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Abstract. A Monte Carlo simulation was utilized to investigate a simple model for the transition between the
ballistic and the diffusive regimes in diffusive media. The simulation focuses on the propagation of visible and
near-infrared light in biological tissues. This research has mainly two findings: (1) the transition can be described,
as was found experimentally, with good accuracy by only two terms (ballistic and diffusive). (2) The model can be
utilized for cases where the absorption coefficient is not negligible compared to the scattering coefficient by
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1 Introduction
When light propagates through a diffusive medium, it experiences
absorption and scattering. If the scattering coefficient is consid-
erably larger than the absorption coefficient, the medium can be
regarded as diffusive, and light propagation obeys a diffusion
process.1 However, diffusion is meaningful only beyond transport
mean free path (TMFP). For media that are considerably shorter
than the TMFP, the media are almost ballistic.2 Hence, this length
scale (TMFP) is extremely important in an optical imaging sys-
tem and in practice determines the upper limit beyond which no
ballistic imaging of the media can be reconstructed. Penetration
depths of imaging technologies, which are based on ballistic im-
aging, such as optical coherence tomography,3–5 are limited by
this length scale. For biological tissues (of almost any kind—
skin, brain, liver, and so on) that are thicker than 2 mm, the bal-
listic component of the light [in the visible or near-infrared (IR)
regimes] is negligible.6,7 In order to investigate a thick medium,
most optical imaging methods are using diffusion-based tech-
niques, such as photon density waves and inverse-scattering
solutions of the diffusion equation.8–10

Since the TMFP,11,12 which is the reciprocal of the reduced
scattering coefficient, is the diffusion length scale, it was
assumed that the length of the transition from the ballistic
regime to the diffusive one should also be equal approximately
to this length scale. However, experiments and simulations
show disagreement regarding this point.13–18 The transition
length scale varies from one experiment (or simulation) to
the next.15–18 Recent experiments reveal that the transition
length depends not only on the scattering coefficient but on
the collecting angle as well. Moreover, it was shown both exper-
imentally and theoretically that the transition occurs within a
much shorter distance, which is approximately the reciprocal
of the scattering coefficient μs (instead of the reduced scattering
coefficient μ 0

s).
19,20

It should be stressed that the determination and classification
of the transition point are not merely an academic issue. In their
pioneering works, Yoo and Alfano21 have been able to differen-
tiate between the ballistic and diffusive photons with streak
camera, and with an ultrafast optical shutter, the same group
created a ballistic image of a 3.5-mm thick human tissue.22

This technology was developed in different directions,15,23–33

and recently, it was demonstrated that by applying the conclu-
sions of Refs. 19 and 20 to this technology, a ballistic image can
be reconstructed even when the thickness of the medium is
increased substantially.34

The mathematical model that was utilized in Ref. 19 was
based on a superposition of the Beer–Lambert term, which
describes the ballistic domain, and the diffusion equation solu-
tion, which describes the diffusive regime. Since, unlike the
ballistic light, the diffusive one is scattered in every direction,
then the latter term is multiplied by the collecting angle of the
detector. As was later demonstrated experimentally,19,20 despite
its simplicity, this model anticipated the transition from the
ballistic regime to the diffusive one with high accuracy.

This result is quite unexpected due to the following reasons:
(1) the optimized model works with great accuracy even when
the absorption coefficient is relatively large and (2) the model is
based only on two terms (ballistic and diffusive) and ignores
other types of transport, such as quasiballistic ones.35,36

The simplicity of this model is very appealing since the
generic solution requires solving the radiative transfer equa-
tion,17,37,38 which is too complicated for an analytical solution.
The equation can be solved numerically with a Monte Carlo
(MC) simulation; however, it is time-consuming. Even faster
techniques, such as the discrete ordinates and the adding–
doubling methods are still computationally intensive and are,
therefore, used primarily for layered, or quasi-one-dimensional
(1-D), media (see, e.g., Refs. 39 and 40).
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Moreover, the simple analytical solution, namely Ref. 19,
teaches about the main parameters that affect the transition
point, which, as was shown in Ref. 34, has a practical implica-
tion in ballistic imaging, namely, imaging an object hidden in
1 cm of chicken breast.

It is the object of this paper to investigate the validity of
this model for different absorption values by investigating the
transition from the ballistic regime to the diffusive one with
much higher accuracy. To achieve the high accuracy, an MC
simulation41–51 was utilized in an MATLAB computational
platform. This simulation allows, except for comparison to
experiment, a very flexible method to investigate the transition
with the required accuracy. It should be emphasized that since
the MATLAB program was written in a parallel form, the sim-
ulation time was reduced by more than two orders of magnitude.

The results reveal that the model does agree with the simu-
lations and is valid for higher absorption coefficient with a sim-
ple power-law prefactor.

2 System and its Model
The model of the experiment is shown in Fig. 1. Since this paper
is not an experimental research and the original experiment is
described in details in Refs. 19 and 20, only the main points
will be listed below. The light source was a laser with a wave-
length 840 nm, the medium was an intralipid solution with a
scattering coefficient of approximately μs ≅ 140 cm−1, and
varying values of absorption coefficients μa ≅ 0.04, 2.4, 4.8,
and 9.6 cm−1, which were constructed by varying the India
ink concentration in the solution (as can be seen from the exper-
imental results in the ballistic regime, the additional ink has a
negligible effect on the scattering coefficient). The light source
was placed near the sample, so the beam remained parallel at the
entrance to the medium. Two pupils were placed on both sides of
the medium to keep the beam at the same width of the detector.
The pupils’ diameter was smaller than the width of the sample to
keep the quasi-1-D approximation valid. In the experiment, the
setup was oriented vertically (and not horizontally as in Fig. 1),
so the width of the sample (L) can be varied by changing the
solution level in the glass (see Ref. 20 for details).

Clearly, if the medium’s width L is short enough, then most
scattered photons would be blocked by the barrier and mainly
ballistic photons would be detected. However, if the medium is
wider than the transition length, the number of ballistic photons
is reduced dramatically, and as a consequence, most of the
detected particles experience scattering.

3 Theoretical Model
The original model, which was developed in Ref. 19, is based on
the premises that the detected radiation consists of only two
terms: ballistic and diffusive. The ballistic term is governed
by the Beer–Lambert’s law,14–18,37 i.e., the intensity decreases
exponentially

EQ-TARGET;temp:intralink-;e001;326;682IballisticðzÞ ¼ I0 expð−μtzÞ; (1)

where I0 is the incident intensity, μt ≡ μs þ μa, μs and μa are
the scattering and absorption coefficients of the medium,
respectively.

The diffusion term is a degenerated 1-D solution of the three-
dimensional diffusion equation8 (see Ref. 52 for a solution of
the diffusion equation for a slab geometry).

Since the light source is continuous, the stationary diffusion
equation for the photon density ρðrÞ can be utilized53

EQ-TARGET;temp:intralink-;e002;326;563∇2ρðrÞ ¼ μ2effρðrÞ; (2)

where μeff ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3μaðμ 0

s þ μaÞ
p

, μ 0
s ≡ μsð1 − gÞ is the reduced

scattering coefficient and g ≡ hcosðθÞi is the mean cosine of
a single scattering angle.17

When the beam’s cross section is larger than the medium’s
thickness, there is degeneracy in the transversal coordinate and
the beam decays approximately exponentially in the propaga-
tion direction (z). Since in the diffusion approximation the
medium is isotropic, the local density is proportional to the
local intensity, i.e.,

EQ-TARGET;temp:intralink-;e003;326;432

IdiffusiveðzÞ
Idiffusiveð0Þ

¼ ρðzÞ
ρð0Þ ≅ expð−μeffzÞ: (3)

However, while the ballistic photons, which have survived
the medium, suffer no additional losses, the diffusive ones are
scattered in all directions and only a fraction eventually reach
the detector. This process is shown in Fig. 2.

Equation (3) is a good approximation of the diffusion
equation at the end of the medium [inside the medium an
additional exponentially increasing term should be introduced,
i.e., IdiffusiveðzÞ∕Idiffusiveð0Þ ≅ expð−μeffzÞ þ C expðþμeffzÞ;
however, since this term is multiplied by an exponentially
small coefficient, i.e., C ∼ expð−2μeffLÞ, eventually, at the
end of the medium, i.e., at z ≅ L, they both have the same expo-
nentially decaying dependence on z (for elaboration, see, e.g.,
Ref. 54)]. The effects of the boundary can be neglected in the
model, since the attenuation due to the boundary’s reflectivity is
below the experimental accuracy.

If the collecting angle of the detector is δΩ, then the diffusive
term should be multiplied by the factor δΩ∕4π, which in
our system can be approximated by ðδΩ∕4πÞ ≅ ðd2∕4πL2

0Þ,

Fig. 1 System schematic. L is the slab thickness and L0 is the dis-
tance between the slab and the detector. Fig. 2 Diffused photons detection.
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where d2 is the rectangular cross section of the detector (the fact
that the prefactor is proportional to L−2

0 is consistent with the
result of Ref. 55).

Hence, since the model consists of both the ballistic and
diffusive terms, it can be approximated by

EQ-TARGET;temp:intralink-;e004;63;697IðzÞ ¼ Ið0Þ½expð−μtzÞ þ
δΩ
4π

expð−μeffzÞ�: (4)

This model was shown to predict the experimental results,19,20,34

however, it was shown that there is a discrepancy of a factor of
2 to 4 in the prefactor of the diffusive term.

4 Monte Carlo Simulation
The simulation algorithm was similar to Ref. 18, and its main
features are presented here for completeness purposes.

It should be stressed, however, that within the terminology of
Refs. 56–58, the simulation included contributions from all
types of particles, i.e., all orders of scattering. There is no dis-
tinction between multiply scattered and low-order scattered
photons.

To keep the Beer–Lambert’s law, the probability density of
the distances between scatterings (s) is

EQ-TARGET;temp:intralink-;e005;63;501pðsÞ ¼ μs expð−μssÞ: (5)

Similarly, in each scattering, the photon direction is determined
by two angles: θ and ϕ.

The probability density of the cosine of the elevation angle
θ ∈ ½0; π� obeys the Henyey–Greenstein38,59 phase function

EQ-TARGET;temp:intralink-;e006;63;426pðcos θÞ ¼ 1 − g2

2ð1þ g2 − 2g cos θÞ3∕2 ; (6)

and the probability density of the azimuthal angle ϕ ∈ ½0; 2πÞ
obeys

EQ-TARGET;temp:intralink-;e007;63;358pðϕÞ ¼ 1

2π
: (7)

These three parameters can be generated randomly by generat-
ing three uniformly distributed random variables: ξ ∈ ½0; 1�,
ζ ∈ ½0; 1�, and ψ ∈ ½0; 1Þ by

EQ-TARGET;temp:intralink-;e008;63;283s ¼ −
ln ξ

μs
; (8)

EQ-TARGET;temp:intralink-;e009;63;239 cos θ ¼
(

1
2g

n
1þ g2 −

h
1−g2

1−gþ2gζ

i
2
o

for g ≠ 0

2ζ − 1 for g ¼ 0
; (9)

and

EQ-TARGET;temp:intralink-;e010;63;182ϕ ¼ 2πψ ; (10)

In Fig. 3, this process is illustrated for four consecutive scatter-
ing (in this figure, it is assumed that only the elevation angle
varies between scattering).

Eventually, each trajectory that hits the detector surface is
multiplied by expð−μa

P
N
i¼1 siÞ, where N is the number of scat-

tering events, to account for the absorption.
By multiplying the arriving photons by their absorption

attenuation, the number of simulating photons can be reduced

substantially, since each particle in the simulation simulates
a group of particles. It was found that 20 million such groups
of particles are sufficient to simulate with good accuracy (higher
than the experimental one) a range of 10 orders of magnitude
(eight of which were measured).

5 Comparison Between Experiments,
Simulations, and the Mathematical Model

In Fig. 4, the MC simulation was compared to the experimental
results of Ref. 19 and to the theoretical model [Eq. (4)].

In Fig. 4, there is a good agreement between the simulation
and the experimental results. However, there is a disagreement
with the theoretical model. The exponential decay agrees with
the theoretical model both in the ballistic regime and the diffu-
sive one; however, there is a disagreement on the transition
point, and as a consequence, there is a downward shift in the
diffusive part of the plot. This discrepancy was well known
in Ref. 20 but its source was unknown. In Sec. 6, we will quan-
tify this discrepancy.

6 Introducing a Correction Prefactor to
the Diffusive Term

Since the discrepancy occurs at the transition, it can be corrected
by an additional prefactor (a) on the diffusive term (since there
is no change in the slope of the graph). To quantify this term,
an MC simulation was carried on the same geometrical
system (d ¼ 0.15 cm, L0 ¼ 30 cm, and g ¼ 0.9) but with dif-
ferent scattering and absorption coefficients. In every scenario

Fig. 3 Photon propagation in a diffusive slab.

Fig. 4 Comparison of the MATLAB (blue circle), experiment (red
crosses), and theoretical results (magenta dashed line). The scatter-
ing coefficient of the experiment, simulations, and the theoretical
model is 140 cm−1 and the absorption coefficient is 9.6 cm−1. The
anisotropic coefficient is 0.9. The beam, the barrier, and the detector
size are 0.15 cm × 0.15 cm and the distance from the slab to the
detector is 30 cm. The x -axis is the slab thickness and the y -axis
is the relative intensity decay in logarithmic scale.
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(specific μs and μa), the simulation intensity data were used to
calculate the prefactor a that fits the following equation:

EQ-TARGET;temp:intralink-;e011;63;730IðzÞ ¼ Ið0Þ
�
expð−μtzÞ þ a

δΩ
4π

expð−μeffzÞ
�
: (11)

The results for three different μs and 13 different μa are pre-
sented in Table 1. In the simulation, we focused on parameters,
which characterize the propagation of visible and near-IR light
in biological tissues.

In Fig. 5, the data are plotted on a single graph. The data can
be fitted to a power-law

EQ-TARGET;temp:intralink-;sec6;63;620a ¼ α½μaðcm−1Þ�β;

where α ¼ 4.8� 0.2 and β ¼ 0.322� 0.023. In particular, in
Fig. 5, we show that the power-law

EQ-TARGET;temp:intralink-;e012;63;566a ¼
�
μa
μ0a

�
1∕3

; (12)

where μ0a ¼ 0.007 cm−1 is an excellent approximation to the
simulation data.

These results suggest an interesting conclusion that the ana-
lytical expression can be utilized even when the validity of the
diffusion approximation is questionable. The prefactor a allows
using the model for absorption coefficient (at least) as large
as μa ≅ μs∕10.

Therefore, Eq. (3) can be refined to

EQ-TARGET;temp:intralink-;e013;63;433IðzÞ∕I0 ¼ expð−μtzÞ þ
�
μa
μ0a

�
1∕3 δΩ

4π
expð−μeffzÞ: (13)

The source of the power-law (and its exact power value 1∕3) is
not clear and seems to require an extended research. Moreover,
it seems reasonable that the value of μ0a should be μs dependent,
e.g., it may be that the prefactor should have been 25ðμa∕μsÞ1∕3.
Alternatively, it may depend on the scattering anisotropy (see,
e.g., Ref. 60), but we do not have enough data to validate that.

Figures 6 and 7 present the effect of the additional prefactor
a. In Fig. 6, the prefactor is absent (or equal to 1), and the dis-
crepancy is evident. On the other hand, in Fig. 7, the prefactor is
present, i.e., the data are compared with Eq. (13), and the agree-
ment is excellent.

In Figs. 8 and 9, the relative error is plotted versus the sam-
ple’s width with and without the prefactor. The relative error is
defined E ≡ 2jIS − IMj∕jIS þ IMj, where IS and IM are the

Table 1 The a prefactor for different scenarios.

μs1 ¼ 100 (cm−1) μs2 ¼ 120 (cm−1) μs3 ¼ 140 (cm−1)

μa (cm−1) a1 a2 a3

0.01 1.45 1.4 1.3

0.05 1.9 1.9 1.7

0.09 2.2 2 2.1

0.2 2.5 2.5 2.5

0.3 3 3 2.9

0.5 3.5 3.5 3.4

0.7 4 4 3.9

0.8 4.2 4.5 4

1 4.6 4.5 4.6

2 5.8 5.8 5.8

3 8 6.5 7

4 9.5 8 8

5 10 10 9.5

Fig. 5 The prefactor a versus the absorption coefficient in a log–log
plot, the scattering coefficient of the blue squares is 100 cm−1, of
the green diamonds is 120 cm−1, and of the red circles is 140 cm−1.
The solid line stands for Eq. (12).

Fig. 6 Simulation and theoretical results for a scattering coefficient of
140 cm−1. The absorption coefficient of the blue circles (simulation)
and blue line (theoretical) is 0.09 cm−1, of the red X’s (simulation) and
the red line (theoretical) is 0.8 cm−1, of the green triangles (simulation)
and the green line (theoretical) is 2 cm−1, and of the pink squares
(simulation) and the pink line (theoretical) is 5 cm−1. The anisotropic
coefficient is 0.9. The beam, the barrier, and the detector size are
1 cm × 1 cm and the distance from the slab to the detector is 30 cm.
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intensities of the simulation and the model [Eq. (13)], respec-
tively. Despite the great improvement of the prefactor, there
is still some error at the transition area, which may indicate
the need for a third transport term (see, e.g., Ref. 61). This dis-
crepancy is relatively large when there is a sharp transition
between the ballistic and the diffusive regimes, i.e., when the
absorption is low. However, for many applications, the model’s
accuracy is surprisingly good.

7 Summary
An MC simulation was conducted to investigate the model pre-
sented in Refs. 19 and 20. The main purpose was to validate
the premises of Ref. 19 that the transition from the ballistic
to the diffusive regimes can be described with high accuracy
by only two mathematical terms: ballistic and diffusive, namely
IðzÞ ¼ Ið0Þ½expð−μtzÞ þ ðδΩ∕4πÞ expð−μeffzÞ�. The simula-
tion, as well as the experimental results, indicates that this is
indeed a good model. Moreover, it was found that this model
is valid even for relatively large absorption coefficients in
which the validity of the diffusive approximation is dubious.
To fix the model for larger absorption coefficients, a power-
law prefactor should be added to the second term, namely
a ¼ ðμa∕μ0aÞ1∕3, where μ0a ¼ 0.007 cm−1. This prefactor teaches
that the original model is valid provided the scattering coeffi-
cient is 20,000 times larger than the absorption coefficient.
It should be stressed that the conclusions of the research are lim-
ited to the regime of the simulation, namely, to the propagation
of visible and near-IR light in biological tissues. A more generic
claim requires an extension of the research.
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