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Abstract. Reconstructing a three-dimensional scene from multiple simultaneously acquired perspectives (the
light field) is an elegant scanless imaging concept that can exceed the temporal resolution of currently available
scanning-based imaging methods for capturing fast cellular processes. We tested the performance of commer-
cially available light field cameras on a fluorescent microscopy setup for monitoring calcium activity in the brain of
awake and behaving reporter zebrafish larvae. The plenoptic imaging system could volumetrically resolve
diverse neuronal response profiles throughout the zebrafish brain upon stimulation with an aversive odorant.
Behavioral responses of the reporter fish could be captured simultaneously together with depth-resolved
neuronal activity. Overall, our assessment showed that with some optimizations for fluorescence microscopy
applications, commercial light field cameras have the potential of becoming an attractive alternative to cus-
tom-built systems to accelerate molecular imaging research on cellular dynamics. © The Authors. Published by SPIE
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1 Introduction
Neuronal activity occurs on a millisecond time scale across cell
circuits distributed over the entire nervous system. Capturing
these spatiotemporal patterns at adequate sampling rates to
uncover the underlying principles of neuronal information
processing is a grand technical challenge for systems neurosci-
ence. Recently, it became possible in transparent reporter zebra-
fish larvae expressing genetically encoded fluorescent calcium
indicators (GECIs)1,2 to detect calcium transients noninvasively
in the whole nervous system. In this vertebrate model organism,
imaging can thus deliver information about a close correlate of
neuronal activation, calcium fluxes, at much higher spatial res-
olution than is achievable with electrophysiological point
recordings. To exceed the speed of confocal or multiphoton
laser scanning methods,3 light sheet microscopy methods have
recently been developed4–6 that image an entire plane through
the object of interest at once, such that about ∼105 neurons
in an entire zebrafish larval brain can be scanned at a frequency
of about 1 Hz.4 Volumetric acquisition can be accelerated even
further by light field imaging, an elegant method that avoids
having to scan the object but instead reconstructs it volumetri-
cally from multiple views acquired simultaneously from many
different angles. This imaging method has recently been adapted
for microscopy by using arrays of microlenses projecting to

subregions of sufficiently sensitive and large image sensors.7,8

Light field microscopy (also known as plenoptic microscopy)
could thus, in principle, capture the majority of fluorescent neu-
rons in the brain of a reporter zebrafish in a single acquisition
without the need for interpolation to correct for time delays.
Neuroimaging of reporter zebrafish would benefit directly from
such a gain in imaging speed. For instance, state-of-the-art fast
light sheet microscopy, operating at about one volume per sec-
ond, still misses a substantial fraction of calcium fluctuations
detected by sensors such as GCaMP5G (rise times of ∼0.2 s and
decay rates of ∼0.7 s1,4). For faster fluorescent sensors, such as
genetically encoded voltage sensors,9 even higher frame rates10

would be required for adequate sampling. Furthermore, fast
volumetric imaging could simultaneously extract information
from fluorescent molecular sensors together with “biomechani-
cal” data from freely moving zebrafish larvae exhibiting unre-
strained behavior; this may complement virtual environment
approaches that investigate neural activity during fictive behav-
ior in immobilized zebrafish larvae.11 Lately, technical advances
have been made in acquisition and reconstruction of light field
microscopy data12–14 and three light field microscopes have been
custom-built in different laboratories specifically to image neu-
ronal activity in immobilized Caenorhabditis elegans worms
and zebrafish larvae.8,14,15 Despite the generous provision of
open access documentation on light field microscopy hardware
and open source software,16,17 an “off-the shelf” light field cam-
era system would certainly help to disseminate this comparably
straightforward and compact imaging technology for wide-
spread biological use. In this work, we thus investigated the
performance of commercially available multifocus plenoptic
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cameras18 (Raytrix GmbH) for fluorescence neuroimaging of
zebrafish larvae.

2 Results and Discussion
For initial testing of the commercial light field camera for
microscopy, we imaged the distribution of melanin containing
pigments in the head region of wild-type zebrafish larvae (6 days
post fertilization) using a custom-assembled microscopy setup
[Fig. 1(a)]. The larvae were embedded in 0.8% low-melting
agarose and imaged under white light illumination (10× objec-
tive from Nikon, 0.25 NA, FOV of ∼1.9 mm × 1.3 mm, R9μ
plenoptic camera; all animal experiments were conducted in
accordance with the guidelines approved by the government of
Upper Bavaria). As can be seen in Fig. 1, the head melanophores

of the larva and the eyes offered high contrast [Fig. 1(b)] and
their localization along the dorsoventral axis was correctly cap-
tured by the depth map calculated from the light field images
exploiting information from microlenses with different focal
lengths [Fig. 1(c)]. We subsequently tested the performance
of the plenoptic camera for fluorescence microscopy by imaging
green fluorescent beads of 1 μm in diameter (FluoSpheres car-
boxylate, Life Technologies, Carlsbad, California) embedded
in an agar phantom. The sample excitation and fluorescence
detection was achieved via a 488-nm OBIS laser (Coherent), a
dichroic mirror (510 nm, Chroma Technology Corp.), a 20×
objective (UMPlanFl N 20×, 0.5 NA, FOV 650 μm × 440 mm)
a 535∕40 nm emission filter (Chroma), and a R12μ plenoptic
camera. Figure 1(d) shows the projection of single microspheres
onto the image sensor, obtained via the microlens array

Fig. 1 Light field microscopy setup and volumetric imaging in bright field and fluorescence:
(a) Fluorescent light from the specimen is guided via a dichroic mirror and emission filter to a microlens
array projecting it to different subregions of the plenoptic camera’s image sensor (reflectance images
from white light illumination are captured without filters). (b) Reconstructed light field data obtained
from a wild-type larva showing strong contrast from naturally present pigments in the eyes (red dashed
outlines) and in the head region; (c) Corresponding depth information calculated from the light field data
with most superficial structures shown in magenta and deeper structures in blue; (d) Raw grayscale
image showing two fluorescence beads (1 μm in diameter, white and yellow arrows) embedded in
an agar phantom projected onto the image sensor via microlenses with different focal lengths (red/
green/blue circles label microlenses with close/medium/far focal lengths); and (d’) Three-dimensional
visualization of the same two volumetrically reconstructed fluorescent spheres (white and yellow arrows).
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consisting of microlenses with different focal lengths assembled
in a hexagonal configuration.18 The corresponding volumetric
reconstruction is shown in Fig. 1(d’) yielding a lateral resolution
of 6 μm and an axial resolution of 16 μm (estimated by the aver-
aged point spread function without additional postprocessing).

We were next interested to assess whether the light field
microscopy setup could detect dynamic changes of neuronal
activity in transgenic reporter zebrafish larvae with neuronal
expression of a calcium indicator (HuC:GCaMP5g, identical
optical setup as described above). To this end, we restrained

Fig. 2 Spatiotemporal patterns of neuronal responses to an aversive odor captured by light field micros-
copy: (a) Three transverse planes selected from the volumetric reconstruction of a single frame captured
by the plenoptic camera showing fluorescence signals from the brain of a calcium reporter zebrafish
larva (7-day-old HuC:GCaMP5g) during stimulation with the aversive odorant cadaverine; (b–b’)
Corresponding top-down maximum intensity projection with a colored overlay of regions of interest
(ROIs) automatically selected for their substantial fluorescent signal changes in response to cadaverine.
The color indicates the clusters of ROIs with high correlation between their corresponding temporal signal
profiles shown in (b’). Delivery of cadaverine occurred during the omitted time points (dark gray area
labeled “cad”). The white broken lines indicate the peak fluorescence signal of the deep purple trace
as a reference to appreciate the earlier responses in the yellow and green traces; (c–c’) Schematic draw-
ings of the larval brain seen from dorsal (c) and lateral views (c’) also indicating the site where the odorant
cadaverine (cad) was presented. OE: olfactory epithelium, OB: olfactory bulb, OT: optic tectum, and Hb:
habenula. (d) Rendered imaging volume showing simultaneous imaging of neuronal activity (high counts
from fluorescence shown on color scale) and tail movements (low counts shown on grayscale) in
response to cadaverine stimulation [deflection of the tail’s axis from the dashed white line is shown
for a second time point (t2)]. Clustered ROIs are shown on a top-down maximum intensity projection
in the inset on the lower left and color-coded signal time courses are shown on the right. Tail deflections
coincident with some neuronal activations are represented as gray bars.
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zebrafish larvae in 0.8% low-melting agarose not covering the
nose. We stimulated the larvae with the odorant cadaverine
(Cad, 10-μM solution), a diamine generated by decarboxylation
of the amino acid lysine during decomposition of flesh, which is
known to evoke olfactory-related neural activity and avoidance
responses in zebrafish larvae.19,20 Figure 2 shows three image
planes through the volumetrically reconstructed light field
dataset [Fig. 2(a)], as well as a top-down maximum intensity
projection [Fig. 2(b)] showing robust fluorescent signal.
Regions of interest (ROIs) could be automatically selected
based on thresholding voxel signal changes in response to
cadaverine and clustered with respect to the correlation (cor-
relation coefficient larger than 0.8) of their respective baseline-
corrected time courses [color coded in Fig. 2(b’)]. Clusters of
activity could be found in the olfactory bulb (OB) and habe-
nula (Hb), the latter considered to be involved in relaying odor-
evoked behavioral responses,19,20 as well as in some neurons of
the optic tectum (OT) [Figs. 2(b)–2(c)]. Whereas calcium signal
amplitudes increased in the OB after cadaverine delivery [the
delivery period is labeled “cad” on the gray area in Fig. 2(b)] dur-
ing the observed timewindow, they partially decreased after peak-
ing a few seconds after delivery of cadaverine (white broken lines
in all traces); signal trajectories in the OT showed the first
response peak occurring ∽1 s earlier than in the OB followed
by multiple weaker calcium waves.

Next, we explored whether we could simultaneously capture
neuronal activity while recording behavioral responses to the
aversive odorant using the light field microscopy setup. To
this aim, we embedded HuC:GCaMP5g larvae in agarose
such that the tail was free to move and chose a 5× objective
to obtain a field of view covering the entire larva. After cadav-
erine delivery, evoked neuronal calcium fluxes were recorded
while concurrent tail movements were detected that are indica-
tive of avoidance responses21 [Fig. 2(d)]. Cluster analysis on
automatically detected ROIs on this dataset interestingly showed
activation in areas of the hindbrain that were in synchrony with
the tail movements [gray bars underneath the signal time courses
in Fig. 2(d)].

In summary, using a commercially available plenoptic cam-
era (Raytrix GmbH) mounted on a custom-built microscope, we
were able to volumetrically resolve calcium-dependent fluores-
cent signal changes elicited by the aversive odorant cadaverine
in the brains of behaving zebrafish larvae. The capability of light
field microscopy to acquire an entire volume in a single shot
enabled us to detect diverse temporal response profiles from
neuronal structures at different depths throughout the larval
brain that motivate future detailed investigations. The current
turn-key plenoptic camera could be successfully used to extract
meaningful volumetric information about calcium signaling in
distinct brain regions of reporter fish. However, both the spatial
and temporal resolutions of the imaging system could be
strongly improved by combining custom-designed multilens
arrays and optimized reconstruction algorithms with scientific
sCMOS image sensors that should provide an about four
times higher sensitivity. These hardware improvements could
be effectively complemented by the use of reporter fish express-
ing GECIs localized to the cell nucleus (as opposed to the entire
cell), thereby aiding volumetric extraction of cellular calcium
transients from the nonisotropic voxels obtained from current
light field microscopy setups. As light field imaging is an
elegant solution for fast molecular bioimaging applications, it
is to be hoped that plenoptic cameras could be further optimized

for fast fluorescence microscopy and be made more widely
available to the biomedical research community.
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