2 November 2015 Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging
Author Affiliations +
Abstract
We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an
© The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Kyle P. Nadeau, Kyle P. Nadeau, Tyler B. Rice, Tyler B. Rice, Anthony J. Durkin, Anthony J. Durkin, Bruce J. Tromberg, Bruce J. Tromberg, } "Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging," Journal of Biomedical Optics 20(11), 116005 (2 November 2015). https://doi.org/10.1117/1.JBO.20.11.116005 . Submission:
JOURNAL ARTICLE
10 PAGES


SHARE
Back to Top