10 March 2015 Differential in vivo urodynamic measurement in a single thin catheter based on two optical fiber pressure sensors
Author Affiliations +
Abstract
Urodynamic analysis is the predominant method for evaluating dysfunctions in the lower urinary tract. The exam measures the pressure during the filling and voiding process of the bladder and is mainly interested in the contraction of the bladder muscles. The data arising out of these pressure measurements enables the urologist to arrive at a precise diagnosis and prescribe an adequate treatment. A technique based on two optical fiber pressure and temperature sensors with a resolution of better than 0.1  cm H2O (∼10  Pa), a stability better than 1  cm H2O/hour, and a diameter of 0.2 mm in a miniature catheter with a diameter of only 5 Fr (1.67 mm), was used. This technique was tested in vivo on four patients with a real-time urodynamic measurement system. The optical system presented showed a very good correlation to two commercially available medical reference sensors. Furthermore, the optical urodynamic system demonstrated a higher dynamic and better sensitivity to detect small obstructions than both pre-existing medical systems currently in use in the urodynamic field.
© 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
Sven Poeggel, Sven Poeggel, Dineshbabu Duraibabu, Dineshbabu Duraibabu, Daniele Tosi, Daniele Tosi, Gabriel Leen, Gabriel Leen, Elfed Lewis, Elfed Lewis, Deirdre McGrath, Deirdre McGrath, Ferdinando Fusco, Ferdinando Fusco, Simone Sannino, Simone Sannino, Laura Lupoli, Laura Lupoli, Juliet Ippolito, Juliet Ippolito, Vincenzo Mirone, Vincenzo Mirone, } "Differential in vivo urodynamic measurement in a single thin catheter based on two optical fiber pressure sensors," Journal of Biomedical Optics 20(3), 037005 (10 March 2015). https://doi.org/10.1117/1.JBO.20.3.037005 . Submission:
JOURNAL ARTICLE
9 PAGES


SHARE
Back to Top