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Abstract. Photoacoustic computed tomography (PACT) has emerged as a unique and promising technology for
multiscale biomedical imaging. To fully realize its potential for various preclinical and clinical applications, devel-
opment of systems with high imaging speed, reasonable cost, and manageable data flow are needed. Sparse-
sampling PACT with advanced reconstruction algorithms, such as compressed-sensing reconstruction, has
shown potential as a solution to this challenge. However, most such algorithms require iterative reconstruction
and thus intense computation, which may lead to excessively long image reconstruction times. Here, we devel-
oped a principal component analysis (PCA)-based PACT (PCA-PACT) that can rapidly reconstruct high-quality,
three-dimensional (3-D) PACT images with sparsely sampled data without requiring an iterative process. In vivo
images of the vasculature of a human hand were obtained, thus validating the PCA-PACT method. The results
showed that, compared with the back-projection (BP) method, PCA-PACT required ∼50% fewer measurements
and ∼40% less time for image reconstruction, and the imaging quality was almost the same as that for BP with
full sampling. In addition, compared with compressed sensing-based PACT, PCA-PACT had approximately sev-
enfold faster imaging speed with higher imaging accuracy. This work suggests a promising approach for low-
cost, 3-D, rapid PACT for various biomedical applications. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI:

10.1117/1.JBO.21.7.076007]
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1 Introduction
Photoacoustic imaging (PAI) has become a popular biomedical
imaging modality for its multiscale and multiresolution imaging
capabilities in biological tissues, cells, and organs.1 Photoacoustic
computed tomography (PACT) is a common form of PAI. In
PACT, unfocused ultrasonic transducers (single-element or ultra-
sonic arrays) are used to detect the ultrasonic signals emitted from
biological tissues, and then the photoacoustic images are recov-
ered from the measurements through specific reconstruction algo-
rithms. Ultrasonic-array PACT, in particular, has great potential
for many preclinical and clinical applications because of its
deeper and larger imaging fields; applications may include the
early diagnosis of breast cancer, imaging of atherosclerosis,
and whole body imaging of small animals.2–4 However, the ultra-
sonic array used in PACT typically contains several hundreds of
densely packed transducers to obtain high-quality images, thus
increasing the difficulty and cost of array fabrication. In addition,
the number of channels in the data acquisition (DAQ) card is

usually less than the number of ultrasonic detection elements
in practical applications;5 thus, multiple laser pulses are required
to obtain one B-scan measurement, which directly increases the
DAQ and reconstruction times. The above factors usually limit
wide application of PACT in many fields requiring high imaging
speed.6,7 To overcome these problems, the compressed sensing
(CS) technique has been incorporated into PACT and has pro-
vided faster DAQ with lower system costs.8–10 However, the
reconstruction process for CS-based PACT is time consuming
because of the inherent iterative computation; thus, fast image
recovery cannot be achieved, despite the fast DAQ.

Principal component analysis (PCA) is a commonly used
statistical method that reduces the large dimensionality of a
data space to the small intrinsic dimensionality of the feature
space, and it also provides redundancy removal, feature extrac-
tion, or data compression.11 Hence, PCA is widely used in
image processing and gene data mining.12,13 Now, PCA has
been incorporated into medical imaging systems, such as
MRI and CT, to improve their performance by incorporating
the information extracted from related datasets.14–16 Recently,
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based on the singular value decomposition of the measurement
data, a spatiotemporal reconstruction method for dynamic PACT
was developed, and an image-domain PCA filter (named as:
FBFIR-PCA) was also implemented as a comparison.17 In
this paper, we developed a new high-speed three-dimensional
(3-D) PACT method based on PCA (PCA-PACT) for ultrasonic
array-based PACT. Our approach is different from the FBFIR-
PCA discussed in Ref. 17. In FBFIR-PCA, all photoacoustic
images are first reconstructed with full-sampling data, then
they are employed to perform PCA and the quality of these
images can be improved through PCA filtering. In our PCA-
PACT, only partially full-sampling data are used to compute
the principal components, and the main goal is to improve
the image quality of PACT under sparse sampling. Compared
with FIFIR-PCA, our method would provide faster DAQ and
shorter image reconstruction time under the same system hard-
ware configuration. A similar use of PCA in CTwas reported in
Ref. 14. In that work, for each view of the projection data, its
nearby views are selected to perform the KL transform (i.e.,
PCA), and the estimate of the ideal sinogram at the chosen
view can be computed by the PCA process. In our work,
some full-sampling images evenly distributed on the imaging
region are employed as training samples of PCA and other
sparse-sampling images located among the fully sampled
images can be recovered through the derived PCA bases. In
vivo experiments on a human hand of our work demonstrated
that, compared with the traditional back-projection (BP)
method, PCA-PACT can provide high-quality 3-D photoacous-
tic images with fewer measurements, and the DAQ speed is
greatly improved. Additionally, compared with that of the
CS-based PACT, the image reconstruction speed of PCA-
PACT improved dramatically when the same sparse-sampling
rates were used, because of its noniterative algorithm. The pro-
posed PCA-PACT system may present an effective approach for
fast 3-D PACT, including DAQ and image reconstruction.

2 Methods

2.1 Principal Component Analysis Model

PCA is a useful technique to reduce the dimensionality of the
data by transforming the data to a new data domain called the
feature space. The aim of PCA is to find a new basis in a low-
dimensional space to represent the major features of the high-
dimensional signals by using training samples.

If the number of training images is M, all training images
can be described as a two-dimensional (2-D) matrix
X ¼ ðx1; x2; · · · ; xMÞ, where each training image is a row vector
of the matrix with size N (N: pixel number of the image) that can
be expressed as follows:

EQ-TARGET;temp:intralink-;e001;63;210xi ¼ ½p1; p2; : : : ; pN �; i ¼ 1;2; : : : ;M: (1)

The process using PCA to recover signals through training
samples can be summarized in the following five steps:

Step 1: Compute the average image x̄ of all training samples
using the equation x̄ ¼ ð1∕MÞPM

i¼1 xi;
Step 2: Obtain the average-centered images aiði ¼ 1;2; · · ·

MÞ with ai ¼ xi − x̄ and then construct the matrix A ¼
½a1; a2; : : : ; aM� from ai;

Step 3: Define the covariance matrix of average-centered
images asCov ¼ ð1∕MÞATA, and calculate its eigenvec-
tors and eigenvalues. If the rank of A is rðr ≪ NÞ, then

the eigenvalues and eigenvectors of Cov can be repre-
sented as ½λ1; λ2; : : : ; λr� and ½v1; v2; : : : ; vr�;

Step 4: Construct the PCA projective matrix p∶N × k by
selecting the k (k ≤ r ≪ N) eigenvectors corresponding
to the k largest eigenvalues as principal components, and
then projecting the image into the k-dimensional feature
space using

EQ-TARGET;temp:intralink-;e002;326;675y ¼ ðx − x̄Þ � p; (2)

where x is the original signal, and y is the feature-coef-
ficient vector;

Step 5: Recover the image by the inverse projection process,
which can be expressed as

EQ-TARGET;temp:intralink-;e003;326;602x̃ ¼ y � pT þ x̄: (3)

2.2 Photoacoustic Computed Tomography
Reconstruction via Principal Component
Analysis

The PCA-PACT reconstruction process is illustrated by the
flowchart shown in Fig. 1(a). This flowchart can be divided
into three stages. (1) Sampling. In this stage, two sampling strat-
egies of full sampling and sparse sampling are used to acquire
the 3-D data of the entire imaging region. Here, full sampling
means that all transducer elements of the ultrasonic array are
used to collect a B-scan image; otherwise, it is called sparse
sampling (a 48-element ultrasonic array is shown as an example
in Fig. 1). In our work, two kinds of sampling modes were
explored—one of every two and three frames along the eleva-
tional scanning direction was fully sampled, and the illustration
of them is shown in Fig. 1(b). The largest number of sparse-sam-
pling frames required to obtain satisfactory reconstructed results
was ∼67% of all frames in our imaging experiments.
(2) Construct the PCA basis. To determine the basis vectors
of PCA, the B-scan images reconstructed by the BP method
with full sampling are used as training samples to construct
the sampling matrix A. Each row of A is a row-vector difference
image between the sample and the average image. Then, the
covariance matrix can be obtained by multiplying the transpose
of the sampling matrix and itself, and the eigenvalues and eigen-
vectors of the covariance matrix are computed by eigenvector
decomposition. According to PCA theory, the PCA basis vec-
tors are formed by a subset of the eigenvectors, and the subset
can be determined by selecting the k eigenvectors corresponding
to the k largest eigenvalues (k can be determined by tests in prac-
tical experiments). (3) PCA reconstruction. The PCA projection
matrix is constructed by using the PCA basis vectors determined
in the second stage, with each basis vector as a column of the
matrix. Next, the reconstructed B-scan images with sparse sam-
pling are transformed into its feature space by the projection
matrix using Eq. (2), and then, a more accurate 2-D photoacous-
tic image can be recovered by the inverse process of PCA using
Eq. (3). Finally, the 3-D photoacoustic images can be con-
structed by using the reconstructed 2-D B-scans.

3 Experiments and Results

3.1 Imaging System

A linear-array PACT system was used in this work, and its major
components included a tunable dye laser pumped by a Q-
switched Nd: YLF laser, a linear ultrasonic array with 48
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elements (30-MHz center frequency and 70% bandwidth), and a
multicore PC equipped with an 8-channel PCI DAQ card.
Specifically, 570-nm light was used to illuminate the sample sur-
face; this wavelength corresponds to an isosbestic point where
oxy- and deoxyhemoglobin molecules have the same molar
optical absorption coefficient. Then, the excited pressure
waves were detected by the linear ultrasonic array. One B-
scan was obtained from six pulses and stored in the PC by
the DAQ, and 3-D data were acquired by mechanical scanning.
Finally, the B-scan images were reconstructed with the proper
algorithms (such as BP), and 3-D images were generated by
using the maximum amplitude projection (MAP) technique.
The human hand experiments described here were conducted
in compliance with Washington University-approved protocols.

3.2 In Vivo Human Hand Experiments

Noninvasive photoacoustic imaging of a human hand was per-
formed to validate the developed PCA-PACT method. The 3-D
photoacoustic image of the human hand consisted of 166 B-
scans, and each reconstructed B-scan image was represented
by 128 × 128 pixels. Figure 2 shows the photoacoustic images
with measurements from 48, 16, and 12 transducer elements,
reconstructed by different strategies. The image acquired by
the traditional BP method with data from all 48 transducer ele-
ments is assumed as the control [Fig. 2(a)]. Figures 2(b) and 2(c)
show the corresponding image reconstructed by BP with 16 and
12 transducer elements, respectively, and Figs. 2(d)–2(g) are the
images reconstructed with PCA using different sampling data.
Note that the images in Figs. 2(a)–2(g) are shown as the MAP—
the maximum photoacoustic amplitudes projected along the
depth direction of the surface of the hand. To further compare
the reconstructed images, representative B-scan images corre-
sponding to the cross-sections indicated by dash lines in
Figs. 2(a)–2(g) are also shown [Figs. 2(a1)–2(g2)]. Compared
with the control, the images reconstructed by BP with data
from only 16 or 12 transducer elements became much worse
[Figs. 2(b) and 2(c)]—many vascular signals were almost buried

in the noise. However, the images reconstructed by PCA were
dramatically improved [Figs. 2(d)–2(g)]. When one of every two
frames was sparse sampled (i.e., 83 training samples were used)
with measurements from only 16 transducer elements, the
reconstructed photoacoustic images with PCA [Figs. 2(d),
2(d1), and 2(d2)] had almost the same reconstruction accuracy
as the control with less background noise. Furthermore, when
two of every three frames were sparse sampled (i.e., 56 training
samples were used) with the measurements from only 12 trans-
ducer elements, the reconstructed results [Figs. 2(g), 2(g1), and
2(g2)] had almost the same quality as the control with few
sparse-sampling artifacts. Thus, PCA-PACT can recover high-
quality 3-D photoacoustic images, using fewer measurements
than the conventional BP method. In the above experiments,
82 and 55 eigenvectors corresponding to the positive eigenval-
ues were chosen to construct the PCA bases for 83 and 56 train-
ing samples being used, respectively. To further clarify the
principal components of PCA, images of 20 principal eigenvec-
tors from 83 training samples are listed in Fig. 6, Appendix.

3.3 Quantitative Analysis

To quantitatively evaluate the reconstructed results, two numeri-
cal analyses were performed. First, localized comparisons were
performed by plotting photoacoustic amplitudes along chosen
lines in B-scan images. Figures 3(a) and 3(b) are plots from
B-scan images reconstructed by different strategies with data
from 16 transducer elements and were obtained from the hori-
zontal dashed lines shown in Figs. 2(a1) and 2(a2), respectively.
Figures 3(c) and 3(d) are the plots from reconstructed images
with data from 12 transducer elements along the horizontal
dashed lines shown in Figs. 2(a1) and 2(a2), respectively. For
a better quantitative comparison, the contrast-to-noise ratios
(CNRs) of selected signal peaks were also computed (Fig. 3,
insets). In our computations, the range from 4.3 to 5.7 mm
along the x-axis was used as an estimation of the background.
It can be seen that the images recovered by PCA had higher
CNRs than those obtained by BP. In particular, when only 12

Fig. 1 Illustration of 3-D PCA-PACT. (a) Flowchart of the reconstruction process and (b) illustration of two
kinds of sampling modes.
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Fig. 3 Plots of photoacoustic amplitudes (relative optical absorption) along the chosen dashed lines in
B-scan images. (a, b) Plots of photoacoustic amplitudes from B-scans reconstructed by different strat-
egies with data from 16 transducer elements along the horizontal dashed lines shown in Figs. 2(a1) and
2(a2), respectively; (c, d) plots of photoacoustic amplitudes from images reconstructed with data from 12
transducer elements along the dashed lines shown in Figs. 2(a1) and 2(a2), respectively. Insets: the
CNRs of selected signal peaks; the number 48, 16, or 12 after each reconstruction method indicates
the number of transducer elements of the data used in the reconstruction, and 56 or 83 is the number
of training samples used in the PCA.

Fig. 2 Photoacoustic images of the subcutaneous vasculature of a human hand. (a–c) MAP images
reconstructed by the BP method with data from 48, 16, and 12 transducer elements; (d, e) MAP images
reconstructed by PCA using 83 training samples with 16 and 12 transducer elements; (f, g) MAP
images reconstructed by PCA using 56 training samples with 16 and 12 transducer elements; (a1–g2)
B-scan images along the vertical dashed lines shown in (a)–(g). x is the (lateral) direction of the trans-
ducer array, y is the mechanical scanning direction, and z is the depth direction. The number 48, 16, or 12
indicates that the reconstruction is performed with data from 48, 16, or 12 transducer elements, respec-
tively, and 83 or 56 is the number of training samples used in the PCA; the color scale represents relative
optical absorption.
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transducer elements and 56 training samples were used, the
photoacoustic images reconstructed by PCA exhibited a higher
CNR than the control, which demonstrated the superiority of the
PCAmethod in suppressing the reconstruction artifacts of PACT
with fewer measurements.

The second quantitative approach for comparison was the
relative error (Rerr), which is defined as

EQ-TARGET;temp:intralink-;e004;63;675Rerr ¼ kIr − Iok2
kIok2

; (4)

where Io is the control, and Ir is the reconstructed image.
Figure 4 shows the “Rerr” curves of photoacoustic images of
all 166 frames; these curves represent the relative errors between
the images reconstructed by BP or PCA and the control.
Figure 4(A) includes two Rerr curves; one represents the
Rerrs between images reconstructed by BP with 16 ultrasonic
elements and the control, and the other represents the Rerrs
between the control and the images reconstructed by PCA
with data from 16 ultrasonic elements and 56 training samples.
Figure 4(B) shows Rerr curves between the control and the
images reconstructed with data from 16 transducer elements
by BP and PCA with 83 training samples. Figures 4(c) and
4(d) are similar to the Rerr comparisons in Figs. 4(a) and
4(b), respectively, except that the images in the Rerr computa-
tion were reconstructed with data from 12 transducer elements.
Compared with the BP method, PCA provided reconstructed
images with lower Rerrs, for both 16 and 12 sparse-sampled
measurements with either 83 or 56 training samples. Thus,
the reconstruction accuracy is effectively improved by the
PCA-PACT method when a sparse-sampling strategy is used.

3.4 Principal Component Analysis Versus
Compressed Sensing for Photoacoustic
Computed Tomography

CS is currently used for photoacoustic imaging to improve its
imaging quality when using fewer measurements. The imaging
abilities of the PCA and CS methods were compared to further
evaluate the performance of the proposed PCA-PACT method.
Figures 5(A)–5(C) are MAP images of the vasculature of the
human hand reconstructed by BP with data from 48 transducer
elements, CS with data from 16 transducer elements, and PCA
with data from 16 transducer elements using 56 training sam-
ples, respectively. Figures 5(a)–5(c) are B-scan images of the
40th frame reconstructed by the above three methods, respec-
tively, and Figs. 5(d)–5(f) are the corresponding reconstructed
results of the 110th frame. With the use of CS, the image quality
improves significantly [Figs. 5(B), 5(b), and 5(e)], although
some sparse-sampling artifacts are still notable. Surprisingly,
when PCA was used, the higher quality photoacoustic images
are recovered, and the sparse-sampling artifacts are effectively
suppressed [Figs. 5(C), 5(c), and 5(f)]. To compare the two
methods, the CNRs of the B-scan images reconstructed by
PCA and CS were also computed and are listed in Table 1
[note: the positions of the peak signals and background region
used in the CNR computations are indicated in Figs. 5(a) and
5(d)]. In this case, the CNRs of the images reconstructed by
PCA were approximately twice as large as those for BP.
Further, the difference images between the results reconstructed
by CS and PCA and the control were generated and are shown in
Fig. 5. Figures 5(I1) and 5(I2) are the difference images between
CS16 and the control of the 40th and 110th frames, respectively,
and Figs. 5(I3) and 5(I4) are those between PCA16_56 and the

Fig. 4 Plots of the relative errors of all 166 frames for in vivo human hand imaging. (a, b) Error plots
between the control and images of BP16 and PCA16 using 56 and 83 training samples, respectively;
(c, d) error plots between the control and images of BP12 and PCA12 using 56 and 83 training samples,
respectively. The number 16 or 12 after each reconstruction method indicates that the reconstruction is
performed with data from 16 or 12 transducer elements; 56 or 83 is the number of training samples used
in the PCA.
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control of the two frames. Compared with Figs. 5(I1) and 5(I2),
Figs. 5(I3) and 5(I4) are more similar to the background noise,
suggesting that the images reconstructed using the PCA method
possessing higher fidelity.

Moreover, the imaging times were computed for the BP, CS
and PCA methods and are listed in Table 1 as a measure of the
imaging speed (note: all the statistical computations were done
on a PC with an Intel Core G640 CPU of 2.8 GHz). For different
reconstruction methods with different measurements and train-
ing samples, the corresponding image reconstruction time and
DAQ time for one frame are all presented in this table. The fol-
lowing conclusions can be drawn from this data: (1) PCA16_56
has an ∼50% shorter DAQ time than that of the methods with
data from 48 transducer elements and an ∼1.5-fold longer DAQ
time than that of the methods with data from 16 transducer
elements; (2) PCA16_56 has a nearly eightfold faster
reconstruction time than the CS method with data from 16 trans-
ducer elements and ∼50% faster reconstruction time than BP
with data from 48 transducer elements; (3) For the sum of
the DAQ and image reconstruction times, the overall 3-D imag-
ing speed of PCA16_56 is ∼sevenfold faster than the speed of
the CS method with data from 16 transducer elements and
∼1.8-fold faster than the speed of the BP method with data
from 48 transducer elements.

4 Discussion and Conclusions
In vivo human hand experiments verified the effectiveness and
superiority of PCA-PACT. However, several factors must still be
discussed to further understand the proposed method. First, it
should be emphasized that PCA-PACT has the potential to
decrease the system cost. In many PACT applications, the num-
ber of channels of the DAQ system is usually only a fraction (e.
g., 1∕2 or 1∕4) of the number of elements of the ultrasonic trans-
ducer array due to the high cost of high-speed multichannel
DAQ systems. This configuration—the number of DAQ chan-
nels much smaller than the number of elements of the ultrasonic
array—is even true for many presently clinically used ultrasonic
imaging systems. Thus, to acquire one B-scan cross-section
image, multiple laser pulses will be required, increasing the
image acquisition time significantly due to the usually low
laser repetition rate used in PACT (typically 10 to 20 Hz).
Therefore, with the same number of DAQ channels, our
PCA-PACT method will increase the imaging speed by requir-
ing a much smaller total number of laser firing for acquiring a
full 3-D image that usually consists of hundreds of B-scans. In
other words, with our PCA-PACT method, to maintain the same
imaging speed, a low-cost PACT system with a much smaller
number of DAQ channels can be implemented. Second, our
developed PCA-PACT may have the potential for photoacoustic

Fig. 5 Photoacoustic images reconstructed by CS and PCA methods. (A–C) MAP images recon-
structed by BP with data from 48 transducer elements, CS with data from 16 transducer elements,
and PCA with data from 16 transducer elements and 56 training samples; (a, d) the 40th and
110th B-scan images from (A); (b, e) the 40th and 110th B-scan images from (B); (c, f) the 40th
and 110th B-scan images from (C); (I1, I2) difference images between BP48 and CS16 of the 40th
and 110th frames; (I3, I4) difference images between BP48 and PCA16_56 of the 40th and 110th
frames. The number 48 or 16 after each reconstruction method indicates that the reconstruction is
performed with data from 48 or 16 transducer elements, respectively; 56 is the number of training sam-
ples used in the PCA.

Table 1 Comparisons of the performance of different reconstruction methods.

CNRs Reconstruction time (s) / frame DAQ time (s) / frame

BP48 CS16 PCA16_56 BP16/48 CS16 PCA16_56 48 element 16 element PCA16_56

Frame 40 22.78 15.28 35.78 2.73/8.32 35.20 4.63 0.60 0.20 0.33
Frame 110 21.43 25.71 43.43
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dynamic imaging. Specifically, an initial photoacoustic image
can be acquired and reconstructed using full sampling; with
this, a static vasculature map as well as the PCA bases mapping
the imaged vasculature can be obtained. Then, subsequent high-
speed dynamic imaging reflecting the intensity changes of sig-
nal distribution among the vasculature can be obtained through
sparse sampling and the derived PCA bases. In the future,
important biomedical applications, such as high-speed monitor-
ing of the cerebral hemodynamics of small animals in vivo, may
be conducted with this method. Third, to obtain high-quality
photoacoustic images, PCA-PACT requires more measurements
than the CS approach; i.e., the DAQ time is longer. However,
better accuracy and higher reconstruction speed can be obtained
by PCA-PACT when using the same sampling rates for sparse-
sampling frames. Fourth, the requirement for training samples in
PCA-PACT makes it applicable only to 3-D photoacoustic im-
aging in practical applications.

In summary, our in vivo human hand experiments demon-
strated that the proposed PCA-PACT method can effectively
decrease the DAQ and image reconstruction times of PACT
with ultrasonic arrays. Compared with the BP method using
data from all transducer elements, PCA16_56 has an almost
50% faster DAQ time. Moreover, the image reconstruction of
PCA16_56 is more than eight times as fast as that of the CS
method for data from 16 transducer elements. The results of
this study suggest that PCA-PACT may be an effective approach
for low-cost, 3-D, rapid PACT and thus may greatly enhance its
biomedical applications.

Appendix: Images of Principal Eigenvectors
To make an intuitive understanding of the principal components
computed by PCA, images of 20 principal eigenvectors are
shown in Fig. 6 for 83 training samples being used in our experi-
ments. In this figure, the i’th represents the eigenvector-image
corresponding to the i’th large eigenvalue.
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