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Abstract. We present a methodology for the optimization of sampling schemes in diffuse optical tomography
(DOT). The proposed method exploits singular value decomposition (SVD) of the sensitivity matrix, or weight
matrix, in DOT. Two mathematical metrics are introduced to assess and determine the optimum source–detector
measurement configuration in terms of data correlation and image space resolution. The key idea of the work is
to weight each data measurement, or rows in the sensitivity matrix, and similarly to weight each unknown image
basis, or columns in the sensitivity matrix, according to their contribution to the rank of the sensitivity matrix,
respectively. The proposed metrics offer a perspective on the data sampling and provide an efficient way of
optimizing the sampling schemes in DOT. We evaluated various acquisition geometries often used in DOT
by use of the proposed metrics. By iteratively selecting an optimal sparse set of data measurements, we showed
that one can design a DOT scanning protocol that provides essentially the same image quality at a much
reduced sampling. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.10.106004]
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1 Introduction
Diffuse optical tomography (DOT) is a promising functional im-
aging modality that uses near infrared (NIR) light in the spectral
range of 600 to 1000 nm.1 Typically, in DOT, NIR light is
injected at one location and optical projection measurements
are made at other locations either by charge-coupled device
(CCD) cameras or photomultiplier tubes (PMT). Generally, it
is favored to have large data sets for meeting higher resolution
demands and full sensitivity coverage of an imaged object.2–7

On the other hand, it is discouraged to have dense sampling
in light of scanning time and system compactness as will
be described in the following. By scanning time, we mean
the time associated with the source channel sequencing in a
multichannel system where detection can be done in parallel,
while for a single-channel system, it is associated with the
total number of paired measurements. CCD cameras offer a
wide-area detection scheme for acquiring optical projections,
but they suffer from noise problems because of a relatively
small dynamic range and a lower photo-detection sensitivity
to small photon flux signals. PMT and fiber-based photodiode
detection systems are less sensitive to the noise issues.6,8

However, in such focused detection systems, where data are
acquired by each detector channel individually, data acquisition
time for a successful image reconstruction can be substantially
increased. An increased scanning time can complicate the im-
aging problem due to patient movement and other physiological
fluctuations. On the contrary, increasing the number of detection
channels for parallel data acquisition certainly would result in
a bulky imaging system and is not a cost-effective approach.

Therefore, one needs a source–detector distribution optimization
that can provide a sufficient sampling density while minimizing
the number of channels.

The source–detector (SD) optimization problem has been a
topic of wide interest in the optical imaging community, and
various approaches have been investigated that do not neces-
sarily solve an inverse problem. Among such approaches,
singular value decomposition (SVD) analysis of the sensitivity
matrix of the forward problem has been widely studied for
designing an appropriate scanning scheme. By counting the
number of singular values above a given threshold,9–12 one can
analyze different scanning schemes. Although SVD analysis is
conceptually straightforward and can provide useful informa-
tion, it lacks an insight on the information contained in the
singular vectors,6,13 and therefore, does not provide a way to
distinguish the redundant SD pairs in a given imaging task.
Similarly, Cramer-Rao lower bound (CRLB) analysis has been
studied13,14 along the same line as SVD analysis. The studies on
assessment of data collection strategies in terms of data corre-
lation has also been investigated15–17 quite recently. Such kinds
of optimization studies are certainly helpful for the reduction of
data acquisition time. Although some of the optimization algo-
rithms proposed in Refs. 15 and 16 are able to successfully
reduce the number of measurements, they require a heuristic
threshold parameter to obtain the number of independent mea-
surements. More importantly, it how to adaptably reduce data
measurements in a controlled manner at some particular reduc-
tion level has not been reported. Additionally, the effect of
change in data correlation on neighboring measurements after
deleting a particular least informative data point has not been
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considered, because the existing approaches are based on a
single-step ranking process. Moreover, the previously studied
approaches mostly focus on the data space properties in terms
of the SD geometry optimization and only a few studies6 have
considered the effect of sampling density on image space
properties.

In this work, we quantitatively re-examine the SD optimiza-
tion issue by introducing mathematical metrics to evaluate the
correlation in the projection data, which we refer to as data space
ranking in this work, and to evaluate the resolution character-
istics or sampling density variation for a particular imaging
geometry, which we call image space ranking (ISR).18 Both
mathematical metrics are used to complement the information
provided by the SVD analysis. Our approach deals with both
data space ranking and ISR for optimizing the SD distribution
via an iterative scheme that can accommodate various regulari-
zations in its framework. Prior knowledge can also be incorpo-
rated in our scheme to further improve the SD optimization
although it is not the scope of this work.

2 Methods

2.1 Review of Diffuse Optical Tomography Forward
and Inverse Problem

For a given distribution of optical parameters, absorption
coefficient μaðrÞ, and reduced scattering coefficient μ 0

sðrÞ ¼
ð1 − gÞμsðrÞ, the light propagation in biological tissues is
usually modeled by
EQ-TARGET;temp:intralink-;e001;63;441

−∇DðrÞ∇φðr;ωÞ þ
�
μaðrÞ þ

�
iω

cmðrÞ
�
φðr;ωÞ

�
φðr;ωÞ

¼ q0ðr;ωÞ; (1)

where DðrÞ ¼ 1
3
½μaðrÞ þ μ 0

sðrÞ� is the diffusion coefficient,
cmðrÞ is the speed of the light in the medium, q0ðr;ωÞ is
the input source term, and the φðr;ωÞ is the generated photon
fluence rate at position “r” with a modulation frequency
“ω.”2,3,19 The forward model data φc

i;j are generated by sampling
in the data space with the i 0th source and the j 0th detector
positions and is represented by

EQ-TARGET;temp:intralink-;e002;63;302φc
i;j ¼ φc

i;jðμa; DÞ: (2)

In an inverse problem, for a given experimental data φm
i;j, we

wish to find optical parameters μ ¼ fμa; Dg (for both absorp-
tion and diffusion coefficients) by minimizing the objective
function as follows:

EQ-TARGET;temp:intralink-;e003;63;224Oðφm
i;j; μÞ ¼ arg min

μ
kðφm

i;j − φc
i;jÞk2: (3)

The objective function Oðφm
i;j; μÞ measures the compatibility

between the estimated optical parameters μ ¼ fμa; Dg and
the experimentally measured data φm

i;j. Let μ
0 ¼ fμ 0

a; D 0g be
an initial estimate of the optical parameters of the perfect
model prior to inversion, and φc

i;jðμ 0Þ be the corresponding
data. A linearization of this optimization problem can be formu-
lated by the use of a perturbation approach. Consider perturbing
the prior initial optical parameters μ 0 by a small amount Δμ.20
Equation (3) can be rewritten as Eq. (4) with δ ¼ φm

i;jðμÞ −
φc
i;jðμ 0Þ representing the compatibility in the initial estimate

EQ-TARGET;temp:intralink-;e004;326;752Oðφm
i;j; μÞ ¼ arg min

μ
k½δþ φc

i;jðμ 0Þ − φc
i;jðμ 0 þ ΔμÞ�k2:

(4)

The linearization step is carried out by expanding φc
i;jðμ 0 þ ΔμÞ

through a Taylor series and neglecting higher order terms

EQ-TARGET;temp:intralink-;e005;326;685φc
i;jðμ 0 þ ΔμÞ ¼ φc

i;jðμ 0Þ þ JΔμþ · · · ; (5)

where Jmn ¼ ∂φcðμÞm
∂μn

jμ 0 m ¼ f1; 2; : : : , number of SD pair

measurements}, n ¼ f1; 2; : : : , number of unknowns} is the
sensitivity or weight matrix and has four parts
EQ-TARGET;temp:intralink-;sec2.1;326;615

Jmn ¼
"
J1 ¼ ∂ ln I

∂D J2 ¼ ∂ ln I
∂μa

J3 ¼ ∂φ
∂D J4 ¼ ∂φ

∂μa

#
;

Each row in the matrix “J,” also known as sensitivity maps,
relates the change in the boundary data either by Born approxi-
mation [amplitude (I) and phase] or by Rytov approximation
[lnðIÞ and phase]3 to the small perturbation in the optical param-
eters (μa, D) of the reconstructed image basis (voxels or nodes).
In the formulation of data and ISRs, which will be described
later, only the J2 part of the Jacobean matrix is considered
without loss of generality. Substituting Eq. (5) into Eq. (4),
the linearized objective function can be written by

EQ-TARGET;temp:intralink-;e006;326;463Oðφm
i;j; μÞ ≅ arg min

μ
kδ − JΔμk2: (6)

The minimizer of Eq. (6) is given by

EQ-TARGET;temp:intralink-;e007;326;412Δμ ¼ ðJTJÞ−1JTδ; (7)

EQ-TARGET;temp:intralink-;e008;326;379Δμ ¼ ðJTJ þ αIÞ−1JTδ: (8)

Usually, in DOT, the square matrix JTJ in (7) turns out to be
ill-conditioned due to the presence of extremely small singular
values; one way to stabilize the inversion in such cases is to
add the diagonal term as shown in (8). We exploited an adjoint
formulation to calculate the sensitivity maps, which is known to
be computationally robust compared to direct methods.21 The
initial guess on the bulk optical properties for calculating the
sensitivity matrix is obtained by a calibration procedure22 in
the imaging domain whose analytical solutions are readily
available.

2.2 Singular Value Decomposition

A technique which is of particular interest for investigating
ill-conditioned and/or rank-deficient problems is the SVD. In
SVD, a matrix is factorized by a set of three matrices

EQ-TARGET;temp:intralink-;e009;326;179J ¼ USVT; (9)

where U and V are the orthonormal matrices and S is a diagonal
matrix of singular values of J. The columns in U and V are
known as modes that span two different spaces: data space and
image or model space, respectively. The magnitude of the sin-
gular values provides significance of the corresponding data and
image space modes.
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2.3 Metrics for DOT Geometry Optimization

The design optimization strategies for well-posed problems are
generally based on the covariance matrix, where a suitable
design is chosen based on some minimum norms (trace and
determinant) of the covariance matrix of the estimate errors.
However, such strategies are not suitable for ill-posed problems
like DOT where estimators of an unknown parameter are most
likely biased because of the regularization.23 The bias intro-
duced by a regularization does not depend on the noise level
and, therefore, cannot be reduced by repeated or redundant mea-
surements usually offered by a CCD-based detection system.
In particular circumstances, this nonstochastic component of
error, or bias, may be dominant over the stochastic component
of measurement noise.24 Therefore, when designing an acquis-
ition scheme, the role of the regularization should also be con-
sidered in such a design optimization.

This work aims to suggest the mathematical metrics and an
optimization methodology which can be used to objectively ana-
lyze the sampling scheme in question and second to use these
metrics to select those measurements that produce the least
correlation while containing sufficient information for the
estimation of the unknown parameter. The methodology is
inspired by the work,18 where the authors applied a ranking
scheme to select structural health monitoring sensors. Here,
we extend the idea to the DOT problem and propose metrics
that utilized the sensitivity matrix which indicate how sensitive
the measurement is at a given source–detector location to the
change in the optical parameters. However, the system consid-
ered in Ref. 18 was an over-determined system, whereas we
consider an under-determined and ill-conditioned system. In
addition, we use the SVD, which is numerically more stable,
instead of the eigenvalue decomposition for the derivation of
rankings.

From linear algebra theory, the rank of a matrix is the number
of linearly independent rows (or columns) it has, and so rank can
be thought as a measure of redundancy. The key idea of the work
is to weight each measurement location according to its contri-
bution to the rank of the sensitivity matrix “J” to evaluate the
effective linear independence of the measurements for a given
SD geometry, and similar to weight each image voxel or nodes
to its contribution to the rank of sensitivity matrix “J” to evalu-
ate the effect of SD geometry in image space. SVD is one of the
most widely used methods to efficiently determine the rank of
a matrix. The singular vectors are orthonormal, therefore, the
following relations hold:

EQ-TARGET;temp:intralink-;e010;63;251VVT ¼ I; (10)

EQ-TARGET;temp:intralink-;e011;63;218UUT ¼ I; (11)

EQ-TARGET;temp:intralink-;e012;63;190VTJTJV ¼ STS ¼ S2; (12)

EQ-TARGET;temp:intralink-;e013;63;163UTJJTU ¼ SST ¼ S2: (13)

2.3.1 Data space ranking

Because the singular vectors are orthogonal, they will span an
n-dimensional space. We form the matrix product “G,” where
each row contains the squared contribution of the rows of
“J” in terms of the coordinate system defined by “V”:

EQ-TARGET;temp:intralink-;e014;326;752G ¼ ½JV� ∘ ½JV�; (14)

where the symbol ∘ is used to represent the Hadamard product.
One can similarly rewrite Eq. (14) as follows:

EQ-TARGET;temp:intralink-;e015;326;708G ¼ ½US� ∘ ½US�: (15)

Each column of “G” sums to the corresponding squared singular
value of “J.” Thus, the i 0th column represents the contribution
of the i 0th SD measurement pair to the associated squared sin-
gular value. If the right-hand side of Eq. (15) is postmultiplied
by a matrix of inverse of the squared singular values, each direc-
tion in the n-dimensional space will have equal importance.18

However, because of the presence of smaller singular values,
it is not straightforward to get the inversion.25 One way to
get the inversion is to add a small regularization factor λ2 as
follows:

EQ-TARGET;temp:intralink-;e016;326;567FSS ¼ ð½US� ∘ ½US�Þ × ðS2 þ λ2IÞ−1: (16)

By using the Hadamard product properties of a multiplication of
diagonal matrix, Eq. (16) can be rewritten by

EQ-TARGET;temp:intralink-;e017;326;514FSS ¼ ½U ∘ U� × ½S2 × ðS2 þ λ2IÞ−1�; (17)

where the term in the right bracket is known as the filter factor in
Tikhonov (Tikh) regularization (Ftikh) sense

24

EQ-TARGET;temp:intralink-;e018;326;460

Ftikh ¼ S2 × ðS2 þ λ2IÞ−1

Ftikh;mn ¼
� s2m

s2mþλ2m
; m ¼ n

0; m ≠ n
: (18)

Other forms of the filter factors are also available in the
literature.24 For example, the filter factor for truncated singular
value decomposition (TSVD) is given by Eq. (19)

EQ-TARGET;temp:intralink-;e019;326;359Ftsvd;ij ¼
�
1; si > ε
0; si < ε

: (19)

where “ε” corresponds to the truncate on singular values. The
i 0th term in the j 0th column of the matrix FSS (referred to as
the matrix of fractional squared singular values) represents
the fractional contribution of the i 0th SD measurement to the
j 0th squared singular value. Summation over each row in
Eq. (17) would yield the contribution of the corresponding
SD pair to the rank of the sensitivity matrix, and it is referred
to as data space ranking (DSR) in this work. Note that the DSR
can range between zero and one {0, 1}

EQ-TARGET;temp:intralink-;e020;326;216DSR ¼
X
j

Uij ×
ffiffiffiffiffiffiffi
Fjj

p
∘ Uij ×

ffiffiffiffiffiffiffi
Fjj

p
; (20)

where Fjj is a selected Tikh or TSVD filter factor. For a full-
rank well-conditioned matrix, where the rank of the matrix can
be equal to the number of rows, we do not need to apply the filter
factor for regularization and the DSR would produce a vector of
ones. However, in the case of DOTwhere the sensitivity matrix
is ill-conditioned and a regularization is necessary, the DSR
would range between {0, 1} and provide a useful gadget to
analyze the data properties.
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2.3.2 Image space ranking

Similarly, one can define an ISR by forming a matrix “G” from
the squared contribution of the rows of “JT” spanned by “U”

EQ-TARGET;temp:intralink-;e021;63;493G ¼ ½JTU� ∘ ½JTU�: (21)

Rewriting Eq. (21), one can get

EQ-TARGET;temp:intralink-;e022;63;450G ¼ ½VST � ∘ ½VST �: (22)

One can similarly introduce the matrix of fractional squared
singular values

EQ-TARGET;temp:intralink-;e023;63;397FSS ¼ ½V ∘ V� × ½S2 × ðS2 þ λ2IÞ−1�: (23)

Summation over each row of Eq. (23) would yield the contri-
bution of the image basis (voxels or nodes) to the rank of
the sensitivity matrix, and it is referred to as ISR. The ISR ranges
between zero and one, {0, 1}

EQ-TARGET;temp:intralink-;e024;63;321ISR ¼
X
j

Vij ×
ffiffiffiffiffiffiffi
Fjj

p
∘ Vij ×

ffiffiffiffiffiffiffi
Fjj

p
: (24)

2.3.3 Sparse selection of source–detector pairs

A schematic flowchart of the sparse selection algorithm of
the SD pairs is shown in Fig. 1. The procedure begins with

calculating a sensitivity matrix “J” for a set of densely sampled
SD pair measurements. The maximum number of iterations is
determined by the predefined reduction level of measurements.
In each iteration step, the DSR is computed for all the remaining
SD pair measurements and the SD pair corresponding to the
lowest value of DSR is removed. The matrix “J” is then updated
with the reduced number of SD pairs, and the above procedure is
repeated until the desired number of iterations is reached.
Ideally, a single SD pair is supposed to be removed during
an iteration but more than one can be removed depending on
the DSR values. One thing we would like to note is that the
methodology can also be applied to the optimum SD design
in a multimodality imaging situation,26–28 where the region-of-
interest (ROI) is known as a priori in the anatomical imaging
domain. Under such situations, the unknown basis in the sensi-
tivity matrix can be adapted to the ROI; either by simply select-
ing the basis (voxels or nodes) corresponding to the ROI only
or by modifying the basis to a tissue-particular basis through
a mapping function, e.g., for breast: fiber-glandular, adipose,
and tumor regions.

2.4 Numerical Study

We used two-dimensional (2-D) imaging geometries for sim-
plicity in this work, but it can be extended to a three-dimensional
(3-D) problem straightforwardly. In the case of breast DOT im-
aging, two most commonly considered imaging geometries
include: a mammographically compressed breast with the
sources being placed at one plane and the detectors on the
other,29 or a circular distribution of the sources and the detectors
around the breast volume.8 We employed both the rectangular
imaging geometry and the circular imaging geometry in this
work as summarized in Table 1. For a circular geometry, the
sources and the detectors were placed around the object support
in an equiangular fashion.

In all the simulation cases, we fixed the optical properties by:
absorption coefficient μa ¼ 0.01 mm−1, scattering coefficient
μ 0
s ¼ 1 mm−1, and refractive index ¼ 1.3 for the homogenous

background, and absorption coefficient μa ¼ 0.02 mm−1, scat-
tering coefficient μ 0

s ¼ 2 mm−1, and refractive index ¼ 1.3 for
the tumor anomalies. One percent (1%) of Gaussian noise in the
amplitude and in the phase angle was added for all the cases
unless otherwise specified. The simulations were conducted
assuming a Gaussian source intensity profile having the full-
width-half-maximum of 2 mm.

We adopted a nonlinear iterative algorithm under the Rytov
approximation and a dual-mesh scheme to avoid inverse crime

Fig. 1 Iterative procedure to automatically select most informative
sparse SD sensitivity maps.

Table 1. Description of geometries for which SD optimization analysis was performed.

Types No. of sources No. of detectors No. of projections

Rectangular geometry Reflectance 15 15 210

Sparse transmission 15 15 225

First dense transmission 15 35 525

Second dense transmission 15 70 1050

Circular geometry Tomographic 16 16 240

Mouse head geometry Tomographic 8 8 56
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for image reconstruction in all the simulation cases. Meshes
were constructed as summarized in Table 2.

3 Results and Discussion
In order to show the effects of the regularizations on DSR, the
DSR was plotted as a function of the measured channel in Fig. 2
for the rectangular geometry with 15 sources and 15 detectors.
In the Tikh regularization method, the weight parameters were

varied (λ ¼ 0.5; 1). In the TSVD regularization method, the first
50 and 70 modes with higher singular values were selected.
It is observed that the stronger the regularization is, the smaller
the DSR becomes. However, the channel by channel DSR
variation trend is not very dependent on the regularizations. This

Table 2 Description of FEM meshes constructed for numerical study.

FEM triangular mesh

Circular geometry

Rectangular geometry Mouse head geometryOne anomaly Two anomaly

Coarse mesh Nodes 1785 3321 668

Elements 3418 6400 1265

Fine mesh Nodes 4882 7065 4560 2187

Elements 9517 13,833 8836 4206

Fig. 2 A plot showing the variation of DSR at different SD measure-
ments for the selected regularization methods. (Tikh, TSVD).

Fig. 3 Illustration of scanning scheme where the single source is
placed on the upper plane and the detector array on the bottom in
a rectangular geometry.

Fig. 4 Plot of DSR in the FOV for a single source and various number
of detection channels.

Fig. 5 Plot of DSR in the FOV for 15 source channels and various
number of detection channels.
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implies that a sparse selection of SD pair measurements can be
effectively performed even with a suboptimal regularization in
action.

Let us consider the mammographically compressed breast
imaging scenario in 2-D to optimize the sampling scheme, not-
ing that similar optimization can also be done for the circularly
geometry. Field-of-view (FOV) that entails the total coverage in
the imaging domain is shown in Fig. 3 for the rectangular geom-
etry. We have varied the detector sampling distance by 1, 2, and
5 mm in the FOV limited by X ¼ −35 mm and X ¼ 35 mm to
show the effect of data correlation. We have considered the
sampling distance of 1 mm to represent the CCD-based wide
detection system and sampling distances of 2 and 5 mm to

represent the photomultiplier-based focused type detection
system. Figure 4 shows the channel by channel DSR and
it is observed that the sampling interval of 5 mm provides
the least correlated data measurements or the highest DSR.
The right- and left-most detection channels present higher
DSR values compared to others because the overlap with the
neighboring channel is minimum. Similar optimization can
also be performed for deciding the intervals of the source
array with a single-detection channel.

Now we consider all the possible combinations of sources
and detectors for various scanning conditions summarized in
Table 1 for the rectangular geometry. Figure 5 shows the results
of DSR. Box plots are also presented in Fig. 6 to compare the
DSR among various configurations. It is seen that the median
value of DSR is the highest in the case of the 15 × 15 transmis-
sion geometry and that the DSR values are generally skewed
toward higher values. The first and third quartile values of the
DSR distribution can also be useful. The DSR values of the
reflectance case present the higher third quartile value and
the maximum value, but the median value is lower compared
to the 15 × 15 transmission case.

The ISR results are shown in Fig. 7. In Fig. 7(a), the log of
ISR at each node is plotted. It can be conjectured that even
though the DSR can be higher for the reflectance geometry,
the depth resolution would be poorer. It is important to note
that, for the case of a densely sampled scheme, ISR is similar
to the sparse cases. This implies that the redundancy in data
measurements does not essentially contribute to enhancing
the image resolution in the case of an ill-conditioned modality
like DOT. Figures 7(b) and 7(c) show the line profiles of ISR
along the mid horizontal line and the diagonal, respectively,
for a more quantitative visualization.

Fig. 6 Box plot showing the variation in DSR for different scanning
geometries of Fig. 5.

Fig. 7 (a) Log of ISR plotted at each node for transmission (Trans) and reflectance (Ref) type scanning
geometries as described in Table 1, (b) ISR plot along the midline, and (c) ISR plot along the diagonal.
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The results shown above confirmed that both DSR and ISR
can be useful for analyzing sampling schemes in DOT. Now let
us move on to the study of iterative sparse selection of the SD
pairs using these metrics. As shown in Fig. 8, we considered

various reduction rates of data sampling by 50% (120), 65%
(84), and 80% (48) of the total number of measurements.
The numbers in parenthesis represent the number of SD pairs.
The same number of measurements was also randomly selected

Fig. 8 Reconstructed images of a circular phantom with a single anamoly at various noise levels at
various reduction of measurements selected by optimized (OPT) and random (RAN) methods. (a) The
reconstructed absorption coefficient images and (b) the reconstructed scattering coefficient images.
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to compare with the proposed sparse selection methodology.
Various noise levels (0%, 1%, 2%, and 5%) have been tested
as explained in the method section. Figures 8(a) and 8(b)
show the reconstructed absorption and scattering parameter
images, respectively, where a single anomaly of radius 10 mm
was added at the position of x ¼ 20 mm, y ¼ 0 mm. In all
cases, the proposed sparse selection method outperformed the
random sampling approach. In addition, the reconstructed con-
trast values of the absorption and scattering in the case of 50%
reduction were comparable to those in the full measurement
data set. The shape of the anomaly was also better preserved
in the case of the proposed selection scheme. In Figs. 9(a)
and 9(b), the line profiles across the middle of the reconstructed
images are shown in the 1% noise case.

A similar study has been conducted for the case of two
anomalies of radius 7.5 mm placed at the locations of
(x ¼ 20 mm, y ¼ −10 mm) and (x ¼ −20 mm, y ¼ 10 mm),
respectively, in the circular geometry. The reconstruction results
are shown in Fig. 10. Similar observations and conclusions
can be drawn in this example as well.

The rectangular geometry was also tested, where a single
anomaly of radius 6.5 mm was placed at the position of
(x ¼ 0 mm, y ¼ 6 mm). The same reduction rates by 50%
(112), 65% (80), and 80% (45) have been investigated with
respect to the total of 225 measurements. The reconstructed
results are shown in Fig. 11.

We further look into the relationship among the DSR, ISR, and
the reconstructed results. In Fig. 12, box plots of the DSR dis-
tribution in the circular geometry corresponding to Fig. 10 are
shown. The median values for the optimized selection scheme
were consistently higher than that of the random method. It is
presumed that, in the random measurements, the informative
or least correlated measurements have also been partly removed
from the data set. Figure 12 shows that, at 80% reduction level,
we have almost all independent measurements as all the SD
pairs cluster around the DSR value of one.

Deleting low-rank SD sensitivity maps improves the condi-
tioning of the sensitivity matrix “J” since the condition number
is defined by the ratio of the largest to the smallest singular
values. As we keep iterating in the proposed sparse selection

Fig. 9 Line profiles across the middle of the reconstructed images for 1% noise case in Fig. 8 for
(a) absorption coefficient images and (b) scattering coefficient images.

Fig. 10 Reconstructed images of a circular phantomwith two anamlies. (a) Absorption coefficient images
and (b) scattering coefficient images.
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scheme, the DSR is increased by removing the redundant infor-
mation and the sensitivity matrix approaches toward the highest
possible rank. The condition number is linked to the rank of
a matrix and the highest rank can be ensured by minimizing the
condition number.30 This implies that the proposed sparse selec-
tion scheme results in minimization of the condition number.

In Figs. 13 and 14, we show the ISR maps and line profiles
for various sampling conditions. The optimally selected ones
showed more uniform distribution of ISR in the image domain
compared to the randomly selected ones.

The bar plot of trace of the ISR is shown in Fig. 15. In an
ideal condition, the trace of the ISR should be equal to the rank

of the matrix. As the number of measurements decreases, the
trace moves closer to the system rank. However, the sampling
density will be poorer as the number of measurements decreases
and would lead to a degraded image resolution.

For a quantitative assessment, the root-mean-square-error
(RMSE) of the reconstructed absorption and scattering param-
eters of the anomaly region was calculated. The RMSE is given
by Eq. (25)

Fig. 12 Box plot of DSR at various number of measurements selected
by the optimized (OPT) and the random (RAN) methods.

Fig. 13 Log of ISR showing the resolution characteristics at various reduction of measurements.

Fig. 14 Line profiles of ISR at various number of measurement by
the optimized (OPT) and the random (RAN) methods along the
mid-central line in Fig. 13.

Fig. 11 Reconstructed images of a rectanugular phantom with 1% noise level at various levels of
measurement reduction. (a) Absorption coefficient images and (b) scattering coefficient images.
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EQ-TARGET;temp:intralink-;e025;326;752RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðμai − μri Þ2
vuut ; (25)

where N is the number of nodes or voxels within the anomaly
region, and μai and μri are the actual and reconstructed optical
coefficients (absorption or scattering coefficients), respectively.
Table 3 summarizes the results of the previous simulation
studies.

One can also set a criterion to automatically abort the
iterative process of sparse selection to the reasonable levels of
DSR and ISR. For the cases where the ROI is known as a priori,
the number of measurements can be significantly reduced.
As earlier explained, the ROI can be either extracted from
a multimodality imaging or determined numerically as support
recovery in the joint sparsity formulation.31 To evaluate the
performance of our methodology, we performed a simulation
study for a mouse head model. The finite-element meshes were
generated from the 2-D MRI image of a mouse head with the

Fig. 15 Trace of image space rank at various number of
measurements.

Table 3 RMSEð×10−2Þ of the reconstructed absorption and scattering coefficient images at various numbers of measurements (NM).

Sampling scheme

NM

Optimized Random

Case Noise (%) μa μ 0
s μa μ 0

s

Circular (1) 0 240 0.4385 40.9904 — —

0 120 0.4466 41.6683 0.4839 45.2165

0 84 0.4805 48.2961 0.5763 54.5054

0 48 0.5854 56.5465 0.7717 68.0097

1 240 0.4545 37.7276 — —

1 120 0.4717 41.7940 0.5200 45.4893

1 84 0.4709 46.9554 0.5745 49.5964

1 48 0.5892 58.4221 0.7360 61.3935

2 240 0.5180 38.4695 — —

2 120 0.6455 45.8901 0.8015 45.1149

2 84 0.6577 51.9896 0.7141 60.1785

2 48 0.6833 66.5485 0.7700 67.1893

5 240 0.5720 57.0065 — —

5 120 0. 5905 58.8207 0.6415 59.0057

5 84 0.6602 57.8708 0.6203 69.1217

5 48 0.7462 68.9302 0.7301 77.0911

Circular (2) 1 240 0.4775 40.0851 — —

1 120 0.4788 45.2553 0.5484 46.5737

1 84 0.5223 46.2748 0.6190 56.4978

1 48 0.6082 57.6613 0.7379 66.0918

Rectangular 1 225 0.5550 46.2080 — —

1 112 0.5264 46.4514 0.6243 48.8919

1 80 0.6518 53.6606 0.7140 54.2063

1 45 0.6751 64.9196 0.7419 66.4600
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segmentation of the brain (lime) and remaining structures (navy)
as shown in Fig. 16(a). We added two circular anomalies of
radius of 2.5 mm in the brain region (currant) to mimic the
tumor. Figure 16(b) shows the reconstructed absorption coeffi-
cient image when all the sources and detectors are used.
Figure 16(c) shows the reconstructed image when the proposed
sparse selection (NM ¼ 28) has been applied for the whole
volume. Figure 16(d) shows the reconstructed image when
the same number of measurements was randomly selected.
Figure 16(e) shows the reconstructed image by the proposed
sparse selection scheme while limiting the unknown basis to
the ROI.

It is observed that the sparse selection scheme applied to
the ROI only provides substantially enhanced image quality
compared to that applied to the whole volume. It should be
noted here that we did not utilize the prior information in the
image reconstruction directly. We utilized a priori information
only for designing the SD scheme.

Table 4 summarizes the RMSE calculation results of the
reconstructed absorption coefficient images. The presented
method is quite general in a sense that it can be applied to
any configuration geometry and imaging domain.

4 Conclusions
In this study, we proposed an iterative sparse selection scheme
to optimally reduce the number of measurements in DOT. To
accomplish the goal, we proposed two metrics, namely data
space and ISRs. It was confirmed through the simulation studies
that both measures provide useful criteria for deciding optimum
sampling intervals among detection channels, scanning field of
view, and measurement configuration. Our results demonstrated
that a comparable contrast recovery is possible for the optimized
sparse configuration of SD pairs compared to the dense configu-
ration. We also showed that the proposed method would apply
well to the ROI imaging.
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