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Abstract. Optical tomography has a wide range of biomedical applications. Accurate prediction of photon trans-
port in media is critical, as it directly affects the accuracy of the reconstructions. The radiative transfer equation
(RTE) is the most accurate deterministic forward model, yet it has not been widely employed in practice due to
the challenges in robust and efficient numerical implementations in high dimensions. Herein, we propose a
method that combines the discrete ordinate method (DOM) with a streamline diffusion modified continuous
Galerkin method to numerically solve RTE. Additionally, a phase function normalization technique was
employed to dramatically reduce the instability of the DOM with fewer discrete angular points. To illustrate
the accuracy and robustness of our method, the computed solutions to RTE were compared with Monte
Carlo (MC) simulations when two types of sources (ideal pencil beam and Gaussian beam) and multiple optical
properties were tested. Results show that with standard optical properties of human tissue, photon densities
obtained using RTE are, on average, around 5% of those predicted by MC simulations in the entire/deeper
region. These results suggest that this implementation of the finite element method-RTE is an accurate forward
model for optical tomography in human tissues. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.

JBO.21.3.036003]
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1 Introduction
Optical tomography is an imaging modality that utilizes multi-
ple light projections through the media to quantitatively retrieve
optical properties of interest for functional or molecular
imaging.1,2 Accuracy of optical property reconstruction inside
the media (the so-called “inverse problem”) is dependent on
the forward model employed.3 The most popular light propaga-
tion model employed in the field of diffuse optics is the diffusion
equation (DE), which is an approximation to the radiative trans-
fer equation (RTE). The DE is well established for applications
in which photons experience numerous scattering events.
However, it is not appropriate when photons experience no scat-
tering or only a few scattering events. With the rise of applica-
tions targeting small volumes or shallow depths,4,5 as well as
imaging approaches that leverage low scattered photons (such
as early time resolved data sets),6,7 alternative forward models
need to be considered. For such imaging scenarios, one can
solve the RTE or use a stochastic method like Monte Carlo
(MC).8 Even though both approaches can produce comparable
results, they differ in their ease of implementation. The MC
method is straightforward to implement but computationally
more costly, whereas the RTE is computationally fast but diffi-
cult to implement.

Thanks to massively parallel implementations (GPU or
CPU),9,10,11 the MCmethod has recently become the light model
of choice for regimes in which the DE is not appropriate.12,13 It
can be used in optical tomography to compute the forward
model employed in the inverse problem within reasonable
time frames. In mesoscopic fluorescence molecular tomography,

the optical forward model can be computed in less than 5 min
using voxel-based MC and symmetry in the imaging space.14,15

However, when complex boundaries are concerned, voxel-based
techniques are less attractive due to the need for accurate mod-
eling of the sample boundaries. This leads to an increased com-
putational burden. For instance, in time-resolved preclinical
optical tomography, full computations based on mesh MC
and adjoint formulation can be achieved in around 30 min.12

Additionally, MC methods are not inherently suitable for adap-
tive image space discretization such as mesh adaptation and
nonlinear inverse formulations.16,17 Hence, there is still incentive
to develop fast and efficient deterministic RTE-based forward
models.

There are multiple challenges in solving the RTE analytically
or numerically. The RTE can only be solved analytically in very
few situations,18,19 such as when semi-infinite media are used.20

In such instances, the forward model can be computed in a mat-
ter of seconds. However, for media with complex boundaries, it
is extremely difficult or even impossible to derive an analytical
solution. Under these conditions, the RTE needs to be solved
using numerical methods.

Prior to applying the standard numerical methods, it is nec-
essary to first process the angular domain, since the RTE
retains the anisotropic nature of light propagation. Over the
years, a few methods have been proposed to perform this
task. Tarvainen et al.1,21 formed a partition on the angular
domain and employed local linear basis functions to approxi-
mate the angular components of the solution. Thus, when
forming the weak form of RTE by the finite element method
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(FEM), the high-dimensional integral with respect to the space
variables and angular variables had to be calculated. Although
this calculation could be transformed into two independent
low-dimensional integrals, the tensor product of these two inte-
gral-related matrices still needs to be performed.1 In addition to
using linear basis functions, Surya Mohan et al.22 also inves-
tigated the use of spherical harmonic functions to approximate
the angular components of the solution. However, this formu-
lation still required computation of the high-dimensional inte-
gral and tensor product of the matrices (e.g., when considering
the three-dimensional (3-D) space and two-dimensional unit
sphere in angular space, a five-dimensional integral was calcu-
lated in general). Another method to handle the angular
domain of the RTE is to employ the discrete ordinate method
(DOM) or its modified version. The standard DOM23 consists
of transferring the RTE to a system of coupled partial differ-
ential equations (PDEs) by using numerical quadrature to cal-
culate the integral term (the term that contains the phase
function). Klose et al.,24 Fujii et al.,25 and Ren et al.26

employed level symmetric quadrature to directly discretize
RTE into a number of different PDEs. The required number
of PDEs was determined by the number of discrete angles of
quadrature. Employing the modified DOM, Asllanaj et al.27

and Wang et al.28 partitioned the angular domain into many
finite subdomains and performed the integration with respect
to angular variables on both sides of RTE with the assumption
that the solution to the RTE (photon radiance) was constant
inside each subdomain. This would lead to easily computed
integrals. However, a four-dimensional (4-D) integral, which
could not be transformed into lower dimensional integrals, still
needs to be computed when dealing with the term of the RTE
containing the phase function.28 In comparison to dealing with
the angular domain as mentioned above, the DOM is relatively
easy to implement, as it does not require calculation of the inte-
gral with respect to angular variables.29 Consequently, the
dimension of the RTE is reduced, allowing for computation
in 3-D or 4-D. The main disadvantage of DOM implementa-
tions is the so-called “ray-effect,” which occurs due to angular
discretization and is prominent in optical imaging since the
anisotropy factor is large (g ¼ 0.8 to 0.9).30

After dealing with the angular domain, multiple methods
such as the finite difference method (FDM), the finite volume
method (FVM), or the FEM can be employed to numerically
solve the RTE. Klose et al.24 and Wang et al.28 employed an
upwind FDM to approximately calculate the partial derivatives
with respect to spatial variables. The FDM is relatively easy to
implement compared with other numerical methods. The main
disadvantage of the FDM is its use of structural grids, which
cannot easily and accurately approximate complex, curved
boundaries (although it is possible to deal with this situation as
proposed in Ref. 31). For such scenarios, the FVM can be
employed since it can deal with arbitrary shapes.24,27,30 To take
into account the directional propagation of light, Asllanaj et al.27

proposed the inclusion of the nodal values located upstream at
each integration point. In order to reduce the number of un-
knowns and have high resolution,27 the control elements were
normally rebuilt to surround the nodes. The main limitation of
the FVM is that it can be very involved to achieve higher order
accuracy on unstructured grids, as the numerical scheme of the
higher order FVM requires the use of multiple nearby elements.32

In terms of FEM-based approaches, it is widely known that
employing continuous Galerkin FEM (CG-FEM) directly to

solve the RTE will generate nonphysical oscillations33 due
to the transport effect. Tarvainen et al.1 and Surya Mohan
et al.22 proposed solving the RTE by CG-FEM, and in their
work, the standard streamline diffusion modification technique
was employed. The discontinuous Galerkin FEM (DG-FEM)
was also employed by Eichholz34 and Gao and Zhao23 to
solve the RTE. Compared with the CG-FEM, the DG-FEM
has additional unknowns associated with the relaxation of
continuous constraints of functions at the boundary between
adjacent elements. However, the DG-FEM allows for a straight-
forward approach to solving transport equations such as the
RTE.32

Herein, based on considerations of the ease of implemen-
tation and computational efficiency, an “intermediate”method,
founded on the modification of the DOM with the CG-FEM, is
proposed. In our work, several improvements were made, and
the performance of the methods was illustrated numerically.
First, various numerical quadratures were implemented to
translate the RTE to a system of coupled PDEs with the
DOM. A comparison was performed for us to understand
the effect of different numerical quadratures on the solution
of the RTE with multiple combinations of optical properties.
Second, a phase function normalization35,36 strategy was
employed in order to efficiently lessen the instability (oscilla-
tions) or “ray-effect” commonly encountered when using the
DOM.23 More precisely, during the discretization of the angu-
lar space, the conservative properties of the phase function will
generally be lost. Without employing large numbers of discrete
points in angular space, this will generate spurious oscillations,
as well as the “ray-effect” mentioned above. The phase func-
tion normalization techniques aim to preserve the conservative
properties even after discretization of the angular space so as to
reduce the oscillations of solutions with a smaller number of
discrete points. Once the angular space is discretized, a stream-
line diffusion modified CG-FEM was selected and imple-
mented due to its smaller number of unknowns compared
with the DG-FEM as well as its ability to robustly deal with
the transport nature of the RTE, following the work of Brooks
and Hughes.37

The paper is arranged as follows. In Sec. 2, the modified
DOM with the CG-FEM is discussed in detail. In addition,
the normalized phase function technique, which reduces the
error in computing the integral term of the RTE and mitigates
the instability of the DOM, is illustrated. Since we want to com-
pare the RTE to the DE, a brief introduction to solving the DE
with the FEM is also provided. In Sec. 3, two types of sources as
well as 3-D domain simulations are introduced. The quantities
used to appraise the accuracy of solutions are also presented in
detail. In Sec. 4, solutions obtained using the RTE, DE, and MC
methods with different types of sources are compared for several
combinations of tissue optical properties. Moreover, the impor-
tance of the normalized phase function technique is demon-
strated. The last section summarizes our work and discusses
further improvements to this method.

2 Algorithms

2.1 Radiative Transfer Equation

Based on the setting of our mesoscopic imaging system (con-
tinuous wave),13–15 in this paper, we investigate the quasisteady
state of the RTE. Here, the photon propagation in the media is
described through the RTE as23,28

Journal of Biomedical Optics 036003-2 March 2016 • Vol. 21(3)

Long et al.: Radiative transfer equation modeling by streamline diffusion modified continuous Galerkin method



EQ-TARGET;temp:intralink-;e001;63;752

s · ∇φðr; sÞ þ μtφðr; sÞ ¼ μs

Z
Ω
fðs; s 0Þφðr; s 0Þds 0 þ qðr; sÞ;

(1)

where the photon radiance φðr; sÞ (Jm−2 sr−1) is defined on the
domain X ×Ω, with the spatial domain X being the entire 3-D
Euclidian space R3 or its subspace, and Ω being the unit sphere
in R3 (direction or angular domain). In particular, the angular
variable is expressed as s ¼ ðsin θ cos ϕ; sin θ sin ϕ; cos θÞ,
where θ ∈ ½0; π� is the polar angle and ϕ ∈ ½0;2πÞ is the azimu-
thal angle. μt represents the attenuation coefficient (mm−1) of
the media, and μt ¼ μa þ μs, where μa and μs are the absorption
coefficient (mm−1) and scattering coefficient (mm−1), respec-
tively. fðs; s 0Þ is the phase function, and it describes the prob-
ability that the photon scatters from direction s 0 to s. In
biomedical optics, the phase function in 3-D is usually modeled
by the Henyey–Greenstein (H–G) function,23,38

EQ-TARGET;temp:intralink-;sec2.1;63;558fðs; s 0Þ ¼ 1

4π

1 − g2

ð1þ g2 − 2 gs · s 0Þ3∕2 ;

where g characterizes the anisotropy of the media, usually in the
range of ∼0.8 to 0.9 for biological tissue, indicating the highly
forward scattering properties of the biological tissue. qðr; sÞ
models the source inside the object.

The boundary condition of Eq. (1) is defined so that no pho-
ton will travel into the object through the boundary1,21 except the
region with irradiation by external light, that is,

EQ-TARGET;temp:intralink-;e002;326;752φðr; sÞ ¼
�
0; r ∈ ∂X \ S0; n · s < 0

φ0; r ∈ S0; n · s < 0
: (2)

In Eq. (2), S0 is the region on the boundary ∂X where the
external light source exists or the region that is irradiated by
an external light source (diffuse source39), and n is the outward
unit normal vector at the boundary ∂X.

2.2 Discretization of Angular Space

Following the DOM to discretize the angular space, a numerical
quadrature is applied first to compute the integral in (1), and this
gives

EQ-TARGET;temp:intralink-;e003;326;610

Z
Ω
fðs; s 0Þφðr; s 0Þds 0 ≈

XN
i¼1

wifðs; siÞφðr; siÞ: (3)

In Eq. (3), wi represents the weight in a discrete direction si.
The selection of discrete points on the unit sphere determines the
accuracy of the solution to the RTE. Various numerical quadra-
tures have been proposed34,40–42 in order to estimate the integral
in Eq. (3) accurately. Some adaptive methods have also been
developed,43 such as the ordinate splitting technique.41 In this
paper, several widely employed quadratures, including level
symmetric quadrature,40 product Gaussian quadrature,34,44

Legendre equal-weight quadrature,41 and Lebedev quadra-
ture,45,46 were investigated numerically. The reader can refer
to the corresponding papers for details on the construction of

Fig. 1 Distribution of discrete points on unit sphereΩ of four numerical quadratures (first octant): (a) level
symmetric quadrature (N ¼ 80); (b) product Gaussian quadrature (N ¼ 72); (c) Legendre equal-weight
quadrature (N ¼ 80); (d) Lebedev quadrature (N ¼ 86).
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these quadratures, advantages, and drawbacks. Here we want to
emphasize that even though Lebedev quadrature has been
reported to have the highest degree of accuracy and efficiency,47

it still has not been widely used in optical imaging. Figure 1
shows the distribution of various quadrature points in the
first octant.

All the numerical quadratures mentioned above work well
when the integrands are continuous and smooth. However,
the H–G function becomes singular when s · s 0 is around 1
and the anisotropy factor g is close to 1. Note that most biologi-
cal tissues exhibit large g. In such cases, a small number of quad-
rature points can cause a large error during the calculation of the
integral at the right-hand side of Eq. (1). To reduce such an error,
one can increase the number of quadrature points, at the expense
of using more computational resources such as storage space
and time, hence decreasing the efficiency of the algorithm.
On the other hand, none of the numerical quadratures reviewed
above preserve the key properties [see Eq. (4)] of the phase func-
tion, and this can lead to large errors in numerical solutions, as
demonstrated in Sec. 4.3. All these motivate us to examine the
phase function normalization technique, which is to further
modify the numerical quadrature of our choice and will be dis-
cussed next.

2.3 Phase Function Normalization Technique

The phase function normalization technique35,36 is a method that
preserves the conservative properties or laws of the phase func-
tion during the evaluation of the integral term in Eq. (1) with
numerical quadrature by adjusting the quadrature weights.
The following properties hold for the H–G phase function:

EQ-TARGET;temp:intralink-;e004;63;416

Z
Ω
fðs; s 0Þds 0 ¼ 1;

Z
Ω
fðs; s 0Þs · s 0ds 0 ¼ g: (4)

The first property is from the requirement that the scattered
energy be conserved,35 while the second one can be viewed as
the definition of anisotropy g. Generally, for any numerical
quadrature discussed above, especially with large g, the discre-
tized form of the left-hand side of Eq. (4) is not equal to the
right. A small difference between the two sides of Eq. (4)
can generate a large error in the solution to (1); see numerical
experiments in Sec. 4.3. The situation can worsen with large
absorption and scattering coefficients, since in these cases
numerical methods may even generate negative solutions that
are nonphysical. Readers can refer to Refs. 35, 48 for more
details on this technique.

Briefly, to apply the phase function normalization tech-
nique, we start with the original discrete points si and weights
wi of a chosen numerical quadrature; refer to Refs. 34, 40, 41,
and 45 for how to calculate si and wi. Let θij (based on the
original discrete points) represent the angle between the i 0th
direction si and the j 0th direction sj, and let fðcos θijÞ be
the value of the phase function at θij. Namely, fðcos θijÞ ¼
fðsi; sjÞ with the specific form of the H–G phase function.
Then the normalized phase function, with its value at the
same point θij denoted as fijnorm, satisfies the following dis-
crete form of Eq. (4):

EQ-TARGET;temp:intralink-;e005;63;123

XN
i¼1

wif
ij
norm ¼ 1;

XN
i¼1

wif
ij
norm cos θij ¼ g; j ¼ 1; : : : ; N:

(5)

Here, the values of the normalized and the original phase
function at θij are connected as

EQ-TARGET;temp:intralink-;e006;326;730fijnorm ¼ ð1þ ξijÞfðcos θijÞ: (6)

Plugging Eq. (6) into Eq. (5), a system of linear equations
will be obtained, with ξij being the unknowns. Notice that
there are 2N conditions in Eq. (5) while the number of
unknowns is N2. If it is further required that the normalized
phase function be symmetric such that ξij ¼ ξji, the number
of unknowns will be reduced to ðN2 þ NÞ∕2. In general, there
are more unknowns than equations (when N > 3), hence there
will be an infinite number of solutions. In order to deal with
such an equation, a least squares solution is utilized, which
minimizes the two-norm of the solution vector. A
MATLAB® built-in function lsqr.m is employed to solve
Eq. (5). The sparse matrix technique is also used here for
better efficiency in computation and storage.48 Through nor-
malization, the newly calculated weights are expressed
as w̄ij ¼ wið1þ ξijÞ∕Piwið1þ ξijÞ.

2.4 Discrete Ordinate Method with Continuous
Galerkin Finite Element Method

After discretizing the integral term in Eq. (1) using a modified
numerical quadrature based on the phase function normalization
technique, the RTE is turned into a system of coupled first-order
PDEs. That is,
EQ-TARGET;temp:intralink-;e007;326;448

sj · ∇φðr; sjÞ þ μtφðr; sjÞ ¼ μs
XN
i¼1

w̄ijfðsj; siÞφðr; siÞ

þqðr; sjÞ; j ¼ 1; : : : ; N:

(7)

To solve Eq. (7), the CG-FEM with streamline diffusion
modification of the test function is implemented.33,37 For a
given tetrahedron-based mesh T , a finite element space is
defined as

EQ-TARGET;temp:intralink-;sec2.4;326;332Vh ¼ fvðrÞ ∈ CðXÞjvjK ∈ P1ðKÞ; ∀ K ∈ T g.
Here, P1ðKÞ is the set of linear polynomials defined in K,

and CðXÞ denotes the space of the continuous functions in
the closure of X.

Following the idea of the streamline diffusion method with a
modified test function vðrÞ þ δsj · ∇vðrÞ, the following CG-
FEM method will be formed: look for φjðrÞ ∈ Vh, such that
for any vðrÞ and any j ¼ 1; 2; : : : ; N,
EQ-TARGET;temp:intralink-;e008;326;223 Z

X
sj · ∇φjðrÞ½vðrÞ þ δsj · ∇vðrÞ�dV

þ
Z
X
μtφjðrÞ½vðrÞ þ δsj · ∇vðrÞ�dV

¼
Z
X
μs

XN
i¼1

w̄ijfðsj; siÞφiðrÞ½vðrÞ þ δsj · ∇vðrÞ�dV

þ
Z
X
qjðrÞ½vðrÞ þ δsj · ∇vðrÞ�dV: (8)

Note that φjðrÞ ∈ Vh approximates the solution φðr; sjÞ and
qjðrÞ ¼ qðr; sjÞ. The parameter δ is related to the absorption
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and scattering coefficients,33 and it is chosen to be a piecewise
constant, defined as δjK ¼ ChK∕ð1þ hKμtÞ, with hK being the
diameter of a mesh element K ∈ T . C (0.3 to 0.6) is a constant,
and the computed solution is not sensitive to its value for the
range of absorption and scattering coefficients examined in
this work on reasonably refined meshes. Our formula for δ sat-
isfies the guiding principle for choosing this parameter, as out-
lined in Theorem 1 from Ref. 33. Performing integration by
parts to the first term of Eq. (8), we obtain
EQ-TARGET;temp:intralink-;e009;63;653Z
X
sj · ∇φjðrÞvðrÞdV ¼

Z
∂X;sj ·n>0

φjðrÞvðrÞsj · nds

−
Z
X
sj · ∇vðrÞφjðrÞdV: (9)

Our final scheme is obtained with Eq. (9) plugged
into Eq. (8).

Let rk denote the k’th vertex of the mesh. Considering the
Lagrange nodal basis fψ j

l ðrÞgl of Vh associated with vertices,
satisfying ψ j

l ðrkÞ ¼ δlk, in which δlk is the Dirac-Delta function.
Each basis function ψ j

l ðrÞ is nonzero only within those elements
sharing the vertex rl. The numerical solution φjðrÞ and the test
function vðrÞ can now be expanded in terms of basis, namely,

EQ-TARGET;temp:intralink-;e010;63;497φjðrÞ ¼
XMj

l¼1

ajlψ
j
l ðrÞ; vðrÞ ¼

XMj

l¼1

bjlψ
j
l ðrÞ: (10)

In Eq. (10), Mj represents the number of nodes (basis func-
tion) in discrete direction sj. Since the linear polynomial
space is employed as discrete space, the gradient of the test
function vðrÞ will be constant in each element and can be cal-
culated analytically. With these assumptions, the numerical
method can be converted into a linear system, namely Ax ¼ q.
In the linear system, matrix A contains the terms related with
the stiffness matrix, the mass matrix and so on, x ¼
ða11; a12; : : : ; a1M1

; a21; : : : ; a
2
M2
; : : : ; aNMN

ÞT . q relates with the
source term, which can be acquired either by employing the
boundary condition in Eq. (2) or directly processing the source
term25 qðr; sÞ. The linear equation was then solved using the
generalized minimum residual method (GMRES),22 which is
performed in the simulations with the MATLAB® built-in func-
tion gmres.m. We want to point out that the source iteration
method or improved source iteration method can also be
employed.23

When the object and ambient media have different refractive
indices, the reflection and transmittance are modeled by
Fresnel’s law.23,25 In the simulations, the mismatched boundary
condition will be applied when the refractive indices of the
object and the ambient media are different.

2.5 Diffusion Equation

Because of the computational difficulty of solving Eq. (1), an
approximation model of the RTE, the DE, has been widely
employed to simulate photon propagation in tissue.39,49 Briefly,
photon radiance φðr; sÞ is expanded in terms of spherical har-
monic functions. Then, the truncated spherical harmonic series,
with a different number of terms, is used to approximate the RTE.
For example, the DE can be viewed as the first order, P1

approximation1 (in which case, one uses spherical harmonic func-
tions whose index is 0 and 1). The quasisteady DE can be
expressed as39

EQ-TARGET;temp:intralink-;e011;326;752−∇ · κðrÞ∇ΦðrÞ þ μaΦðrÞ ¼ qðrÞ; (11)

where ΦðrÞ is photon density (Jm−2) and is related to the photon
radiance in Eq. (1) as follows:

EQ-TARGET;temp:intralink-;e012;326;708ΦðrÞ ¼
Z
Ω
φðr; sÞds: (12)

Here κðrÞ ¼ 1∕½3ðμa þ μ 0
sÞ�, where μa is the absorption coef-

ficient (mm−1), while μ 0
s is the reduced scattering coefficient

(mm−1) and defined as μ 0
s ¼ ð1 − gÞμs. qðrÞ represents the

light source.
In this work, the Robin boundary condition is applied, that is,

EQ-TARGET;temp:intralink-;e013;326;610ΦðrÞ þ 2An · κðrÞ∇ΦðrÞ ¼ 0; r ∈ ∂X; (13)

where A is defined as A ¼ ð1þ RÞ∕ð1 − RÞ, with R expressed
as

EQ-TARGET;temp:intralink-;sec2.5;326;557R ≈ −1.4399n−2 þ 0.7099n−1 þ 0.6681þ 0.0636n

and n represents the refractive index of the object when the
ambient medium is air (n ¼ 1).

Equation (11) is a second-order elliptic PDE with the Robin
boundary condition. The CG-FEM is a well-established
approach for solving such equations, and a standard finite
element procedure can be applied. In our simulation, the con-
tinuous linear finite element space is employed and the corre-
sponding matrices (stiffness matrix, mass matrix, surface
integral related matrix, and load vector) are formed as in
Refs. 49, 50, 51.

2.6 Monte–Carlo Method

MC is a stochastic method in which a large number of photons
are transported to obtain the photon distribution (photon den-
sity) in medium. This procedure utilizes a probability function
to describe the stochastic events of photons, such as energy
dissipation during collisions with media particles and the
new direction of propagation when a photon hits the particles
in media. It involves the absorption coefficient, scattering coef-
ficient, and phase function for computation. Some authors
have investigated the MC method for higher computational
efficiency.52 Mesh-based MC methods have also been
proposed12 to deal with complex shapes of media. In our sim-
ulation, mesh-based MC was employed to allow comparisons
of identical meshes12,53 with solutions to RTE. Results
obtained using the MC method are viewed as the ground
truth standard to evaluate the accuracy of solutions to the
RTE and DE.

3 Settings for Numerical Simulations

3.1 Ideal Pencil Beam Simulation

In our simulations, a 3-D rectangular computational domain
½−2.5; 2.5� × ½−7.0; 7.0� × ½−5.0; 0� mm3 is considered first,
referred to as Rect. 1, which is similar to the setting54 we pre-
viously used to simulate the photon propagation in media
(teeth) with the MC method. A computational mesh was gen-
erated, as shown in Fig. 2(a), using the precompiled Computa-
tional Geometry Algorithms Library. The 3-D domain has 4858
nodes with 27,456 elements. The position where the photon was
launched was rs ¼ ð0;0; 0Þ with the direction s0 ¼ ð0;0;−1Þ
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orthogonal to the plane z ¼ 0 mm; see Fig. 2(b). This type
of source was modeled by the Dirac-Delta function
δðr − rsÞδðs − s0Þ.

The optical properties of the 3-D rectangle were selected
according to the most common values of human tissue55 (see
Tables 3 and 4). For instance, the values for the healthy
human brain are less than 0.1 mm−1 for the absorption coeffi-
cient and around 10 mm−1 for the scattering coefficient56 at
674 nm. The anisotropy of the tissue was set to g ¼ 0.9 and
the refractive index n was 1.5 for all simulations (pencil
beam and Gaussian shape beam). Various combinations of opti-
cal properties (absorption and scattering coefficients) were
tested. As mentioned above, results from the RTE were com-
pared with the solution to the DE and MC simulations under
the same settings. A tetrahedron mesh-based MC method53

was employed. Since using different numbers of photons to sim-
ulate photon propagation in tissue by MC led to different abso-
lute intensities, results were normalized with respect to a global
maximum value28 in order to compare the solutions obtained by
the RTE, DE, and MC methods. Equation (12) was employed to
transform the photon radiance to photon density by numerical
integration to compare MC simulations and solutions to the
DE. In order to easily process the data, a structural grid
(49 × 139 × 50 with a resolution of 0.1 mm in each dimension)
was generated. For the structural points inside one element, a
linear interpolant through the values of four nodes of the element
was employed.

Solutions to the RTE obtained by different numerical quad-
ratures were compared to MC simulations in order to appraise
their influence on the results. Since it was difficult to use the
same number of discrete angles of quadratures with different
constructions, comparable numbers of discrete angles were
employed. Subsequently, solutions obtained with the most accu-
rate quadrature (from the discussion in Sec. 4.1.1, Lebedev
quadrature was mainly employed) for the RTE were compared
with the results from the DE and MC simulations. Due to the
limit of the storage space (RAM) of the computer used for sim-
ulation, no more than 100 angles of the DOM were employed. It
is noted that the number of angles used in the simulation was
less than those in Refs. 26 and 57 when the FVM was used with
similar accuracy. The simulations were run on a computer with
Intel Xeon 2.8GHz CPU, 24 GB RAM, and Windows 7
Professional 64-bit operating system. The number of photons
in these MC simulations was set to 106.

3.2 Gaussian Shape Beam Simulation

Many light sources can be modeled by Gaussian distribution. In
our next group of tests, a Gaussian-shaped beam, in which the
intensity of the points at the cross-section of the beam obeys
the Gaussian distribution, was employed as the light source.
The beam intensity was modeled by

EQ-TARGET;temp:intralink-;sec3.2;326;679gdðx; y; z ¼ 0Þ ¼ 1

2πd2
e

−ðx2þy2Þ
2d2 ;

in which d represents the beam width. Two different 3-D rec-
tangles were employed, Rect. 1 in Sec. 3.1 and Rect. 2, given as
½−2.0; 2.0� × ½−2.0; 2.0� × ½−6.0; 0� mm3. Note that Rect. 2 is
smaller than Rect. 1. Only the solutions to the RTE and MC
were presented and compared, as the DE is not suitable for pre-
dicting photon propagation when the region of interest (ROI) is
near the source. When the light source is changed from a point
source to a Gaussian shape, solving the RTE changes only the
boundary conditions presented in (2) or the source term. As a
consequence, the matrix assembling time and computation time
are almost unchanged. Similarly, extended illumination sources
can be efficiently modeled using MC with overhead less than
5% of the total computational time.11,58 Here, 105 photons
were employed for MC simulation for each single point of
Gaussian beam for both rectangles, Rect. 1 and Rect. 2.

The anisotropy and refractive index were set to be the same
values as in Sec. 3.1. The parameter d was set to 0.5. In the first
example (Rect. 1), the absorption coefficient was set to
0.08 mm−1 and the scattering coefficient was set to 5 mm−1.
Since the light source was modeled by a Gaussian function,
it was much smoother than the ideal pencil beam, thus fewer
discrete angles were needed to obtain solutions with comparable
accuracy to those gathered for the ideal pencil beam. For Rect. 1,
a mesh with denser nodes was generated compared with the one
in Sec. 3.1, and in total there are 7204 nodes with 41,559
elements.

For Rect. 2 [Fig. 3(a)], 10,996 nodes with 60,887 elements
were generated. Figure 3(b) shows the Gaussian beam repre-
sented by a collection of single point sources for MC in the com-
putation. The optical properties of the simulation were set to be
0.1 mm−1 for absorption coefficient and 5 mm−1 for scattering
coefficient, respectively.

Two quantities were used to assess the difference between the
solution to the RTE and MC simulation, as shown below. One is
the root mean square error between the solutions, defined as

EQ-TARGET;temp:intralink-;sec3.2;326;253RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðuMC
i − uRTEi Þ2
N

;

r

where N represents the number of points in comparison. Note
that what RMSE measures is an absolute error. The relative error
at each point between the solutions was defined as

EQ-TARGET;temp:intralink-;sec3.2;326;174ei ¼
juMC

i − uRTEi j
uMC
i

:

Based on this, the mean relative error (MRE, defined asP
iei∕N) and maximum relative error can be easily calcu-

lated. Note that both quantities can be calculated for any
geometry, along any line in a specific plane, or in the entire
3-D rectangle.

Fig. 2 The 3-D rectangle used in simulations: (a) 3-D mesh of rectan-
gle; (b) the slice at x ¼ 0 mm, where the arrow indicates the position
in which the photon is launched perpendicularly to the plane
z ¼ 0 mm.
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4 Results

4.1 Three-Dimensional Rectangle Simulations with
Ideal Pencil Beam

4.1.1 Comparison between different numerical
quadratures

In order to evaluate the effect of the choices of numerical quad-
rature on the solution to the RTE, all the numerical quadratures
reviewed in Sec. 2 were tested first for all sets of optical proper-
ties listed in Table 3. Tables 1 and 2 report only the errors for
the optical settings with absorption coefficient 0.02 mm−1 and
scattering coefficient 5 mm−1. Table 1 lists the 3-D RMSE
(x ∈ ½−2.5; 2.5� mm; y ∈ ½−7.0; 7.0� mm, with z defined in
the corresponding tables) in different regions with different
numerical quadratures. Note that the number in parentheses
in the first column in Table 1 is the number of the discrete angles
used for each numerical quadrature.

From Table 1, it is clear that when the ROI is far from the
source and boundary, the error between the solutions to the RTE
and from the MC simulations is smaller for all numerical

quadratures. However, it can be seen from Table 1 that the
error for Legendre equal-weight quadrature is larger in deeper
regions compared with other quadratures. In order to find the
quadrature with the least error in the simulations, the 3-D
MRE was calculated and is shown in Table 2.

It can be concluded that the MRE exhibits the same trend as
the RMSE. From Table 2, one can also see that product Gaussian
quadrature has a larger error (∼1%) than Lebedev quadrature
and level symmetric quadrature although it employs fewer dis-
crete angles. Considering that the next product Gaussian quad-
rature will have 98 discrete angles and this will increase the
computation cost, product Gaussian quadrature will not be
our first choice. For Lebedev and level symmetric quadratures,
the error for the whole rectangle is around 10%, while for deeper
regions it is around 5%. Hence we can infer that level symmetric
quadrature and Lebedev quadrature are the best among all tested
quadratures, at least for the optical properties examined in this
paper. It was observed that level symmetric quadrature can gen-
erate negative weights, which is nonphysical when the number
of discrete angles is larger than 528.40 On the other hand, both
numerical quadratures provide similar relative error estimations,

Fig. 3 3-D rectangle used in simulation 3.2: (a) mesh of 3-D rectangle; (b) irradiated light intensity mod-
eled by Gaussian shape function.

Table 1 RMSE with different numerical quadrature (μa ¼ 0.02 mm−1, μs ¼ 5 mm−1, g ¼ 0.9).

Numerical quadrature −5.0 ≤ z < 0.0 mm −5.0 ≤ z < −1.0 mm −5.0 ≤ z < −2.0 mm

Lebedev (86) 2.81 × 10−2 1.07 × 10−2 2.16 × 10−3

Product Gaussian (72) 2.80 × 10−2 1.07 × 10−2 2.37 × 10−3

Legendre equal-weight (80) 2.84 × 10−2 1.14 × 10−2 3.39 × 10−3

Level symmetric (80) 2.81 × 10−2 1.09 × 10−2 2.31 × 10−3

Table 2 MRE with different numerical quadrature (μa ¼ 0.02 mm−1, μs ¼ 5 mm−1, g ¼ 0.9).

Numerical quadrature −5.0 ≤ z < 0.0 mm −5.0 ≤ z < −1.0 mm −5.0 ≤ z < −2.0 mm

Lebedev (86) 10.05% 6.82% 5.45%

Product Gaussian (72) 10.64% 7.70% 6.39%

Legendre equal-weight (80) 20.90% 18.53% 17.64%

Level symmetric (80) 10.36% 7.29% 5.72%

Journal of Biomedical Optics 036003-7 March 2016 • Vol. 21(3)

Long et al.: Radiative transfer equation modeling by streamline diffusion modified continuous Galerkin method



with the difference less than 0.5%, at deeper depths. Thus, in this
paper, Lebedev quadrature will be further investigated in the fol-
lowing simulations.

4.1.2 Ideal pencil beam simulations

Figure 4 shows the contours of the logarithm of solutions to
the RTE by the streamline diffusion modified CG-FEM and
from MC simulations within three planes. The optical properties
for these simulations were set as μa ¼ 0.02 mm−1 and
μs ¼ 5 mm−1. With this combination of optical properties in tis-
sue, the DE is not an accurate model to predict photon
propagation.28 Eighty-six angles were employed in Lebedev

quadrature to obtain the results for the RTE. It is clear that at
deeper depths, the difference between the solutions to the
RTE and MC simulations is small. The photon densities along
the line x ¼ 0 mm with different depths are shown in Fig. 5.
The RMSE and MRE along each line at different depths are
shown in Tables 3 and 4.

In comparing MC to the DE, it is quite clear that the discrep-
ancy between the MC solution (blue-dashed line in Fig. 5) and
the DE solution (green line in Fig. 5) is large. In comparing MC
to the RTE, the solutions to the RTE and MC coincide quite well
except in shallow regions [Figs. 5(a) and 5(b)]. The MRE for
z ¼ −3.0; z ¼ −4.0; z ¼ −5.0 mm is less than 5% (Table 4).
At these depths, the maximum relative error for all points is
10.04%, 12.03%, and 9.06%, respectively. In the shallow
region, for instance, z ¼ −1.0 mm and z ¼ −2.0mm , the errors
are larger as ROI gets closer to the light source located at (0,0,0).
At the extreme shallow region, z ¼ −0.4mm , the difference
between the solution to the RTE and the results of the MC
method is large, which leads to large RMSE and MRE.

To further demonstrate the performance of the algorithms,
three more combinations of optical properties were tested.
The RMSE and MRE between the solutions to the RTE and
the results of the MC along line x ¼ 0 mm are shown in
Tables 3 and 4. For all examples tested and for depths smaller
than −3.0 mm, the MRE is less than or close to 5%. At a depth
of z ¼ −2.0mm , the MRE is less than 10%.

Tables 3 and 4 show only the results along the line x ¼ 0 mm
at different depths. For a comprehensive comparison of the sol-
utions to the RTE and results from the MC, 3-D RMSE and
MRE (x ∈ ½−2.5; 2.5� mm; y ∈ ½−7.0; 7.0� mm) were also cal-
culated. The results are shown in Tables 5 and 6.

From Tables 5 and 6, one can see that for each set of optical
properties (corresponding to each row in the table), the 3-D
RMSE and MRE decrease when the regions where the errors
are measured are reduced. In our simulations, the largest

Fig. 4 The contours of logarithm of solutions to RTE and MC results,
solid curve for the solution to RTE and dashed curve for MC results:
(a) the contours within the plane x ¼ 0 mm; (b) the contours within the
plane y ¼ 0 mm; the value of the outermost curve is −1.5; (c) the con-
tours within the plane z ¼ −3.0 mm.

Fig. 5 Comparison between the solutions to RTE, DE, and MC method at different depths, along the line
x ¼ 0 mm: (a) z ¼ −0.4 mm; (b) z ¼ −1.0 mm; (c) z ¼ −2.0 mm; (d) z ¼ −3.0 mm; (e) z ¼ −4.0 mm;
(f) z ¼ −5.0 mm.
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error occurs near the source. For the optical properties listed in
Tables 5 and 6, the MRE for deeper regions is around 5%.

4.2 Three-Dimensional Rectangle Simulations with
Gaussian Modeled Intensity Beam

The contours of the logarithm of photon densities within three
planes of Rect. 1, obtained by solving the RTE and using MC
simulations, are shown in Fig. 6. The contours of the logarithm
of photon densities of Rect. 2 are shown in Fig. 7. For both Rect.
1 and Rect. 2, Lebedev quadrature with 50 angles was
employed. 3-D RMSE and MRE for different regions were
also calculated and are shown in Table 7. When the volume

of the ROI is reduced, there is a subsequent decrease in both
the RMSE and MRE. Because the Gaussian-shaped intensity
beam is smoother than the point source, the solution to the
RTE contains fewer oscillations near the light source. This
can be easily seen through comparison of the ROI near the
source in Figs. 4 and 6.

4.3 Importance of the Normalized Phase Function
Technique

To illustrate the importance of the normalized phase function
technique to the stability of the proposed method, especially
for large anisotropy with g around 0.8 to 0.9, we compare in

Table 3 RMSE for different optical properties at different depth along the line x ¼ 0 mm (g ¼ 0.9).

ðμa;μsÞ mm−1 −0.4 mm −1.0 mm −2.0 mm −3.0 mm −4.0 mm −5.0 mm

(0.02, 5) 6.84 × 10−2 9.07 × 10−2 1.03 × 10−2 1.01 × 10−3 4.19 × 10−4 2.89 × 10−4

(0.02, 8) 8.88 × 10−2 2.58 × 10−2 3.25 × 10−3 1.02 × 10−3 5.69 × 10−4 2.23 × 10−4

(0.08, 5) 7.08 × 10−2 9.16 × 10−2 1.02 × 10−2 9.49 × 10−4 2.80 × 10−4 1.97 × 10−4

(0.01, 10) 8.92 × 10−2 2.33 × 10−2 2.90 × 10−3 7.40 × 10−4 3.24 × 10−4 1.94 × 10−4

Table 4 MRE for different optical properties at different depth along line x ¼ 0 mm (g ¼ 0.9).

ðμa;μsÞ mm−1 −0.4 mm −1.0 mm −2.0 mm −3.0 mm −4.0 mm −5.0 mm

(0.02, 5) 17.76% 17.24% 8.25% 4.73% 3.84% 3.59%

(0.02, 8) 11.94% 7.31% 4.10% 3.19% 3.46% 2.71%

(0.08, 5) 19.51% 18.98% 9.22% 5.05% 3.72% 3.44%

(0.01, 10) 13.80% 7.99% 5.54% 3.54% 3.01% 3.09%

Table 5 RMSE for different optical properties to 3-D rectangle (g ¼ 0.9).

ðμa;μsÞ mm−1 −5.0 ≤ z < 0.0 mm −5.0 ≤ z < −1.0 mm −5.0 ≤ z < −2.0 mm

(0.02, 5) 2.81 × 10−2 1.07 × 10−2 2.16 × 10−3

(0.02, 8) 2.54 × 10−2 6.39 × 10−3 1.81 × 10−3

(0.08, 5) 2.88 × 10−2 1.06 × 10−2 2.02 × 10−3

(0.01, 10) 2.60 × 10−2 5.77 × 10−3 1.58 × 10−3

Table 6 MRE for different optical properties to 3-D rectangle (g ¼ 0.9).

ðμa;μsÞ mm−1 −5.0 ≤ z < 0.0 mm −5.0 ≤ z < −1.0 mm −5.0 ≤ z < −2.0 mm

(0.02, 5) 10.05% 6.82% 5.45%

(0.02, 8) 8.33% 5.51% 4.78%

(0.08, 5) 10.90% 7.42% 5.82%

(0.01, 10) 8.87% 5.76% 4.92%
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Fig. 8 the numerical solutions of the methods with or without
using the normalization. Rect. 1 with Gaussian beam was con-
sidered, with all the optical properties the same as in Sec. 3.2.
The comparison is shown in Fig. 8.

When processing the CG-FEM without the phase function
normalization, it is observed from Fig. 8(b) that the algorithm
is less stable and the computed solution oscillates between pos-
itive and negative values. In the plot, the negative value is shown
as the machine epsilon in MATLAB® for logarithm calculation.

5 Discussion and Future Work
In this paper, the RTE was solved using our proposed algorithm
with a modified DOM in angular variables and a streamline dif-
fusion CG-FEM in space variables. The quadrature with the
highest computational efficiency, Lebedev quadrature, was
chosen to calculate the integral term, combined with the
phase function normalization technique. 3-D rectangles with
various common optical properties of human tissue were
employed to simulate photon propagation. The solutions to
the RTE and DE were compared to those found by MCmethods.
In summary, for a 3-D rectangle irradiated by an ideal pencil
beam, the MRE for a region farther than 2 mm is around
5%. For a light source with Gaussian irradiation, even with a
smaller computational domain, the worst MRE is still less
than 10% for deeper regions.

One advantage of our method is that, from a mathematical
perspective, it reduces the dimension of the original RTE
using the DOM. Furthermore, a streamline diffusion technique
was employed to deal with the transport term in the RTE within
a CG-FEM framework. The difference between the test function
of the standard CG-FEM and streamline diffusion test function
is the addition of a term that is the gradient of the original test
function. Herein, it is quite easy to implement the modification.
In our simulations of highly scattering media (a few tenths per
mm of scattering coefficient), the solution was occasionally neg-
ative when the streamline diffusion technique was not used. In
practice, with highly scattering tissue, there is no need to solve
the RTE to obtain photon distribution, as DE provides a com-
putationally more efficient model. The other advantage of using
the streamline diffusion technique, at least with the optical prop-
erties examined in this work, is that fewer iterations were needed
when the GMRES was used to solve the resulting linear equa-
tions. In our work, it is important to use the function normali-
zation technique to calculate the integral term accurately. This
technique mitigates the instability of DOM dramatically and fur-
ther reduces the nonphysical oscillations of the solution. The
oscillation of the solution to the RTE with DOM is more promi-
nent with ideal pencil beam. Various techniques were proposed
in literature for reducing the oscillation. For instance, in Ref. 23,
the weight of numerical quadrature is calculated based on the
integration of linear interpolation of the phase function. In com-
parison to the method discussed in Ref. 23, the phase function
normalization technique is more direct and easier to apply.

We want to point out the DG-FEM is known to be a good
choice for solving problems with transport effects, like the
RTE. It is also noted that the implementation of the DG-
FEM can make the scheme parameters free and succinct.
Although the DG-FEM involves more unknowns in general,
it is still worth investigating in future work.

Finally, we comment on the computational time of the pro-
posed methods solving the RTE directly and the MC simula-
tions. In the case of a single-point source such as pencil
beam, solving the RTE directly is not advantageous in computa-
tional efficiency. When Gaussian beam or sources of arbitrary
shape are considered, however, solving the RTE directly is more
cost effective than conventional MC simulations. This is illus-
trated by Table 8, where computational times are reported for
solving the RTE directly with a Gaussian beam and 50 discrete
angles (including time to assemble matrices and solve linear
equation), and MC simulations with 105 or 106 photons
employed for each single point of Gaussian beam. If using
MC simulations presented in Ref. 58, solving the RTE by the

Fig. 6 The contours of logarithm of photon densities of Rect. 1 at
three planes, in which the solid curves represent the solution to
RTE while the dashed curves represent MC results: (a) x ¼ 0 mm;
(b) y ¼ 0 mm, the value of the outermost contour is −1.5;
(c) z ¼ −3 mm.

Fig. 7 The contours of logarithm of photon densities of Rect. 2 at
three planes, in which the solid curves represent the solution to
RTE while the dashed curves represent MC results: (a) x ¼ 0 mm,
the value of outermost curve is −2.5; (b) y ¼ 0 mm, the value of outer-
most curve is −2.5; (c) z ¼ −3 mm.
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proposed algorithm will have similar computational efficiency
when a large number of photons (108) is employed in MC sim-
ulations. We also want to point out that the use of parallel com-
putation can reduce the time required to solve the forward
photon propagation problem. In our code, CPU-based parallel
computing techniques had already been implemented. In simu-
lations, the time would be reduced by at least 40% if parallel
computing was used (four-core CPU) in general. Still, using
GPU computing can further decrease the time required for
FEM implementation.

6 Conclusion
A modified finite element method based on the streamline dif-
fusion idea is applied to simulate the RTE with high accuracy. It
is demonstrated numerically that the method provides an accu-
rate and robust approach to solving the forward problem in the
bio-optical regime. Future investigation includes evaluation of
the performance of this algorithm on objects exhibiting a
wider range of optical properties or objects with very general
shapes. The output flux of photons calculated by this algorithm
should also be verified by experiments.
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