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Abstract. Indocyanine green (ICG) fluorescence imaging has been clinically used for noninvasive visualizations
of vascular structures. We have previously developed a diagnostic system based on dynamic ICG fluorescence
imaging for sensitive detection of vascular disorders. However, because high-dimensional raw data were used,
the analysis of the ICG dynamics proved difficult. We used principal component analysis (PCA) in this study to
extract important elements without significant loss of information. We examined ICG spatiotemporal profiles and
identified critical features related to vascular disorders. PCA time courses of the first three components showed a
distinct pattern in diabetic patients. Among the major components, the second principal component (PC2) rep-
resented arterial-like features. The explained variance of PC2 in diabetic patients was significantly lower than in
normal controls. To visualize the spatial pattern of PCs, pixels were mapped with red, green, and blue channels.
The PC2 score showed an inverse pattern between normal controls and diabetic patients. We propose that PC2
can be used as a representative bioimaging marker for the screening of vascular diseases. It may also be useful
in simple extractions of arterial-like features. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
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1 Introduction
A number of diagnostic tools have been developed for structural
and functional assessment of the vascular system. Our research
focuses on identifying functional vascular parameters, because
vascular disease prognosis correlates better with functional per-
fusion level than with vascular structure.1 However, traditional
diagnostic tools, such as the ankle-brachial index test, laser
Doppler imaging, and computed tomography angiography,
are limited by their low sensitivity, high cost, and poor acces-
sibility,2,3 and newer technologies are required to provide more
accurate functional information.

For obtaining functional parameters, we previously proposed
an optical imaging method, dynamic fluorescence imaging
(DyFI), based on the time-series analysis of indocyanine
green (ICG) pharmacodynamics.4 ICG, an FDA-approved, non-
specific near-infrared fluorophore, has been widely used for
detection of synovitis,5,6 sentinel lymph node,7 rheumatoid
arthritis,8–10 breast cancer imaging,11 and studies for vascular
events.12,13 With DyFI, we can measure perfusion rate with
higher accuracy and sensitivity compared to other conventional
methods. Previous studies have shown that analysis of time-
series ICG images can predict the prognosis of murine hindlimb
ischemia.4 Additionally, by analyzing ICG serial images of
dorsal feet, we were able to identify clinical features associated

with peripheral vascular insufficiency; for example, a reliable
characteristic feature of Raynaud phenomenon (RP) was iden-
tified as modified Tmax, calculated as the length of time between
peak onset and maximum peak fluorescence.14 Perfusion rate
has also been used as a quantitative measure of tissue perfusion,
with sufficient sensitivity to diagnose mild peripheral arterial
occlusive disease.15 Recently, symmetricity analysis of the
left and right extremities has been used to diagnose microvas-
cular abnormalities in feet.16 Our ICG fluorescence images have
768 × 512 pixels and 120 time frames. The large amount of data
contained in these images may cause dimensionality issues that
can severely restrict its practical application.17 The use of raw
high-dimensional data makes it difficult to extract the important
elements that form the representative pattern of ICG fluores-
cence dynamics. Previously suggested features, such as the
modified Tmax

14 and the perfusion rate,15 are susceptible to
noise signals and movement artifacts. Furthermore, in cases
of increased vascular permeability, functional parameters may
be underestimated. For these reasons, the present study was con-
ducted to assess the entire set of spatiotemporal data using only
a few components, rather than thousands of variables.

To project high-dimensional data into a low-dimensional
space, a dimensional reduction algorithm, such as principal
component analysis (PCA), can be applied to extract desirable
features.18 The new variables detected by PCA, called principal
components (PCs), are linear combinations of the original ICG
dynamics.19 PCA with ICG fluorescence dynamics has been
used to generate anatomical maps of the internal organs of a
mouse.20 Additionally, spatiotemporal analyses of rheumatoid
arthritis have been conducted based on PCA, with good
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congruence observed between PCA features and synovitis in
hand joints.10 The application of PCA with ICG fluorescence
dynamics to the assessment of vasculopathy in diabetic patients
has not yet been conducted. In this study, we apply the PCA
algorithm to ICG images of diabetic patients and normal con-
trols, mathematically extract the PCs that differentiate the two
groups, and attempt to interpret the biological meanings of the
PCs. The overall aim is to identify new imaging-based bio-
markers that indicate the presence of underlying vasculopathy.

2 Subjects and Methods

2.1 Subject Profiles

The study protocol was approved by the institutional review
board of Gangnam Severance Hospital, Seoul, Korea. Written

informed consent was obtained from each subject. A total of
19 subjects (9 diabetic patients, 10 normal controls) underwent
near-infrared ICG fluorescence imaging. The age of the subjects
ranged from 50 to 65 years (mean: 58.78� 5.52 years) for dia-
betic patients and 51 to 60 years (mean: 55.90� 3.14 years) for
controls. For diabetic patients, exclusion criteria included the
presence of acute coronary syndrome (unstable angina, acute
myocardial infarction), history of heart failure, and preg-
nancy/lactation. Exclusion criteria for controls included
Raynaud’s syndrome and pregnancy/lactation. Demographic
data of the subjects are summarized in Table 1.

2.2 Dynamic Fluorescence Imaging

DyFI with ICG was used to measure various vascular
parameters, as previously reported.21 The ICG fluorescence im-
aging system for clinical applications was manufactured by
Vieworks Corporation (Anyang, Gyeonggi-do, Korea)22 and
consisted of a charge-coupled device digital camera (RXD-
500, Vieworks Co.) with an 830-nm bandpass filter (RG830;
Edmund Optics, Barrington, New Jersey) and 760-nm light-
emitting diode (LED) arrays (SMC760; Marubeni America
Co., Sunnyvale, California). The sum of the current of the
three LED arrays was kept under 1.3 A. Time-series images
(768 × 512 pixels) of both dorsal feet were obtained while sub-
jects were in a supine position. Each image was taken at 5-s
intervals for 600 s, immediately following an intravenous
bolus injection of ICG (0.16 mg∕kg; Dongindang Pharm.
Co., Gyeonggi-do, Korea). Characteristic features of the ICG
fluorescence images are presented in Fig. 1, such as the temporal
sequence [Fig. 1(a)]. Figure 2(b) shows that each pixel has dif-
ferent ICG pharmacokinetic dynamics. A three-dimensional (3-
D) plot of ICG fluorescence dynamics is presented in Fig. 1(c).
Data with movement artifacts were excluded from the analyses.

Table 1 Demographics of subjects enrolled in the study.

Group Control Diabetes

n 10 (20 ft) 9 (18 ft)

Age (years, mean� SD) 55.90� 3.14 58.78� 5.52

Median age (years) 56 57

Gender Female Female

HTN (n) 0 2

DM duration (months, mean� SD) — 131.89� 99.48

Smoking (n) 0 1

Dyslipidemia (n) 1 1

Note: Data represent the mean� SD; HTN, hypertension; diagnosed
by physicians.
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Fig. 1 Characteristics of ICG fluorescence dynamics: (a) temporal sequence of ICG fluorescence
images after the intravenous injection of ICG at 0 s; five representative time-points are shown
(768 × 512 pixels, 120 frames, total 600 s). (b) Time-series of ICG fluorescence intensity at different
regions of interest (ROIs) on the foot. Three ROIs were selected: the left hallux (red, ROI1); the vein
(green, ROI2); and the peripheral vessel (blue, ROI3). Each pixel has a different ICG pharmacokinetic
pattern according to type of vessel. (c) Spatiotemporal profile of ICG dynamics showing the high dimen-
sionality of the raw data. Normalized fluorescence intensity is shown in a 3-D space (x -axis, pixels;
y -axis, frames; z-axis, fluorescence intensity). Each pixel has different ICG fluorescence dynamics.
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2.3 Principal Component Analysis

A schematic diagram of the ICG dynamics analysis using PCA
is shown in Fig. 2. The first step involves loading ICG sequential
images, which consist of ICG fluorescence intensities. The
region of interest was both feet except the background and
shadow. ipk is the normalized fluorescence intensity at the
k’th frame of the p’th pixel. Ip is the vectorized fluorescence
dynamics of the p’th pixel in 120 sequential frames
[Eq. (1)]. To apply the PCA algorithm, the image pixels were
interpreted as a matrix of integers. We made an input matrix
S that incorporates the whole spatiotemporal profile, composed
of all fluorescence dynamics of all N pixels. Rows of S corre-
spond to the dynamics of every pixel, while columns of S cor-
respond to frames [Eq. (2)].

EQ-TARGET;temp:intralink-;e001;63;326Ip ¼ ½ ip1 ip2 · · · ip120 �; (1)

EQ-TARGET;temp:intralink-;e002;63;295S ¼
2
4
I1
..
.

IN

3
5: (2)

The covariance matrix C is calculated using Eq. (3), while
the eigenvector (U) and eigenvalue (λ) are calculated from C
[Eq. (4)].

EQ-TARGET;temp:intralink-;e003;63;206C ¼ ST · S; (3)

EQ-TARGET;temp:intralink-;e004;63;175C ¼ UT · λ · U: (4)

PCs were extracted according to their eigenvalue. The eigen-
vector with the highest eigenvalue was considered the first PC
(PC1). The PC2 vector was the second highest eigenvalue and
orthogonal to PC1. By calculating the inner product between the
input matrix S and eigenvector (U) sorted by decreasing order,
we could project the entire fluorescence dynamics onto PC
space (x) [Eq. (5)].

EQ-TARGET;temp:intralink-;e005;326;487eðs;UÞ ¼ S · U: (5)

We wrote a C++ (Visual Studio 2010, Microsoft) program
that can extract ICG fluorescence dynamics from each pixel.
PCA was performed using the princomp function included in
MATLAB® software (MATLAB® 2014b, Mathworks).

2.4 Statistical Analysis

Statistical differences were analyzed by two-tailed Student’s t
test, or Spearman’s correlation where indicated. Data are
expressed as the mean� standard deviation, and a p value of
<0.05 is considered statistically significant.

3 Results

3.1 Distinctive Patterns of Principal Components in
Diabetic Patients and Normal Controls

PCA was applied to extract the important elements from raw
ICG fluorescence dynamics. From the input matrix, which con-
tains the sequential ICG fluorescence intensities of all pixels on
the foot, PCs were selected based on their eigenvalue. The
eigenvector with the highest eigenvalue was defined as the
first PC. The second PC was defined as the second-highest
eigenvalue with a direction uncorrelated to the first PC. Each
eigenvector has 120 dimensions because the raw data consisted
of 120-frame sequential images. Time to the PC1 maximum
coefficient value was faster in normal controls than in diabetic
patients, corresponding to general ICG pharmacokinetic pat-
terns [Fig. 3(a) and 3(b)]. The PC2 curves extracted from normal
controls had a sharp peak in the early time phase and decreased
exponentially after the peak point [Fig. 3(c)]. This feature of
PC2 curves in normal controls is similar to that observed
with arterial input function (AIF), as an early bolus arrival, a
steep rise, and a narrow peak are considered arterial-like
features.23 In diabetic patients, PC2 curves were smoother
and more dispersed than in normal controls [Fig. 3(d)].

Load raw date Mathematical analysis Feature extraction

p'th k 'th

Fig. 2 Flowchart of PCA for ICG fluorescence dynamics. Fluorescence intensities of both feet were
extracted using 120 sequential ICG fluorescence images from each subject. For the mathematical analy-
sis, normalized fluorescence intensity was converted to a matrix. The rows of the input matrix correspond
to spatially successive pixels, while columns correspond to temporally sequential frames. The covariance
matrix was calculated from the input matrix. The components were then extracted as its eigenvector. The
eigenvector with the highest eigenvalue was taken as the first PC. The feature vector consisted of the first
three PCs. By calculating the inner product of the input matrix with the PCs, high-dimensional raw data
could be converted into low-dimensional data without significant loss of information. ipk, fluorescence
intensity of raw signal at k ’th frame of p’th pixel; S, vectorized fluorescence intensity; C, covariance
matrix; F.I., fluorescence intensity; λ, eigenvalue; U , eigenvector; e, function of feature extraction; x ,
projection data.
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The meaning of PCs can be revealed by investigating the
relationship between pixel values projected onto PCs and
other known dynamics features. The dynamics features com-
pared with PCs included blood flow index (BFI), mean transit
time (MTT), and time to max (Tmax). It has been reported that
these parameters are related to vascular conditions. BFI and
MTT showed significant differences between normal and
middle cerebral artery occlusion in mice.24 Modified Tmax,
which means the time from onset of ICG fluorescence to
time for maximum intensity (MI), was reported as a diagnosis
parameter of RP.14 We calculated Spearman’s correlation coef-
ficients between pairs of features. The maximum fluorescence
intensity and area under curve (AUC) showed positive correla-
tion with the PC1 coefficient (r ¼ 0.74 and r ¼ 0.73, respec-
tively, p < 0.0001, Spearman’s correlation) [Fig. 4(a)]. MTT,
calculated as the center of gravity of the dynamics,25 had a
strong positive correlation with PC2 (r ¼ 0.90, p < 0.0001,
Spearman’s correlation). Tmax and percentile Tmax also have
strong correlation with PC2 (r ¼ 0.87 and r ¼ 0.86, respec-
tively, p < 0.0001, Spearman’s correlation). BFI, based
on the slope of the rising peak, had a negative correlation
with PC2 (r ¼ −0.80, p < 0.0001, Spearman’s correlation)

[Fig. 4(b)]. We plotted scatter graphs to visualize the correlation
between dynamics features and PCs [Figs. 4(c) and 4(d)]. Our
results suggest that PC1 is closely related to the original phar-
macokinetic curve (MI and AUC parameters), while PC2 seems
to contain functional information related to the BFI and MTT
parameters.

3.2 Explained Variance of Principal Components

Proportion of explained variance for PCs was identified as a
quantitative value that could differentiate between normal con-
trols and diabetic patients. Each PC contributes to a proportion
of the total ICG fluorescence dynamic, based on its eigenvalue.
The percentage of explained variance for each PC can be calcu-
lated using Eq. (6), which is the corresponding eigenvalue di-
vided by the total variance (k is the component number; λ is the
eigenvalue).

EQ-TARGET;temp:intralink-;e006;326;126PC kð%Þ ¼ λkP
N
i¼1 λi

× 100: (6)

Table 2 shows the average variance explained by correspond-
ing PCs. For normal controls, the first, second, and third PCs
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Fig. 3 Representative PCs time-courses. Each curve was extracted from a different individual subject.
The PC2 vector is the second-highest eigenvalue and is orthogonal to PC1. (a) and (b) Average time-
course of the first three PCs. PC1 is similar to ICG pharmacokinetic curve. PC2 of controls represents
arterial input function. (c) PC2 time-courses extracted from four representative normal controls. A sharp
peak is seen in the early time phase (before 100 s); the peak decreases exponentially with image acquis-
ition time. (d) PC2 time-courses extracted from four representative diabetic patients. A delayed peak is
observed, with lower coefficients than normal controls.
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account for 77.71, 17.82, and 2.65% of the average variance,
respectively. For diabetic patients, these same PCs account
for 92.36, 5.19, and 1.32% of the average variance, respectively.
The total variance explained by the first three PCs in controls
(98.18%) and diabetic patients (98.87%) was sufficient to re-
present the high-dimensional ICG fluorescence data. The
noticeable difference between diabetic patients and controls
was observed with the PC1 and PC2 pattern (Fig. 5), where

the proportion of explained variance was significantly lower
in diabetic patients than in controls (p < 0.0001, two-tailed
Student’s t test). Figure 5(c) shows the gap between control
and diabetes was widened by calculating the ratio of major
two variances, PC1 (%) divided by PC2 (%). This finding
suggests that explained variance of the first two PCs may be
considered a potential imaging-based biomarker that can differ-
entiate between a normal foot and a diabetic foot.

3.3 Multichromatically Visualized Principal
Components Map

To represent the spatial distribution of PCs, PCA results were
mapped against projection values of the dynamics of each
pixel. A schematic representation of the mapping method is pro-
vided in Fig. 6(a). By calculating the inner product of normalized
ICG fluorescence dynamics and PCs, the high-dimensional raw
data were converted to low-dimensional data that conserve the
important elements. The first three PCs became the new basis
after the projection. Each pixel has three projection values on
PC1, PC2, and PC3 space. Pseudocolored images were created
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Fig. 4 Correlation analysis between various vascular parameters and PCs in normal controls.
Spearman’s correlation coefficients with (a) PC1 and (b) PC2. Strong positive correlations were observed
between MI and PC1 (r ¼ 0.74, p < 0.0001), and MTT and PC2 (r ¼ 0.90, p < 0.0001). AUC, area under
curve; BFI, blood flow index; Tmax, time-to-max. (c) and (d) Scatter plots of PC score (x -axis) and the
vascular parameters (y -axis) that showed the highest correlation with PCs in (a) and (b).

Table 2 Explained variance of PCs (%).

Control Diabetes

PC1 77.71 92.36

PC2 17.82 5.19

PC3 2.65 1.32

SUM 98.18 98.87
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by merging the data with RGB channels (red, green, and blue
channels represented PC1, PC2, and PC3, respectively). In
PC1–PC2 spaces visualizing all the dynamics on the hallux
and dorsal feet, only PC2was capable of differentiating the hallux
and dorsal feet regions [Fig. 6(b)]. The PC2 score on the dorsal
feet was higher than the hallux in normal controls, while the

reverse pattern was observed in diabetic patients. The distribution
of PC2 scores between normal controls and diabetic patients from
Fig. 6(b) is shown in histogram form in Fig. 6(c). Figure 6(d)
compares the RGB maps of a normal control and a diabetic
patient. The projection values of PC2 were mapped to veins
on the dorsal feet in normal controls and the hallux in diabetic

** ** **

(a) Variance explained of PC1 (%) (b) Variance explained of PC2 (%) (c) The ratio of major two variances 

Fig. 5 A dot plot of variance (%). Data are shown as means (red line) with standard error of the mean
(light red area) and standard deviation (light blue area). (a) Variance explained of PC1 (%), (b) variance
explained of PC2 (%), and (c) the ratio of two major variances, PC1 (%) divided by PC2 (%).
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Fig. 6 Projection of data onto PCs. (a) A map with PC-matching RGB channels. RGBmapping creates a
visual representation of the spatial distribution of the PCs. Fluorescence intensity was projected onto the
first three PCs. Each projected value has PC1, PC2, and PC3 scores. The spatial pixels corresponding to
the first, second, and third orthogonal temporal components of the image were visualized as a red-green-
blue map. (b) Comparison of scatter plots. By projecting raw ICG fluorescence dynamics onto PC1 and
PC2, the data could be visualized as a scatter plot. (c) Histograms of PC2 and (d) a case study of PC
distribution. Red, green, and blue channels represent PC1, PC2, and PC3, respectively.
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patients (Fig. 7). These representative PC distribution color-maps
show characteristic patterns for normal controls and diabetic
patients, and could potentially be used to detect and evaluate vas-
culopathy in diabetic feet.

4 Discussion
The aim of the present study was to investigate the ICG spatio-
temporal profile of vasculopathy in diabetic patients and identify
distinct features. Previously, we have defined vascular parameters
by selecting features from original raw dynamics.14,15,22 However,
these methods are limited in their ability to identify underlying
properties of ICG fluorescence dynamics. The methods are not
robust enough to signal noise and motion artifacts, as only a sin-
gle parameter from the original dynamics is selected, and actual
vascular disorders are often underestimated. In the current study,
we have shown that clinically relevant features of ICG fluores-
cence dynamics can be successfully identified by extracting
PCs. PCA can extract robust-to-noise and scale-invariant features
by excluding redundancies in raw data17 while also retaining hid-
den information, such as the AIF. Our study demonstrated that the
PCs of ICG dynamics differ significantly between normal con-
trols and diabetic patients. Thus, this method has a potential appli-
cation as a diagnostic system for early detection of vascular
complications in diabetic patients.

The eigenvectors extracted by PCA produced different char-
acteristic curves. PC1 represents the original pharmacokinetic
curve, while PC2 seems to contain functional information
related to vasculopathy. PC2 was considered the most remark-
able, as the PC2 curve in normal controls was found to be analo-
gous to the known AIF pattern. AIF is typically estimated by
measuring signal changes in major arteries.26 The AIF and
PC2 vectors had a similar shape: a sharp rise to maximum inten-
sity in the early phase, followed by a slower decrease after the
peak. AIF has a fundamental role in the quantification of blood

flow, as AIF describes the tracer concentration in vessels enter-
ing a tissue as a function of time. Despite its importance, there is
no standard model for measuring AIF, and various approaches
have been reported. Most studies utilize a dynamic susceptibility
contrast-magnetic resonance imaging (MRI) technique for quan-
tifying blood flow. AIF is typically modeled as a gamma-variate
function, which is calculated using a scaling factor and param-
eters that determine the shape of the peak.27 For ICG imaging,
the lagged normal density distribution function and recursive
convolution algorithm have been demonstrated as modeling
methods.28,29 Deconvolution analysis is normally required for
the quantification process, as true ICG concentration is the con-
volution of AIF and the tissue residue function. However, in the
present study, the characteristic behavior of AIF was detected as
the PC2 basis vector time-course, without the use of complex
deconvolution methods. AIF is dispersed during its passage
from the point of measurement to the tissue.30 With abnormal
vasculature, AIF may lose its distinct curve with mixed dynam-
ics. For example, using perfusion MRI, Calamante et al.
observed bolus dispersion in the arteries of subjects with
steno-occlusive disease.31

In accordance with AIF dispersion, PC2 appears to be dis-
persed in diabetic patients with vascular complications. While
PC2 had a sharp peak in normal controls, a wider peak was
observed in diabetic patients. Furthermore, the projected values
on the PC2 basis showed an inverse pattern between normal
controls and diabetic patients. PC2 scores were mapped to
the hallux in diabetic patients and to the vein on the top of
the foot in normal controls. PC2 scores were high on the hallux,
even in the diabetic patients, because AIF should be observed in
every artery and first capillary. However, PC2 scores for the vein
and for the ends of capillaries were lower than scores for arteries
in diabetic patients. We suggest that this hidden variable can be
used to indicate how much of the AIF is conserved.

Fig. 7 The pseudo color-map of PC2 score. (a) and (b) A comparison of PC2 distribution with green
color-map. The projection values of PC2 were mapped to veins on the dorsal foot in a normal subject
[green dashed box in (a)] and the hallux in a diabetic patient [green dashed box in (b)]. (c) and (d) A
comparison of PC2 distribution with jet color-map. The projection values of PC2 are higher on veins
than hallux in a normal subject. Inversely, the score is higher on hallux than veins in diabetic patients.
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In conclusion, we have identified a hidden feature extracted
from the PCA of ICG dynamics and investigated its biological
meaning by known characteristics of AIF. We propose that PC2
could be useful in the diagnosis of vascular disorders. PC2 also
represents a new index of AIF conservation, which is fundamen-
tal for quantifying pharmacokinetic parameters.
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