
Accelerated image reconstruction in
fluorescence molecular tomography
using a nonuniform updating scheme
with momentum and ordered subsets
methods

Dianwen Zhu
Changqing Li



Accelerated image reconstruction in fluorescence
molecular tomography using a nonuniform updating
scheme with momentum and ordered subsets
methods

Dianwen Zhu and Changqing Li*
University of California, Merced, School of Engineering, 5200 N Lake Road, Merced, California 95343, United States

Abstract. Fluorescence molecular tomography (FMT) is a significant preclinical imaging modality that has been
actively studied in the past two decades. It remains a challenging task to obtain fast and accurate reconstruction
of fluorescent probe distribution in small animals due to the large computational burden and the ill-posed nature
of the inverse problem. We have recently studied a nonuniform multiplicative updating algorithm that combines
with the ordered subsets (OS) method for fast convergence. However, increasing the number of OS leads to
greater approximation errors and the speed gain from larger number of OS is limited. We propose to further
enhance the convergence speed by incorporating a first-order momentum method that uses previous iterations
to achieve optimal convergence rate. Using numerical simulations and a cubic phantom experiment, we have
systematically compared the effects of the momentum technique, the OS method, and the nonuniform updating
scheme in accelerating the FMT reconstruction. We found that the proposed combined method can produce a
high-quality image using an order of magnitude less time. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI:

10.1117/1.JBO.21.1.016004]
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1 Introduction
Fluorescence molecular tomography (FMT) has been an impor-
tant tool for preclinical imaging in the past two decades and has
attracted a lot of research interests.1,2 In FMT, fluorescent agents
(e.g., fluorophores) are injected into the object such as small
animals. Upon illumination by near-infrared laser beams on
the object surface, the fluorophores then become excited and
start emitting fluorescence photons, which propagate out of
the object surface and are captured by detectors such as
charge-coupled device (CCD) cameras. Due to the high-scatter-
ing effects of photons in tissues, the FMT system matrix is usu-
ally ill-conditioned and the reconstruction problem ill-posed.
Immense efforts have been devoted to experimentally alleviating
the ill-posedness such as collecting more measurement data by
using dense noncontact CCD cameras, employing multispectral
wavelengths for both excitation and emission,3–5 and using dif-
ferent illumination patterns.6–8 These indeed improved the
image resolutions. However, they led to the processing of
large amounts of three-dimensional (3-D) data, which requires
tremendous computational time. From the theoretical aspect, a
plethora of nonlinear regularization methods has also been
applied,9–17 which again have caused additional complexity in
computations. The non-negativity constraint in FMT
reconstruction is another challenge. This constraint has been
typically handled by a backtracking line search strategy,14

which is time consuming for large-scale measurement data.

To reduce the computational burden, many ideas from other
fields have been introduced to FMT. Fourier transform,18 wave-
let transform methods,19,20 discrete cosine transform,21 and prin-
cipal component analysis methods22 have been adopted to
compress the data and reduce its dimension. The ordered subsets
(OS) method,23 originally introduced to speed up emission/
transmission tomography by breaking down large system matrix
into smaller blocks, has recently been successfully adopted into
FMT by employing the majorization-minimization (MM)
framework.14,17,24,25 In contrast with other methods that need
a slow line search in handling the non-negativity constraint,
the MM framework has the advantage of reducing the optimi-
zation into separable one-dimensional problems and hence the
non-negativity constraint can be enforced straightforwardly in a
parallel way.26 In particular, the nonuniform multiplicative MM
algorithm with OS acceleration (NUMOS) that we proposed
recently has been found to significantly improve the FMT
image reconstruction speed and quality.25 Nevertheless, the
MM algorithm is a first-order method and typically needs a
lot of iterations to converge.

Another direction in reducing the computational cost is to
improve the convergence rate of the FMT reconstruction algo-
rithms. Compared with first-order methods, second-order
methods such as Newton-type algorithms have faster conver-
gence; however, the computation of Hessian is very demanding.
Recently a class of momentum acceleration techniques from
Nesterov has been found to achieve optimal convergence rate
for a class of gradient descent-based methods whose
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computational complexities are at linear level.27,28 In FMT, Han
et al.11 applied recently the fast iterative shrinkage thresholding
algorithm (FISTA),29 which is based on the 1983 version of the
Nesterov’s technique.27 Momentum methods have been com-
bined with the OS techniques for an even faster convergence
in computed tomography (CT) very recently.30

In this paper, we propose to include the 2005 version of
Nesterov’s momentum method28 into our NUMOS algorithm
for a faster and stable convergence, since the 1983 version
was not as stable.30 The concept and some preliminary results
of this paper have appeared earlier in a conference paper.31 Note
that our work is different from the aforementioned work in CT in
two ways: first, the regularization they used is an edge-preserv-
ing Huber type of function that promotes local smoothness
whereas our model for FMT uses L1 to promote sparsity; sec-
ond, their surrogate functions are either a spatially uniform type
or a nonuniform type that depends on a good estimate of the true
solution, which is readily available in CT through the filtered
back-projection reconstruction,30 but not in FMT.

The rest of the paper is organized as follows. In Sec. 2, we
first introduce the background of FMT forward modeling, regu-
larized reconstruction, the MM framework, the OS technique,
and the Nesterov’s momentum method. Then we propose our
fast NUMOS (fNUMOS) algorithm. In Sec. 3, we present
both numerical simulation and phantom experiment results
and comparison of fNUMOS with other methods. In Sec. 4,
we conclude the paper with summary and some discussions.

2 Methods

2.1 Forward Modeling and Regularized
Fluorescence Molecular Tomography
Reconstruction

For FMT in the continuous-wave domain, photon transfer is
modeled by the following coupled diffusion equations, along
with Robin-type (mixed) boundary conditions:

EQ-TARGET;temp:intralink-;e001;63;353

8>><
>>:

−∇ · ½DexðrÞ∇ΦexðrÞ�þμa;exðrÞΦexðrÞ ¼ΔsðrÞ
n · ½DexðrÞ∇ΦexðrÞ�þαexΦexðrÞ ¼ 0

−∇ · ½DemðrÞ∇ΦemðrÞ�þμa;emðrÞΦemðrÞ ¼ΦexðrÞxðrÞ
n · ½DemðrÞ∇ΦemðrÞ�þαemΦemðrÞ ¼ 0

;

(1)

where ∇ denotes the gradient operator, DexðrÞ ¼ f3½μ 0
s;exðrÞ

þμa;exðrÞ�g−1 and DemðrÞ¼f3½μ0
s;emðrÞþμa;emðrÞ�g−1, with

μa;exðrÞ and μa;emðrÞ being the absorption coefficients and
μ 0
s;exðrÞ and μ 0

s;emðrÞ being the reduced scattering coefficients
at excitation and emission wavelengths, ΦexðrÞ and ΦemðrÞ
are the photon densities, r is the location vector, Δs is deter-
mined by the s’th illumination pattern [for example, point
sources δsðr − rsÞ], xðrÞ is the product of the unknown fluores-
cence dye concentration and the quantum yield at each node to
be reconstructed, n is the outward unit normal vector of the
boundary, and αex and αem are the Robin boundary coefficients.

The above equations can be discretized by the finite element
method (FEM), leading to linearized equations:4,32

EQ-TARGET;temp:intralink-;e002;63;120½Kex�½Φex� ¼ ½δsðr − rsÞ� ½Kem�½Φem� ¼ ½Φex�½x�; (2)

where Kex and Kem are the stiffness matrices. Then we obtain

EQ-TARGET;temp:intralink-;e003;326;752½Φem� ¼ ½K−1
em� ⊗ ½K−1

ex �½x�; (3)

which, upon the removal of equations, corresponding to the
unmeasurable nodes, becomes

EQ-TARGET;temp:intralink-;e004;326;708Ax ¼ b; (4)

where A ¼ ðaijÞ ∈ RNm×Nn , aij > 0 is the system matrix,
obtained by taking the tensor product⊗ of the sensitivity matrix
½K−1

em� and the excitation matrix ½K−1
ex �, x ¼ ðxjÞ ∈ RNn×1 is the

fluorophore distribution to be reconstructed, b ¼ ðbiÞ ∈ RNm×1

is the measurements, and Nm and Nn are the total number of
measurements and FEM mesh nodes, respectively.

A typical solution of Eq. (4) is obtained by minimizing the
following regularized squared data-measurement misfit under
the non-negativity constraint:

EQ-TARGET;temp:intralink-;e005;326;583x ¼ arg min
x;x≥0

ΨðxÞ :¼ 1

2
kAx − bk22 þ λkxk1; (5)

where λ is the L1 regularization parameter and kxk1 ¼
PNn

j¼1 xj
represents the L1 regularization when x ≥ 0. Notice that there
are other popular choices of the regularization function RðxÞ,
including the Lp (semi-) norm: RðxÞ ¼ kxkpp, p ≥ 0.

2.2 Majorization-Minimization Algorithm

The MM algorithm, also known as optimization transfer algo-
rithm, is a general framework for solving minimization prob-
lems where an approximation of the objective function, often
referred to as the majorization or surrogate function, is mini-
mized at every step. The approximated solution using MM algo-
rithm will converge to the true solution of Eq. (5) as the problem
is convex.33 MM algorithm has known advantages in optimiza-
tion problems including avoiding matrix inversions, linearizing
an optimization problem, dealing gracefully with inequalities,
and so on.33 Many powerful algorithms can be understood
from the MM point of view, especially the gradient-based meth-
ods such as iterative shrinkage thresholding algorithm,34 itera-
tively reweighted L1 algorithm,35 and iteratively reweighted
least squares.36

The definition of a surrogate function ΨsurðxÞ in the
minimization problem includes the following three require-
ments:

EQ-TARGET;temp:intralink-;e006;326;279

8<
:

ΨsurðxÞ ≥ ΨðxÞ; for all x;
ΨsurðxnÞ ¼ ΨðxnÞ; at some point xn;
∇ΨsurðxnÞ ¼ ∇ΨðxnÞ; at point xn:

(6)

It is generally believed that in MM framework, there is no opti-
mal way of choosing the surrogate functions.25 In the popular
separable quadratic surrogates (SQS) algorithm,37,38 the surro-
gate function Ψkðx; xkÞ was chosen based on a Jensen inequality
for least squares, which was first proposed by de Pierro.39

Adding in the L1 regularization, we have
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ΨðxÞ¼1

2
kb−Axk22þλkxk1

≤Ψkðx;xkÞ:¼1

2

XNm

i¼1

XNn

j¼1

βij

�
bi−ðAxkÞi−

aij
βij

ðxj−xkjÞ
�
2

þλ
XNn

j¼1

xj

¼ΨðxkÞ−
XNn

j¼1

�XNm

i¼1

½bi−ðAxkÞi��aij−λ
�
�ðxj−xkjÞ

þ1

2

XNn

j¼1

�XNm

i¼1

a2ij
βij

�
ðxj−xkjÞ2

¼ΨðxkÞþ∇ΨðxkÞ·ðx−xkÞþ1

2

����x−xk
����
2

Dk

; (7)

where βij > 0 with
PNn

j¼1 βij ¼ 1 and Dk ¼ diagðdkjÞ with

dkj ¼
PNm

i¼1

a2ij
βij
. The above surrogate function can be minimized

by choosing

EQ-TARGET;temp:intralink-;e008;63;540xkþ1
j ¼ fxkj − ½∇ΨðxkÞ�j∕dkjgþ; (8)

for each component xj, where f·gþ ¼ maxð0; ·Þ, representing
the positive part of any function.17 This is a gradient descent-
type algorithm with different step size dj for each component xj.

2.3 Nonuniform Weighting Parameter βi j

The choice of the weighting parameter βij for the Jensen
inequality is crucial in determining how well the surrogate
approximates the original objective function and also how
fast the corresponding iterative algorithm [Eq. (8)] converges.
Traditionally, the SQS was chosen in a uniform additive way,
which can be precomputed and needs no iterative
updates:14,17,37,38

EQ-TARGET;temp:intralink-;e009;63;364βAij ¼
aijPNn
l¼1 ail

: (9)

The corresponding step size is

EQ-TARGET;temp:intralink-;e010;63;309dj ¼ ðAtA1Nn
Þj; (10)

where 1Nn
is the Nn-dimensional vector with all entries equal 1,

and the update equation [Eq. (8)] becomes

EQ-TARGET;temp:intralink-;e011;63;259xA;kþ1

j;L1 ¼
�
xkj þ

ðAtbÞj − ðAtAxkÞj − λ1
ðAtA1Nn

Þj

�
þ
: (11)

Note the uniform additive type of βij has a more general form as
follows:25

EQ-TARGET;temp:intralink-;e012;63;188βgAij ¼ aqijPNn
k¼1 a

q
ik

; q > 0: (12)

Uniform weighting, however, ignores the different updating
needs at different positions, which could hinder the convergence
of iterations to the true solution.40 Nonuniform weighting strat-
egy has been reported recently to improve image qualities in
CT.40,41 In our previous work, we proposed to solve the L1 regu-
larized least squares optimization problem [Eq. (5)] by using the
following nonuniform multiplicative type βij:

26,38,42

EQ-TARGET;temp:intralink-;e013;326;752βMij ¼ aijxkj
ðAxkÞi

; where ðAxkÞi ¼
XNn

l¼1

ailxkl : (13)

In comparison with the uniform additive βAij that only needs to be
calculated once, this nonuniform βij needs to be updated at each
iteration. However, we noticed that with the nonuniform type of
βMij , we have26

EQ-TARGET;temp:intralink-;e014;326;667dkj ¼
ðAtAxkÞj

xkj
(14)

and the associated iterative update equation [Eq. (8)] becomes

EQ-TARGET;temp:intralink-;e015;326;608xkþ1
j;L1 ¼ xkj

½ðAtbÞj − λ1�þ
ðAtAxkÞj

; (15)

which is much simpler and requires less calculations when com-
pared with the additive form of Eq. (9). Equation (15) also nat-
urally promotes non-negativity and sparsity, since once xkj ¼ 0,
xj remains 0.

2.4 Ordered Subsets Acceleration Technique

Due to the large scale of 3-D data, tomographic imaging requires
a lot of computational time. The OS technique was proposed in
1994 for emission/transmission tomography to evenly break-
down large matrices into smaller blocks, so that a speed up
of the convergence by a factor proportional to nOS, the number
of subsets, is possible.23,38 In FMT, the OS technique has been
successfully applied recently, where the sensitivity matrix has
been divided into OS.14,26 In particular, combining the nonuni-
form update with this OS technique, we have proposed NUMOS
(see Algorithm 1) for FMT, which has provided significant
speed enhancement over the uniform methods,14,17 while main-
taining high-quality reconstruction results.26

However, there are a few known issues with the OS tech-
nique. One is that the selection of OS can be difficult when
the geometry is complicated. In the study of mouse-shaped
numerical phantom, we balanced our selection of subsets by

Algorithm 1 NUMOS.

Initialization: x0 ¼ x0 � 1n , B ¼ ðAtb − λ∕nOS � 1Nn
Þþ

for k ¼ 1 to Nmax∕nOS do

Divide A and B into nOS submatrices, fAignOS
i¼1 , fBignOS

i¼1 , based on a
random partition of the Nd detectors

for i ¼ 1 to nOS do

l ¼ ðk − 1Þ � nOSþ i

xkþ1 ¼ Bi : � xk :∕ðAt
i AixkÞ

end for

end for

where 0 < x0 < 1 is randomly picked, Nmax is the number of iterations,
nOS is the number of subsets, :� and :∕ are the entry-wise
multiplication and division, respectively.
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randomly generating them at each iteration, which slowed down
the acceleration from the OS technique.26 Another issue with
this OS technique is that, like other block-iterative methods,
increasing the number of OS leads to larger approximation
errors, causing the convergence of iterative updates to stop at
a limit-cycle before approaching the minimum.43 Different
approaches have been proposed to address this limit-cycle
issue, but again at the expense of slowing down the overall con-
vergence.44–46

2.5 Nesterov’s Momentum Acceleration Techniques

Another approach to reduce the computational burden is to
design improved algorithms with faster convergence rates.
Recently, a series of momentum techniques of Nesterov27,28

have emerged, using previous iterations to obtain optimal con-
vergence rates for first-order optimization methods. In particu-
lar, based on the 1983 version of the Nesterov’s technique, the
algorithm FISTA29 was developed, the application of which in
FMTwill be analyzed in Sec. 4. We chose to focus on the 2005
version of the Nesterov’s technique28 (see Algorithm 2) in this
paper, since it provides more stability without requiring much
extra calculations than the 1983 version.27,30 This 2005
Nesterov’s technique has attracted quite some attention
recently.30,47 In particular, Kim et al.30 has considered the com-
bination of this technique with the OS method in CT26.

2.6 Proposed Nonuniform Multiplicative Updating
Scheme Accelerated by Ordered Subsets and
Momentum Method

The Nesterov’s techniques are based on the gradient method,
which from the MM algorithm point of view, is equivalent to
using the following surrogate function for ΨðxÞ:29

EQ-TARGET;temp:intralink-;e016;63;384Ψkðx; xkÞ ¼ ΨðxkÞ þ ∇ΨðxkÞ · ðx − xkÞ þ L
2
kx − xkk2;

(16)

where L is the Lipschitz constant and is typically chosen to be
the largest eigenvalue of the system matrix A, the computation
of which is very challenging for large-scale problems.

The above choice of surrogate function [Eq. (16)] is essen-
tially assigning every component xj the same iterative step size,

which does not take into account the different updating needs
between target and background locations.40 In this paper, we
proposed to employ the nonuniform update to satisfy the differ-
ent updating needs and combine with OS method and the 2005
version of the Nesterov’s momentum technique for much faster
convergence. We refer to this new algorithm as fNUMOS (see
Algorithm 3). Note that for fNUMOS, xmPM is new term we have
to introduce, so that the nonuniform technique can be combined
with the Nesterov’s momentum technique. In addition, we fol-
lowed the method of Tseng48 to choose the weighting parame-
ters tm, which leads to a faster convergence than the original tm

as used by Nesterov in Algorithm 2.

2.7 Selection of Regularization Parameters and
Image Quality Metrics

For each type of regularization, we identified the best image that
can be reconstructed by searching through a range of values for
the regularization parameter within ½0;maxðAtbÞ�. Eleven differ-
ent criteria in optical tomography have been compared in
Correia et al.49 and the L-curve method was found to be optimal
for finding the best Tikhonov regularization parameter in image
deblurring problems. In our study, we employed two criteria: the
volume ratio (VR),50 which is defined as the ratio of recon-
structed target volume to true target volume and is related to
the sparsity of the reconstructed targets, and the Dice similarity
coefficient (Dice),51 which measures the location accuracy of the
reconstructed objects. These criteria are sufficient to evaluate the
sizes and positions of the targets. We also calculated the mean
squared error (MSE) for the simulation study when ground truth
was available, which measures the difference between recon-
structed and true fluorophore concentrations. To assess image
qualities, we also computed the contrast-to-noise ratio
(CNR),52 which measures how well the reconstructed target

Algorithm 2 Nesterov’s algorithm (2005).

Initialization: x0 ¼ v0 ¼ z0, t0 ¼ 1

for m ¼ 1 to Nmax do

tm ¼ ðm þ 1Þ∕2

xm ¼ ½zm−1 − 1
L∇Ψðzm−1Þ�þ

vm ¼
h
z0 − 1

L

Pm
l¼1 t

l−1 �∇Ψðzl−1Þ
i
þ

zm ¼
�
1 − tmP

m
l¼0

t l

�
� xm þ tmP

m
l¼0

t l
� vm

end for

where L is the Lipschitz constant for the surrogate function of ΨðzÞ at
zm−1.

Algorithm 3 fNUMOS.

Initialization: x0 ¼ x0 � 1n , z0 ¼ x0, t0 ¼ 1, B ¼ Atb − λ∕nOS � 1Nn

for k ¼ 1 to Nmax∕nOS do

Divide A and B into nOS submatrices, fAignOS
i¼1 , fBignOS

i¼1 , based on a
random partition of the Nd detectors

for i ¼ 1 to nOS do

m ¼ ðk − 1Þ � nOSþ i

tm ¼
h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðtm−1Þ2

p i
∕2

xmPM ¼ Bi : � zm−1:∕ðAt
i Aizm−1Þ

xm ¼ ðxPM Þþ
vm ¼ ½z0 −

Pm
l¼1 t

l−1 � ðxlPM − zl−1Þ�þ
zm ¼

�
1 − tmP

m
l¼0

t l

�
� xm þ tmP

m
l¼0

t l
� vm

end for

where 0 < x0 < 1 is randomly picked, Nmax is the number of
iterations, nOS is number of subsets, :� and :∕ are the
entry-wise multiplication and division, respectively.

end for
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can be distinguished from the background. The definitions of
these metrics are as follows:

EQ-TARGET;temp:intralink-;e017;63;497VR ¼ jrROIj
jROIj ; (17)

EQ-TARGET;temp:intralink-;e018;63;453Dice ¼ 2 � jrROI ∩ ROIj
jrROIj þ jROIj ; (18)

EQ-TARGET;temp:intralink-;e019;63;414MSE ¼ 1

N

XN
j¼1

ðxj − x0jÞ2; (19)

EQ-TARGET;temp:intralink-;e020;63;369CNR ¼ MeanðxROIÞ −MeanðxROBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωROIVarðxROIÞ þ ð1 − ωROIÞVarðxROBÞ

p : (20)

where x and x0 are the reconstructed and true fluorophore con-
centrations, respectively, rROI is the reconstructed region of
interest that is defined to be the voxels whose concentrations
are higher than 50% of the maximum of reconstructed
concentrations, ROI is the true region of interest or the true
target locations, ROB is the true background region,
ωROI ¼ jROIj∕ðjROIj þ jROBjÞ, and j · j is the number of ele-
ments. Generally, the VR and Dice are closer to 1, the smaller
MSE, the larger CNR, the better. In this paper, we especially
focus on the VR and Dice values since they measure sparsity
and accuracy of target positions.

3 Results

3.1 Numerical Simulation

To validate our algorithm for FMT in small animals, we simu-
lated a mouse by first obtaining the surface mesh of the
Digimouse,53 then using Tetgen54 to regenerate a uniform inter-
nal mesh with a total of 32,332 nodes and 161,439 tetrahedral
elements. We then simulated two capillary tubes at the center of
the mouse trunk, each having a diameter of 2 mm and length
20 mm. For simplicity, we assigned the fluorophore concentra-
tion to be 1 for all the nodes inside the two tubes and 0 outside.
We selected 60 internal nodes as laser source points, uniformly

distributed on five rings around the trunk, and we set all the
4020 surface nodes that cover the trunk to be detectors. The
simulated tissue optical properties were μa ¼ 0.007 mm−1,
μ 0
s ¼ 0.72 mm−1 at both the excitation wavelength (650 nm)

and the emission wavelength (700 nm). White Gaussian
noise was added to the simulated measurement data, so that
the signal-to-noise ratio (SNR) of the measurement data was 1.

For the reconstruction, we employed the L1 regularization
since the targets are sparse. We started iterations from the
same randomly picked uniform initial point x0 and reconstructed
the fluorophore distribution using five different algorithms:
(a) uniform update, (b) nonuniform update, (c) NUMOS with
nOS ¼ 24, (d) fNUMOS with nOS ¼ 1, and (e) fNUMOS
with nOS ¼ 24, so that we can see how each part of the pro-
posed algorithm was making a difference toward a faster con-
vergence, while maintaining a high-quality result. For the
uniform update, we chose the regularization parameter
λ1 ¼ 6.5 × 10−4, and for the nonuniform update, we set the
regularization parameter to be λ1 ¼ 1 × 10−3 as before.17,26

The maximum number of iterations was set to be 2000.
In Fig. 1(a) and Table 1, we can see that even with 2000 iter-

ations, the uniform method is still far away from obtaining a
close-to-truth result, the reconstructed targets are very large
(VR ¼ 6.84 and Dice ¼ 0.20), with very low image intensities,
relatively low CNR, and large MSE. We see a clear boost of

Fig. 1 (Selected) Coronal slices of the reconstructed simulated mouse image from bottom to top, using
(a) uniform method, Uniform1, at 2000 iterations, (b) NUMOS with nOS ¼ 1, at 1310 iterations,
(c) NUMOS with nOS ¼ 24, at 53 iterations, (d) fNUMOS with nOS ¼ 1, at 121 iterations, and
(e) fNUMOS with nOS ¼ 24 at 5 iterations. The truth image is shown in (f). Along the white dotted
lines, profiles will be shown in Fig. 2.

Table 1 Comparison of VR, Dice, CNR, MSE, Time (s), and number
of iterations for the FMT reconstruction of the simulated mouse using
different algorithms.

Method VR Dice CNR MSE Time (sec) Iterations

Uniform 6.84 0.20 4.83 2.94E − 3 563.46 2000

NUMOS1 1.01 0.58 9.94 1.74E − 3 491.28 1310

NUMOS24 1.01 0.58 9.81 1.80E − 3 106.97 53

fNUMOS1 1.02 0.59 9.54 1.69E − 3 35.13 121

fNUMOS24 1.01 0.59 10.27 1.70E − 3 10.02 5
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image qualities from Fig. 1(b) when we use the nonuniform
update, i.e., NUMOS with nOS ¼ 1. From Table 1, we see
that NUMOS1 used only 1310 iterations to produce a much bet-
ter result with VR about 7× smaller, Dice about 3× higher, CNR
2× higher, and MSE about 2× smaller. When nonuniform
update was combined with nOS ¼ 24 or the Nesterov’s tech-
nique, we see that less computational time was needed to obtain
a similar quality image. In adddition, we see that fNUMOS1 was
around 3× faster than NUMOS24, using approximately 35 and
107 s, respectively. This implies that the Nesterov’s momentum
acceleration technique is more effective than the OS technique.
Finally, when we combine both OS and Nesterov techniques
with the nonuniform update, only 5 iterations and 10 s were
needed to reach an image with high quality as shown in
Fig. 1(e), which implies a speed up of about 10× than the

NUMOS algorithm we previously studied.26 From the profile
plots in Fig. 2, we can also verify that the quality of the recon-
structed image from uniform method is poor, while images from
the NUMOS and fNUMOS methods are much better.

3.2 Phantom Experiment

Next we used a set of data from cubic phantom experiments to
validate the acceleration effects of our proposed fNUMOS
method for FMT. The cubic phantom was of dimension
32 mm × 32 mm × 29 mm and was composed of 1% intralipid,
2% agar, and water in the background. We inserted two capillary
tubes with length 12 mm and diameter 1 mm as targets, in which
both 6.5 mm DiD (D307, Invitrogen corporation) fluorescence
dye solution and uniformly distributed 18½F�-fluoro-2-deoxy-D-
glucose (FDG) at activity level of 100 μCi were injected. The
cubic surface was extracted first and then the FEM mesh was
generated, consisting of 8690 nodes and 47,581 tetrahedral ele-
ments.5,55 For the optical imaging, laser at a wavelength of
650 nm scanned the front surface of the phantom at 20 illumi-
nation nodes. Measurements were collected at 1057 detector
nodes by using a conical mirror system and a CCD camera.4,17

The filtered excitation wavelength was at 700 nm. The tissue
optical properties were μa ¼ 0.0022 mm−1, μ 0

s ¼ 1.10 mm−1

at both 650- and 700-nm wavelengths. Details of the simulta-
neous positron emission tomography (PET) imaging can be
found in Li et al.4,5,55 We thresholded the PET images at
20% of the maximum FDG concentrations to identify the posi-
tions of the capillary tubes.

For the regularized reconstruction, we also compared the
results from the five different algorithms (as illustrated in
Fig. 3) and we empirically chose the L1 regularization parameter
λ1 to be 9 × 103 for the uniform methods and 5 × 103 for the
nonuniform algorithms. We set the maximum number of itera-
tions to be Nmax ¼ 768 for nonuniform algorithms; whereas for
the uniform cases, we allowed up to 5000 iterations for better

Fig. 2 Profiles of the reconstructed FMT images along white lines in
Fig. 1 for the numerical simulation case.

Fig. 3 Each slice corresponds to a coronary section of the reconstructed cubic phantom image from
bottom to top, using (a) uniform method, Uniform1, at 5000 iterations, (b) NUMOS with nOS ¼ 1, at
640 iterations, (c) NUMOS with nOS ¼ 24, at 32 iterations, (d) fNUMOS with nOS ¼ 1, at 84 iterations,
and (e) fNUMOS with nOS ¼ 24 at 4 iterations. The truth image is shown in (f). Along the white dotted
lines, profiles will be shown in Fig. 4.
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results. We computed the VR, Dice, and CNR for the recon-
structed images. True locations of targets were obtained from
the PET image that was acquired simultaneously. Note that
the associated intensity information of the true image was not
available so we could not compute the MSE here. From
Table 2, we see that when we chose nOS ¼ 24, fNUMOS
reached a result with VR of 1.02, Dice of 0.42, and CNR of
8.64 after four iterations, taking only 0.63 s. To obtain an
image of similar quality with the Nesterov’s momentum

technique only, fNUMOS for nOS ¼ 1 took 84 iterations and
1.34 s; with the OS acceleration alone, NUMOS for
nOS ¼ 24 took 32 iterations and 4.85 s; without any of those
two acceleration techniques, NUMOS for nOS ¼ 1 took 640
iterations and 10.42 s. So for the phantom experiment,
fNUMOS can be about 8× faster than the NUMOS we proposed
before.26 Similar to the simulation results, we can also verify
from the profile plots in Fig. 4 that the quality of the recon-
structed image from uniform method is poor, while from the
NUMOS and fNUMOS methods is much better.

4 Discussion and Conclusion
In this paper, we proposed fNUMOS, aiming to solve FMTwith
L1 regularization at a very fast speed while maintaining the
reconstruction accuracy by combining Nesterov’s momentum
technique into a nonuniform updating scheme with acceleration
from the OS method (with a relatively small number of OS). Our
iterative updating scheme for all reconstruction methods we
described in Sec. 2 was based on a separable MM framework,
which allowed for a highly vectorized code that was automati-
cally parallelized by MATLAB 2013b. We conducted our com-
putations on a dual Intel Xeon E5-2680 v2 CPU workstation
with 20 cores and 128 GB memory. Using both numerical sim-
ulation and phantom data, we compared fNUMOS with other
algorithms. We found that fNUMOS performed best in the
sense that reconstructed targets were more localized [smaller
VR, higher Dice, and smaller MSE (only for simulation
case)] than those from other methods. fNUMOS was found
to be robust for high noise levels (i.e., SNR ¼ 1) and had a sig-
nificantly faster speed of convergence. In our numerical simu-
lation study, we found a significant speed gain from the
momentum technique at about 10 times in comparison with
the NUMOS algorithm we studied before.26 For data of the
cubic phantom experiment from a smaller system matrix, the
speed gain was about eight times. This implies that
fNUMOS has great potential in obtaining higher spatial resolu-
tion when a finer mesh is used.

For a thorough comparison on how the image quality met-
rics, VR and Dice, change according to the iteration time for
uniform and nonuniform algorithms with or without the accel-
eration techniques of momentum or order subsets, we evaluated
all eight scenarios in two groups: (1) Uniform1, f þ Uniform1,
NUMOS1, and fNUMOS1, and (2) Uniform24, f þ Uniform24,
NUMOS24, and fNUMOS24. Results for the simulated mouse
data are shown in Figs. 5 and 6 for nOS ¼ 1 and nOS ¼ 24,

Table 2 Comparison of VR, Dice, CNR, Time (s), and number of iter-
ations for the FMT reconstruction of cubic phantom using different
algorithms.

Method VR Dice CNR Time (sec) Iterations

Uniform 2.50 0.33 6.62 78.25 5000

NUMOS1 1.13 0.41 7.93 10.42 640

NUMOS24 1.02 0.39 8.20 4.85 32

fNUMOS1 1.06 0.41 8.08 1.34 84

fNUMOS24 1.02 0.42 8.64 0.63 4

Fig. 4 Normalized profiles of the reconstructed FMT images along
white dotted lines in Fig. 3 for the phantom experiment.

Fig. 5 Comparison of uniform and nonuniform updates with or without the acceleration of Nesterov’s
momentum (abbreviated as “f”), when the number of ordered subsets was fixed to be 1 for the simulated
mouse.
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respectively. In both figures, we clearly see that nonuniform
update, NUMOS1, performs much better than the uniform
method, Uniform1, (blue/star versus magenta/sphere curves),
and it is even better than Uniform accelerated by the momentum
technique, f+Uniform1, (blue/star versus green/diamond
curves). Across Figs. 5 and 6, we can reaffirm that the momen-
tum technique is faster than the OS technique in accelerating the
convergence (red/plus curve in Fig. 5 versus blue/star curve in
Fig. 6). Finally when both acceleration techniques are combined
together with nonuniform update, the proposed fNUMOS24 can
achieve a high-quality reconstruction using the shortest amount
of time. For the phantom experimental data, the results from
comparison are plotted in Figs. 7 and 8. We see similar trends

as in the simulated case and fNUMOS24 again performs the
best, producing a high-quality image within a second.

For the popular FISTA algorithm that was adopted in FMT,11

we already compared it with the NUMOS1 algorithm that we
proposed in our previous work using data from phantom experi-
ments.26 We found that excluding the computational time for the
largest eigenvalue of the system matrix for the L needed in
Eq. (16), FISTA was still slower than NUMOS and the final
reconstruction results were not as good either.26 For the numeri-
cally simulated mouse with a large system matrix, we were able
to compute the largest eigenvalue with our workstation, which
alone cost about 30 min. We also explored the backtracking
version FISTA29 to estimate the L and we found that it tended

Fig. 6 Comparison of uniform and nonuniform updates with or without the acceleration of Nesterov’s
momentum, when the number of ordered subsets was fixed to be 24 for the simulated mouse.

Fig. 7 Comparison of uniform and nonuniform updates with or without the acceleration of Nesterov’s
momentum, when the number of ordered subsets was fixed to be 1 for the cubic phantom experiment.

Fig. 8 Comparison of uniform and nonuniform updates with or without the acceleration of Nesterov’s
momentum, when the number of ordered subsets was fixed to be 24 for the cubic phantom experiment.
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to reach a large L value that slowed down the convergence. As
we pointed out in Sec. 2.6, the slower convergence and poorer
image quality are due to the fact that choosing of L is essentially
assigning a uniform updating step size for each location, thus it
is not surprising that FISTA was not as efficient as our nonuni-
form methods, including the earlier NUMOS and the newly pro-
posed fNUMOS.

We noticed that the OS method (nOS ¼ 24) had limited
capability increasing the speed of nonuniform type algorithms
by around four times for the numerically simulated mouse and
around two times for the cubic phantom. That limit in speed
increase is mainly due to the choice of OS being random at
every iteration, which greatly increased the total cost. We
also see that for experimental data of smaller size, the overhead
cost from randomization will take a larger portion of the total
computational time, so that the speed up is not as significant
as for the larger simulated data. It would be of great interest
to identify an optimal deterministic way of selecting the OS,
so that we may potentially obtain a speed increase closer to
the ideal nOS times.

On the choice of the best L1 regularization parameter, we
swept through a range of values within ½0;maxðAtbÞ�. We real-
ized that the L1 regularization parameter can actually have a
range where images of similar qualities (in terms of VR,
Dice, and CNR) can be reconstructed, although the correspond-
ing numbers of iterations needed will vary accordingly. Due to
the significant reduction of computational time, we may further
investigate the optimal way to determine an appropriate regulari-
zation parameter.

For the stopping criteria for our iterative algorithms, we
found that since the convergence speed of different algorithms
varies, the stopping criteria need to be selected differently. In
addition, our OS is chosen in a randomized fashion, the errors
in between consecutive iterations also possess randomness, so no
simple stopping criteria exist. We plan to further investigate the
appropriate stopping criterion for each algorithm in the future,
especially when we can identify a deterministic selection of OS.

In summary, we have investigated in this paper the acceler-
ating effects of a Nesterov-type momentum technique on the
nonuniform updating scheme with or without the OS method.
We have obtained high-quality images using around 10× less
time with the proposed new method than some of the existing
cutting-edge methods. Our next step will be applying the pro-
posed new method to in vivo experiments.
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