure; imagesc(imag(log(meas)));

To demonstrate the use of the Toast-PYTHON module, the
equivalent PYTHON script is shown in the following listing.
Both script interfaces link to the same Toast core libraries, and
therefore produce equivalent results.

# PYTHON DOT forward solver
import numpy as np
from scipy.sparse import linalg
import matplotlib.pyplot as plt
from toast import mesh
#load mesh
hmesh = mesh.Read(‘headmesh.msh’)
n = mesh.NodeCount(hmesh)
# load source-detector definitions
mesh.ReadQM(hmesh,’circle.qm’)
qvec = mesh.Qvec(hmesh).real
mvec = mesh.Mvec(hmesh).real
# construct the system matrix
mua = np.ones(n)*0.01
mus = np.ones(n)*1
ref = np.ones(n)*1.4
smat = mesh.Sysmat(hmesh,mua,mus,ref,freq)
# compute the fields for all sources
phi = np.empty(qvec.shape)
for q in range(qvec.shape[1]):
q = qvec[:,q].todense()
res = linalg.bicgstab(smat,qq,tol=1e-10)
phi[:,q] = res[0]

# map fields to boundary measurement
meas = mvec.transpose() * phi
# display data as sinogram
plt.imshow(np.real(np.log(meas)),
interpolation=‘none’)
plt.show()
plt.imshow(np.imag(np.log(meas)),
interpolation=‘none’)
plt.show()

For ease of use, the MATLAB toolbox also provides
a graphical interface for providing the input parameters to
the DOT forward solver, as shown in Fig. 13.

5.2 Iterative Parameter Reconstruction

The inverse problem for the DOT problem consists of recovering
the spatial distributions of the optical parameters μaðrÞ and κðrÞ
[or equivalently, μaðrÞ and μsðrÞ] of the model Eq. (1) in domain
Ω from boundary measurements of light transmission at the sur-
face ∂Ω. The iterative approach provided by the Toast suite solves

Fig. 11 Visualization of logarithmic amplitude on the skin surface and
the interfaces between skin/skull, CSF/gray matter and gray matter/
white matter arising from a point source at the outer surface (indicated
by a blue dot).
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this nonlinear problem by finding the minimizer fμa; κg ¼ x̂ ¼
arg minxΨðxÞ to the objective function defined in Eq. (5).

Toast provides the building blocks to minimize Ψ with
a choice of iterative optimization schemes, such as NCGs, or
a GN approach.14 This includes a method for the computa-
tion of the direct and adjoint fields (toastFields), the
gradient of the objective function Ψ with respect to the
model parameters x (toastGradient), the Jacobian of
the forward model (toastJacobian), and an inexact line
search for obtaining a step length in a given search direction
(toastLineSearch).

Further, Toast provides a selection of regularization schemes,
such as Tikhonov and TV, for implementing the regularization
termR in Eq. (5). The Toast-MATLAB and PYTHON bindings
provide a convenient way to implement the inverse solver,
although it is also possible to write a solver that directly
links to the C++ interface. A simple example for a nonlinear
Polak-Ribiére conjugate gradient scheme with line search
follows:

while (itr <= itrmax) && (err > tol)
r = -toastGradient(hmesh,hbasis,. ..

qvec,mvec,mua,mus,ref,freq);
r = r. * x; % parameter scaling
if itr > 1
delta_old = delta_new;
delta_mid = r’ * s;

s = r;
if itr == 1
d = s;
delta_new =r’ * d;

else
delta_new = r’ * s;
beta = (delta_new - delta_mid) / delta_old;
d = s + d*beta;

end
step = toastLineSearch(x,d,step,. ..
err,@objective);
x = x + d*step;

Fig. 12 Top: sinograms of relative logarithmic amplitude (left) and phase boundary data differences
(right) between background parameters and an inclusion of increased absorption (“haemorrhage”) in
the cortical layer. The images in the bottom row show the projections onto the surface of the field
differences from a single source opposite the inclusion. (An animation showing the projected inclusion
from all sources is available online.)
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proj = toastProject(hmesh,x,ref,. ..
freq,qvec,mvec);
err = toastObjective(proj,data,sed,. ..
hreg,x);

end

As a further example, the followingMATLAB code fragment
implements a damped GN scheme with line search, given by the
update rule

xðkþ1Þ ¼ xðxÞ þ α½JTðxÞJðxÞ
þ τR 0 0ðxÞ�−1fJTðxÞ½y − fðxÞ� − τR 0ðxÞg; (10)

% Parameter reconstruction: GN iteration
mua = mua_estimate;
mus = mus_estimate;
x = [mua;mus]; % parameter vector
logx = log(x); % reconstruct for log
while (itr <= itrmax) && (err > tol)
% Jacobian at current estimate
J = toastJacobian (hmesh,hbasis,. ..
qvec,mvec,mua,mus,ref,freq;
m = size(J,1); % data space dimension
p = size(J,2); % parameter space dimension
J = spdiags(1./sd,0,m,m) * J;
% data normalisation
J = J * spdiags(x,0,p,p);
% parameter normalisation
J = J * spdiags(M,0,p,p);
% Hessian normalisation
g = J’ * ((data-proj)./sd) - ...
hreg.Gradient(x);

% Gradient of cost function; hreg is
% a handle for a regularisation object
dx = toastKrylov(x,J,g,M,hreg,1e-2);
% Obtain an update with Toast’s
% implicit Krylov solver: toastKrylov
% computes dx = (J’ * J) \ r without
% explicitly forming the Hessian
% H = J’ * J.
step = toastLineSearch (logx,dx,...
step,err,@objective);
% Line search for step size
% ‘objective’ is callback function for
% computing objective function for
% given parameter values
logx = logx + dx*step;
% add update to estimate
x = exp(logx); % map to linear parameters
mua = x[1:p]; % extract absorption
kap = x[p+1:end]; % extract diffusion

end

Where toastJacobian returns the Jacobian matrix J
for the DOT problem for a given set of absorption and
diffusion parameter coefficients, toastKrylov solves
ðJTJþ τR 0 0Þx ¼ g, toastLineSearch implements an
inexact 1-D line search for step length α, and hreg is
a regularization object that supports the evaluation of value, gra-
dient R 0 and Hessian R 0 0 of the regularization term R. In this
example, the parameter vector x is transformed to logarithmic
values, ensuring a restriction to positive values.

Where the computation of the Jacobian matrix is impractical
due to its size, the solver can be modified to use a matrix-free
approach, where the Frechet derivative Jx and adjoint Frechet

Fig. 13 Example for a MATLAB graphical interface to the DOT forward solver.
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derivative JTy are evaluated implicitly by function calls rather
than using an explicit matrix representation. This allows
the application of the GN solver to large-scale problems with
a combination of high-grid resolutions and a large number of
measurements.

A graphical user interface (GUI) MATLAB application for
the DOT inverse problem included in the Toast++ package is
shown in Fig. 14.

An example of a reconstruction of the spatial distribution of
the two coefficients in a cylindrical domain is shown in Fig. 15.
In this example, frequency-domain forward data were generated
on a mesh with 83,142 nodes and 444,278 tetrahedral elements,
for all combinations of 80 sources and 80 detectors, arranged in
five rings around the cylinder mantle. The forward mesh geom-
etry, as well as source (red) and detector positions (blue) are
shown in Fig. 15(a).

The data were then contaminated with 1.0% additive random
Gaussian noise and used as an input for a GN reconstruction
with TV regularization into a regular 48 × 48 × 48 grid of tri-
linear basis functions. The mesh used by the inverse solver
was coarser with 27,084 nodes and 141,702 tetrahedra elements.
Figures 15(b) and 15(c) show cross sections of the target and
reconstructed parameter distributions after 10 GN iterations.
Figure 15(a) shows isosurfaces of the target and recovered inclu-
sions at value 0.012 for μa and 1.2 for μs.

5.3 Regularization and Structural Priors

The Toast library contains regularization classes for augmenting
the objective function of the inverse problem with a regulariza-
tion term. Supported methods include Tikhonov, TV, and
Markov random field (MRF) regularizers. In addition, structural
information, such as internal boundaries with step changes in

parameters can be incorporated by spatially varying regulariza-
tion. Boundary information can be provided as a raster image,
which can for example be obtained from a segmented magnetic
resonance imaging or computed tomography image.

Using the MATLAB bindings, a TV regularization object can
be created with

hreg = toastRegul(‘TV’, hbasis, x, tau,
‘Beta’, beta);

Where ‘TV’ denotes the regularization method (here a TV
scheme), hbasis is the handle of a basis mapper object, x is
the initial parameter vector, and tau is the regularization hyper-
parameter. In addition to these fundamental parameters required
by all regularization constructors, individual regularization
schemes may require addtional arguments. In this case, the
TV object is supplied with a threshold parameter beta.
After construction, the regularization object can be queried to
return a value, gradient, second derivative, or its diagonal,
given a parameter vector x:

v = hreg.Value(x);
g = hreg.Gradient(x);
H = hreg.Hess(x);
Hdiag = hreg.HDiag(x);

In addition to the TV prior, Toast supports a range of other
regularization strategies, including Tikhonov, Huber, or Perona-
Malik methods. With each regularization method, Toast also
allows the inclusion of structural prior information about inter-
nal boundaries. This information is provided to the regulariza-
tion constructor as an image of a diffusivity field. This allows
application of the regularization term in a spatially varying

Fig. 14 GUI sample application for the DOT inverse solver included in the Toast-MATLAB toolbox.
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manner. For the definition of a TV prior, the constructor would
then be specified as

hreg = toastRegul(‘TV’, hbasis, x,...
tau, ‘Beta’, beta,‘KapRefImage’, img, ...
‘KapRefScale’, scale,...
‘KapRefPMThreshold’, th);where scale is a

global scaling factor for the diffusivity image, and th is
the Perona-Malik25 threshold as a fraction of
the maximum image value.

The right image of Fig. 15(a) and the bottom rows of
Figs. 15(b) and 15(c) show the results of a GN reconstruction
of the absorption and scattering distributions in a cylinder, using
a MRF regularization scheme that is based on the neighborhood

graph of the reconstruction basis. Structural prior information
was included, where the shapes and locations of the internal
features were assumed known. Consequently, the results are
significantly better than the generic TV reconstruction shown in
the same image. All objects are recovered with correct shape and
locations. Recovery of feature contrasts is also very good,
except, in the case with no prior, for the most challenging
features consisting of the small high-contrast absorption feature,
and the absorption feature embedded in a highly scattering
sphere.

6 Further Applications
In addition to the examples of light propagation and optical
parameter reconstruction from frequency-domain measurement
data presented in this paper, Toast++ can be applied to different

Fig. 15 Reconstruction of absorption and scattering features in a cylindrical object. (a) Left: target with
absorption (red) and scattering features (blue). Source and detector positions on the surface are marked
with white and cyan points, respectively. Middle: isosurfaces of features reconstructed with a generic TV
regularizer. Right: reconstruction results with structural MRF prior. (b) Cross sections of absorption
distributions. Rows from top to bottom: target, generic TV reconstruction, structural MRF prior
reconstruction. (c) Cross sections of scattering distributions. Rows from top to bottom: target, generic
TV reconstruction, and structural MRF prior reconstruction.
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problems, such as chromophore reconstruction from multiwave-
length measurements,26 or fluorescence imaging.27 While Toast
++ has been developed primarily for applications in DOT,
the core finite-element libraries can be adopted in other fields
of research, such as linear elasticity for tissue deformation
modeling.9

Instead of reconstructing parameters in a regular basis, Toast
is also able to recover piecewise constant region parameters,
based on the known internal structure of the target volume.
This approach can be combined with a shape-based recon-
struction approach, where the boundaries of regions with
distinct piecewise constant parameter values are recovered as
well as their contrast. Shape-based reconstruction problems
applied to Toast include explicit methods such as spherical har-
monics,28,29 as well as implicit methods such as level sets.30

7 Discussion
We have presented the Toast++ software suite of libraries and
programs for light transport modeling and image reconstruction
in DOT. The library supports simulation of diffuse light trans-
port in heterogeneous highly scattering media by using
a numerical finite-element approach. Parallel implementations
of matrix assembly and solution are supported for shared and
distributed memory architectures. In addition, graphics proces-
sor hardware acceleration provides scalable performance for
large-scale problems.

For reconstruction of the optical parameter distributions, the
software provides the building blocks for defining the inverse
problem as an iterative minimization approach of the least-
squares problem, taking into account the ill-posedness of the
problem, and providing a range of regularization approaches.
Examples for solvers based on NCGs and GN schemes are
provided. Other types of solvers such as Markov chain Monte
Carlo approaches can be easily constructed with the functions
supported by the Toast interface.

Toast combines the efficiency of the compiled and parallel-
ized library code for sparse matrix computation and finite-
element analysis with the ease of use of script languages by
providing function bindings for the MATLAB and PYTHON
script environments. This allows the rapid prototyping of new
code, convenient testing and debugging options, and the use of
available toolsets including preconditioned linear solvers and
advanced visualization routines. Toast++, thus, allows research-
ers in the field efficient code development and adaptation to
specific problems without the need for coding of low-level
numerics code, while maintaining high performance across
a range of hardware platforms.

Future development of the Toast++ suite will include support
for additional numerical modeling strategies, reconstruction,
and regularization methods. We also plan to open up Toast
for other medical imaging applications, such as electrical impe-
dence tomography by providing appropriate application codes
and sample scripts.

8 Toast++ Library Availability and
Development

The Toast software suite, including the core C++ libraries,
MATLAB and PYTHON interfaces, and example application
codes, is published as an open-source package under a GNU
general public license. The Toast home site is located at
http://www.toastplusplus.org. It contains links to the subversion
repository with the current build, as well as binary packages for

Linux and Windows, together with tutorials, demos, sample
scripts, and documentation. Source-level documentation is pro-
vided via doxygen and can be compiled by the user.
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