6 January 2015 Activation detection in functional near-infrared spectroscopy by wavelet coherence
Author Affiliations +
Functional near-infrared spectroscopy (fNIRS) detects hemodynamic responses in the cerebral cortex by transcranial spectroscopy. However, measurements recorded by fNIRS not only consist of the desired hemodynamic response but also consist of a number of physiological noises. Because of these noises, accurately detecting the regions that have an activated hemodynamic response while performing a task is a challenge when analyzing functional activity by fNIRS. In order to better detect the activation, we designed a multiscale analysis based on wavelet coherence. In this method, the experimental paradigm was expressed as a binary signal obtained while either performing or not performing a task. We convolved the signal with the canonical hemodynamic response function to predict a possible response. The wavelet coherence was used to investigate the relationship between the response and the data obtained by fNIRS at each channel. Subsequently, the coherence within a region of interest in the time-frequency domain was summed to evaluate the activation level at each channel. Experiments on both simulated and experimental data demonstrated that the method was effective for detecting activated channels hidden in fNIRS data.
© 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
Xin Zhang, Xin Zhang, Jian Yu, Jian Yu, Ruirui Zhao, Ruirui Zhao, Wenting Xu, Wenting Xu, Haijing Niu, Haijing Niu, Yujin Zhang, Yujin Zhang, Nianming Zuo, Nianming Zuo, Tianzi Jiang, Tianzi Jiang, } "Activation detection in functional near-infrared spectroscopy by wavelet coherence," Journal of Biomedical Optics 20(1), 016004 (6 January 2015). https://doi.org/10.1117/1.JBO.20.1.016004 . Submission:

Back to Top